Download - Supplementary Materials for - Science Advances...assumed to include an external magnetic field, cubic crystalline and interface-induced uniaxial magnetic anisotropies, and exchange,

Transcript
Page 1: Supplementary Materials for - Science Advances...assumed to include an external magnetic field, cubic crystalline and interface-induced uniaxial magnetic anisotropies, and exchange,

advances.sciencemag.org/cgi/content/full/6/32/eabb1724/DC1

Supplementary Materials for

Nonreciprocal surface acoustic wave propagation via magneto-rotation coupling

Mingran Xu, Kei Yamamoto, Jorge Puebla*, Korbinian Baumgaertl, Bivas Rana, Katsuya Miura,

Hiromasa Takahashi, Dirk Grundler, Sadamichi Maekawa, Yoshichika Otani*

*Corresponding author. Email: [email protected] (J.P.); [email protected] (Y.O.)

Published 7 August 2020, Sci. Adv. 6, eabb1724 (2020)

DOI: 10.1126/sciadv.abb1724

This PDF file includes:

Sections S1 to S5 Figs. S1 to S8 Tables S1 and S2 References

Page 2: Supplementary Materials for - Science Advances...assumed to include an external magnetic field, cubic crystalline and interface-induced uniaxial magnetic anisotropies, and exchange,

Supplementary Materials Section S1. Theoretical modelling We present a theoretical description of surface acoustic wave absorption by a ferromagnetic thin film. We model the experimental setup by an isotropic elastic material filling the half-space ๐‘ง๐‘ง < ๐‘‘๐‘‘/2 with its top layer of thickness ๐‘‘๐‘‘ assumed to be ferromagnetic with magnetization ๐‘ด๐‘ด. Although the elastic properties could be anisotropic and differ between the magnet and the substrate, this simplified model turns out to be sufficient for our purposes. Let ๐‘ข๐‘ข๐‘ฅ๐‘ฅ,๐‘ฆ๐‘ฆ,๐‘ง๐‘ง be the Cartesian components of the displacement vector field. The acoustic waves in isotropic media are characterized by Lamรฉ constants ๐œ†๐œ†, ๐œ‡๐œ‡ through the elastic free energy

๐น๐น = โˆซ ๐‘‘๐‘‘3๐‘Ÿ๐‘Ÿ ๏ฟฝ๐œ†๐œ†2๏ฟฝ๐œ€๐œ€๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + ๐œ€๐œ€๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ + ๐œ€๐œ€๐‘ง๐‘ง๐‘ง๐‘ง๏ฟฝ

2+ ๐œ‡๐œ‡๏ฟฝ๐œ€๐œ€๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ2 + ๐œ€๐œ€๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ2 + ๐œ€๐œ€๐‘ง๐‘ง๐‘ง๐‘ง2 + 2๐œ€๐œ€๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ2 + 2ฮต๐‘ฆ๐‘ฆ๐‘ง๐‘ง2 + 2๐œ€๐œ€๐‘ง๐‘ง๐‘ฅ๐‘ฅ2 ๏ฟฝ๏ฟฝ (๐‘†๐‘†1)

where ๐œ€๐œ€๐‘–๐‘–๐‘–๐‘– = ๏ฟฝ๐œ•๐œ•๐‘–๐‘–๐‘ข๐‘ข๐‘–๐‘– + ๐œ•๐œ•๐‘–๐‘–๐‘ข๐‘ข๐‘–๐‘–๏ฟฝ/2 are the components of the strain tensor. The dynamics of ๐’–๐’– with the isotropic free energy is studied in any textbook on continuum mechanics. In particular, the longitudinal and transverse bulk acoustic waves travel at respective speeds of sound ๐‘๐‘๐ฟ๐ฟ = ๏ฟฝ(๐œ†๐œ† + 2๐œ‡๐œ‡)/๐œŒ๐œŒ, ๐‘๐‘๐‘‡๐‘‡ = ๏ฟฝ๐œ‡๐œ‡/๐œŒ๐œŒ where ๐œŒ๐œŒ is the mass density, and the surface acoustic waves propagating in positive and negative ๐‘ฅ๐‘ฅ directions with respective wavenumbers ยฑ๐‘˜๐‘˜,๐‘˜๐‘˜ > 0 along the surface ๐‘ง๐‘ง = ๐‘‘๐‘‘/2 are described by the solution

๏ฟฝ๐‘ข๐‘ข๐‘ฅ๐‘ฅยฑ

๐‘ข๐‘ข๐‘ง๐‘งยฑ๏ฟฝ = ๐ถ๐ถRe ๏ฟฝ๏ฟฝ

(1 โˆ’ ๐œ‰๐œ‰๐‘‡๐‘‡2/2)๏ฟฝ2๐‘’๐‘’๐œ…๐œ…๐ฟ๐ฟ(๐‘ง๐‘งโˆ’๐‘‘๐‘‘/2) โˆ’ (2 โˆ’ ๐œ‰๐œ‰๐‘‡๐‘‡2)๐‘’๐‘’๐œ…๐œ…๐‘‡๐‘‡(๐‘ง๐‘งโˆ’๐‘‘๐‘‘/2)๏ฟฝ

โˆ“๐‘–๐‘–๏ฟฝ1 โˆ’ ๐œ‰๐œ‰๐ฟ๐ฟ2๏ฟฝ(2 โˆ’ ๐œ‰๐œ‰๐‘‡๐‘‡2)๐‘’๐‘’๐œ…๐œ…๐ฟ๐ฟ(๐‘ง๐‘งโˆ’๐‘‘๐‘‘/2) โˆ’ 2๐‘’๐‘’๐œ…๐œ…๐‘‡๐‘‡(๐‘ง๐‘งโˆ’๐‘‘๐‘‘/2)๏ฟฝ๏ฟฝ ๐‘’๐‘’โˆ’๐‘–๐‘–(๐œ”๐œ”๐œ”๐œ”โˆ“๐‘˜๐‘˜๐‘ฅ๐‘ฅ)๏ฟฝ (๐‘†๐‘†2)

where ๐ถ๐ถ is an arbitrary real constant, and the parameters ๐œ…๐œ…๐ฟ๐ฟ,๐‘‡๐‘‡ , ๐œ‰๐œ‰๐ฟ๐ฟ,๐‘‡๐‘‡ are related to the bulk speeds of sound ๐‘๐‘๐ฟ๐ฟ,๐‘‡๐‘‡ and the surface speed of sound ๐‘๐‘๐‘†๐‘† by

๐œ…๐œ…๐ฟ๐ฟ,๐‘‡๐‘‡ = ๏ฟฝ๐‘˜๐‘˜2 โˆ’๐›ฅ๐›ฅ2

๐‘๐‘๐ฟ๐ฟ,๐‘‡๐‘‡2 , ๐œ‰๐œ‰๐ฟ๐ฟ,๐‘‡๐‘‡ =

๐‘๐‘๐‘†๐‘†๐‘๐‘๐ฟ๐ฟ,๐‘‡๐‘‡

. (๐‘†๐‘†3)

Note that the value of ๐‘๐‘๐‘†๐‘† depends implicitly on ๐‘๐‘๐ฟ๐ฟ,๐‘‡๐‘‡ through the algebraic equation

๐œ‰๐œ‰๐‘‡๐‘‡6 โˆ’ 8๐œ‰๐œ‰๐‘‡๐‘‡4 + 8๏ฟฝ3 โˆ’2๐‘๐‘๐‘‡๐‘‡2

๐‘๐‘๐ฟ๐ฟ2๏ฟฝ ๐œ‰๐œ‰๐‘‡๐‘‡2 โˆ’ 16 ๏ฟฝ1 โˆ’

๐‘๐‘๐‘‡๐‘‡2

๐‘๐‘๐ฟ๐ฟ2๏ฟฝ = 0. (๐‘†๐‘†4)

The โ€œspinโ€-momentum locking of surface acoustic waves manifests itself in the phase difference between ๐‘ข๐‘ข๐‘ฅ๐‘ฅยฑ and ๐‘ข๐‘ข๐‘ง๐‘งยฑ by โˆ“๐‘–๐‘– = ๐‘’๐‘’โˆ“๐‘–๐‘–๐‘–๐‘–/2, which changes the sign under ๐‘˜๐‘˜ โ†’ โˆ’๐‘˜๐‘˜.

We regard the surface acoustic wave solution (S2) with fixed ๐›ฅ๐›ฅ and ๐‘˜๐‘˜ being given as an effective rf field and study how the magnet responds. Back reactions of magnetization dynamics onto acoustic waves are neglected. The purely magnetic part of the free energy is assumed to include an external magnetic field, cubic crystalline and interface-induced uniaxial magnetic anisotropies, and exchange, dipole-dipole and Dzyaloshinskii-Moriya interactions:

๐‘Š๐‘Š = โˆซ ๐‘‘๐‘‘3๐‘Ÿ๐‘Ÿ ๏ฟฝโˆ’๐œ‡๐œ‡0๐‘€๐‘€๐‘Ÿ๐‘Ÿ๐‘ฏ๐‘ฏ โ‹… ๐’๐’ โˆ’๐ด๐ด2๐’๐’ โ‹… ๐›ป๐›ป2๐’๐’ +

๐œ‡๐œ‡0๐‘€๐‘€๐‘Ÿ๐‘Ÿ2

8๐œ‹๐œ‹โˆซ ๐‘‘๐‘‘3๐‘Ÿ๐‘Ÿโ€ฒ(๐’๐’ โ‹… ๐›ป๐›ป)(๐’๐’โ€ฒ โ‹… ๐›ป๐›ปโ€ฒ)

1|๐’“๐’“ โˆ’ ๐’“๐’“โ€ฒ|

+ ๐พ๐พ๐‘๐‘๏ฟฝ๐‘›๐‘›๐‘ฅ๐‘ฅ2๐‘›๐‘›๐‘ฆ๐‘ฆ2 + ๐‘›๐‘›๐‘ฆ๐‘ฆ2๐‘›๐‘›๐‘ง๐‘ง2 + ๐‘›๐‘›๐‘ง๐‘ง2๐‘›๐‘›๐‘ฅ๐‘ฅ2๏ฟฝ โˆ’ ๐พ๐พโŠฅ๐‘›๐‘›๐‘ง๐‘ง2 โˆ’ ๐พ๐พโˆฅ๐‘›๐‘›๐‘ฅ๐‘ฅ2 + ๐ท๐ท๐’๐’

โ‹… ๏ฟฝ๏ฟฝ๐’™๐’™^๐œ•๐œ•๐‘ฆ๐‘ฆ โˆ’ ๐’š๐’š

^๐œ•๐œ•๐‘ฅ๐‘ฅ๏ฟฝ ร— ๐’๐’๏ฟฝ๏ฟฝ , (๐‘†๐‘†5)

Page 3: Supplementary Materials for - Science Advances...assumed to include an external magnetic field, cubic crystalline and interface-induced uniaxial magnetic anisotropies, and exchange,

where ๐‘€๐‘€๐‘Ÿ๐‘Ÿ is the saturation magnetization, ๐ง๐ง = ๐Œ๐Œ/๐‘€๐‘€๐‘Ÿ๐‘Ÿ, ๐ง๐งโ€ฒ is the value of ๐ง๐ง evaluated at ๐ซ๐ซโ€ฒ, ๐›ป๐›ปโ€ฒ is the spatial derivative with respect to ๐ซ๐ซโ€ฒ and ๐ฑ๐ฑ๏ฟฝ, ๐ฒ๐ฒ๏ฟฝ are unit vectors in ๐‘ฅ๐‘ฅ and ๐‘ฆ๐‘ฆ directions. Note that ๐พ๐พโŠฅ arises from the interface inversion symmetry breaking while ๐พ๐พโˆฅ is present due to the crystallographic ๐‘๐‘-axis alignment of the single crystalline LiNbO3 substrate. Taking the external field to be spatially homogeneous and in-plane ๐‡๐‡ =๐ป๐ป(cos๐œ™๐œ™,sin๐œ™๐œ™, 0), the ground state magnetization is also in the plane ๐ง๐ง = (cos๐œƒ๐œƒ,sin๐œƒ๐œƒ, 0) and ๐œƒ๐œƒ = ๐œ™๐œ™ for sufficiently strong ๐‡๐‡ if ๐พ๐พ๐‘๐‘ = ๐พ๐พโˆฅ = 0 . The spin waves excited by the surface acoustic waves ๐ฎ๐ฎยฑ have wavevectors ยฑ๐‘˜๐‘˜๐ฑ๐ฑ๏ฟฝ respectively. In the thin film limit ๐‘˜๐‘˜๐‘‘๐‘‘ โ‰ช 1, linear perturbation around the ground state yields the dispersion relation

๐›ฅ๐›ฅ๐‘˜๐‘˜ = |๐›พ๐›พ|๐œ‡๐œ‡0๏ฟฝ{๐ป๐ป cos(๐œƒ๐œƒ โˆ’ ๐œ™๐œ™) + ๐ป๐ป๐‘ฃ๐‘ฃ(๐œƒ๐œƒ)}{๐ป๐ป cos(๐œƒ๐œƒ โˆ’ ๐œ™๐œ™) + ๐ป๐ป๐‘ง๐‘ง(๐œƒ๐œƒ)} + ๐›พ๐›พ๐œ‡๐œ‡0๐ป๐ปDMI(๐œƒ๐œƒ), (๐‘†๐‘†6)

where ๐›พ๐›พ < 0 is the gyromagnetic ratio and

๐ป๐ป๐‘ฃ๐‘ฃ(๐œƒ๐œƒ) = ๐ด๐ด๐‘˜๐‘˜2

๐œ‡๐œ‡0๐‘€๐‘€๐‘ ๐‘ + ๐‘€๐‘€๐‘Ÿ๐‘Ÿ ๏ฟฝ1 โˆ’ 1โˆ’๐‘Ÿ๐‘Ÿโˆ’๐‘˜๐‘˜๐‘˜๐‘˜

๐‘˜๐‘˜๐‘‘๐‘‘๏ฟฝ sin2 ๐œƒ๐œƒ + 2๐พ๐พโˆฅ cos2๐œƒ๐œƒโˆ’๐พ๐พ๐‘๐‘๏ฟฝ1โˆ’3 cos2 2๐œƒ๐œƒ๏ฟฝ

๐œ‡๐œ‡0๐‘€๐‘€๐‘ ๐‘  (๐‘†๐‘†7)

๐ป๐ป๐‘ง๐‘ง(๐œƒ๐œƒ) = ๐ด๐ด๐‘˜๐‘˜2

๐œ‡๐œ‡0๐‘€๐‘€๐‘ ๐‘ + ๐‘€๐‘€๐‘Ÿ๐‘Ÿ

1โˆ’๐‘Ÿ๐‘Ÿโˆ’๐‘˜๐‘˜๐‘˜๐‘˜

๐‘˜๐‘˜๐‘‘๐‘‘โˆ’ 2๐พ๐พโŠฅโˆ’2๐พ๐พโˆฅ cos2 ๐œƒ๐œƒโˆ’๐พ๐พ๐‘๐‘๏ฟฝ1+cos2 2๐œƒ๐œƒ๏ฟฝ

๐œ‡๐œ‡0๐‘€๐‘€๐‘ ๐‘  (๐‘†๐‘†8)

๐ป๐ปDMI(๐œƒ๐œƒ) = ยฑ2๐ท๐ท๐‘˜๐‘˜ sin ๐œƒ๐œƒ๐œ‡๐œ‡0๐‘€๐‘€๐‘Ÿ๐‘Ÿ

(๐‘†๐‘†9)

Note that we throughout use the convention to take frequencies to be positive. In the main text, we chose not to discuss ๐พ๐พโˆฅ and ๐พ๐พ๐‘๐‘, which we shall see are small, and denoted the total perpendicular anisotropy by ๐พ๐พ๐‘ข๐‘ข = ๐พ๐พโŠฅ โˆ’ ๐œ‡๐œ‡0๐‘€๐‘€๐‘Ÿ๐‘Ÿ

2/2. For a given driving frequency ๐›ฅ๐›ฅ, the resonance field is determined by

๐ป๐ปres cos(๐œƒ๐œƒ โˆ’ ๐œ™๐œ™) =โˆ’(๐ป๐ป๐‘ฃ๐‘ฃ + ๐ป๐ป๐‘ง๐‘ง) + ๏ฟฝ(๐ป๐ป๐‘ฃ๐‘ฃ โˆ’ ๐ป๐ป๐‘ง๐‘ง)2 + 4(๐ป๐ปDMI โˆ’ ๐›ฅ๐›ฅ/๐›พ๐›พ๐œ‡๐œ‡0)2

2 . (๐‘†๐‘†10)

and expanding the square root to linear order in ๐ป๐ปDMI (and setting ๐œƒ๐œƒ = ๐œ™๐œ™) yields Eq. (2) in the main text.

There are a variety of ways in which ๐‘ด๐‘ด interacts with acoustic waves. For cubic crystals, one usually includes the conventional magnetoelastic coupling in the free energy

๐ผ๐ผ1 = โˆซ ๐‘‘๐‘‘3๐‘Ÿ๐‘Ÿ๏ฟฝ๐‘๐‘1๏ฟฝ๐‘›๐‘›๐‘ฅ๐‘ฅ2๐œ€๐œ€๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + ๐‘›๐‘›๐‘ฆ๐‘ฆ2๐œ€๐œ€๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ + ๐‘›๐‘›๐‘ง๐‘ง2๐œ€๐œ€๐‘ง๐‘ง๐‘ง๐‘ง๏ฟฝ + 2๐‘๐‘2๏ฟฝ๐‘›๐‘›๐‘ฅ๐‘ฅ๐‘›๐‘›๐‘ฆ๐‘ฆ๐œ€๐œ€๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ + ๐‘›๐‘›๐‘ฆ๐‘ฆ๐‘›๐‘›๐‘ง๐‘ง๐œ€๐œ€๐‘ง๐‘ง๐‘ฅ๐‘ฅ + ๐‘›๐‘›๐‘ง๐‘ง๐‘›๐‘›๐‘ฅ๐‘ฅ๐œ€๐œ€๐‘ง๐‘ง๐‘ฅ๐‘ฅ๏ฟฝ๏ฟฝ. (๐‘†๐‘†11)

It turns out to be insufficient, however, for explaining the large non-reciprocal response seen in our experiment. For this purpose, we consider free energy terms that describe interactions between ๐‘ด๐‘ด and the rotation of elastic deformations ๐›ฅ๐›ฅ๐‘–๐‘–๐‘–๐‘– = (๐œ•๐œ•๐‘–๐‘–๐‘ข๐‘ข๐‘–๐‘– โˆ’ ๐œ•๐œ•๐‘–๐‘–๐‘ข๐‘ข๐‘–๐‘–)/2 . There are many possible mechanisms for magneto-rotation coupling, and here we discuss those that are directly related to the purely magnetic free energy ๐‘Š๐‘Š. As first pointed out by Maekawa and Tachiki(12), magnetic anisotropy fields induce magneto-rotation couplings through reorientations of crystalline axes, which for uniaxial and cubic anisotropies read

๐ผ๐ผ2 = 2๐พ๐พโŠฅโˆซ ๐‘‘๐‘‘3๐‘Ÿ๐‘Ÿ๏ฟฝ๐›ฅ๐›ฅ๐‘ง๐‘ง๐‘ฅ๐‘ฅ๐‘›๐‘›๐‘ฅ๐‘ฅ + ๐›ฅ๐›ฅ๐‘ง๐‘ง๐‘ฆ๐‘ฆ๐‘›๐‘›๐‘ฆ๐‘ฆ๏ฟฝ๐‘›๐‘›๐‘ง๐‘ง + 2๐พ๐พโˆฅโˆซ ๐‘‘๐‘‘3๐‘Ÿ๐‘Ÿ๏ฟฝ๐›ฅ๐›ฅ๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ๐‘›๐‘›๐‘ฆ๐‘ฆ + ๐›ฅ๐›ฅ๐‘ฅ๐‘ฅ๐‘ง๐‘ง๐‘›๐‘›๐‘ง๐‘ง๏ฟฝ๐‘›๐‘›๐‘ฅ๐‘ฅ+ 2๐พ๐พ๐‘๐‘โˆซ ๐‘‘๐‘‘3๐‘Ÿ๐‘Ÿ๏ฟฝ๐‘›๐‘›๐‘ฅ๐‘ฅ๐‘›๐‘›๐‘ข๐‘ข๏ฟฝ๐‘›๐‘›๐‘ฅ๐‘ฅ2 โˆ’ ๐‘›๐‘›๐‘ฆ๐‘ฆ2๏ฟฝ๐›ฅ๐›ฅ๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ + ๐‘›๐‘›๐‘ฆ๐‘ฆ๐‘›๐‘›๐‘ง๐‘ง๏ฟฝ๐‘›๐‘›๐‘ฆ๐‘ฆ2 โˆ’ ๐‘›๐‘›๐‘ง๐‘ง2๏ฟฝ๐›ฅ๐›ฅ๐‘ฆ๐‘ฆ๐‘ง๐‘ง+ ๐‘›๐‘›๐‘ง๐‘ง๐‘›๐‘›๐‘ฅ๐‘ฅ(๐‘›๐‘›๐‘ง๐‘ง2 โˆ’ ๐‘›๐‘›๐‘ฅ๐‘ฅ2)๐›ฅ๐›ฅ๐‘ง๐‘ง๐‘ฅ๐‘ฅ๏ฟฝ, (๐‘†๐‘†12)

Similarly, the dipolar shape anisotropy results in a magneto-rotation coupling via change of the surface normal directions induced by SAWs. Based on the model of coupling between magnons and surface deformations given in (21), one derives the interaction energy

Page 4: Supplementary Materials for - Science Advances...assumed to include an external magnetic field, cubic crystalline and interface-induced uniaxial magnetic anisotropies, and exchange,

๐ผ๐ผ3 =๐œ‡๐œ‡0๐‘€๐‘€๐‘Ÿ๐‘Ÿ

2

8๐œ‹๐œ‹โˆซ ๐‘‘๐‘‘3๐‘Ÿ๐‘Ÿโˆซ ๐‘‘๐‘‘3๐‘Ÿ๐‘Ÿโ€ฒ ๏ฟฝ๏ฟฝ๐›ฟ๐›ฟ ๏ฟฝ๐‘ง๐‘ง โˆ’

๐‘‘๐‘‘2๏ฟฝ โˆ’ ๐›ฟ๐›ฟ ๏ฟฝ๐‘ง๐‘ง +

๐‘‘๐‘‘2๏ฟฝ๏ฟฝ ๐‘ข๐‘ข๐‘ง๐‘ง(๐ซ๐ซ)

+ ๏ฟฝ๐›ฟ๐›ฟ ๏ฟฝ๐‘ง๐‘งโ€ฒ โˆ’๐‘‘๐‘‘2๏ฟฝ โˆ’ ๐›ฟ๐›ฟ ๏ฟฝ๐‘ง๐‘งโ€ฒ +

๐‘‘๐‘‘2๏ฟฝ๏ฟฝ ๐‘ข๐‘ข๐‘ง๐‘ง(๐ซ๐ซโ€ฒ)๏ฟฝ (๐ง๐ง โ‹… ๐›ป๐›ป)(๐ง๐งโ€ฒ โ‹… ๐›ป๐›ปโ€ฒ)

1|๐ซ๐ซ โˆ’ ๐ซ๐ซโ€ฒ|

. (๐‘†๐‘†13)

Although this contains both strain and rotation, we shall see shortly that for in-plane magnetization and surface acoustic waves, the strain can be neglected. The Dzyaloshinkii-Moriya interactions are also affected by the crystalline orientation and consequently generate couplings between magnet and lattice deformations;

๐ผ๐ผ4 = ๐ท๐ทโˆซ ๐‘‘๐‘‘3๐‘Ÿ๐‘Ÿ๐ง๐ง โ‹… ๏ฟฝ๏ฟฝ ๏ฟฝ (๐œ€๐œ€๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ โˆ’ ๐›ฅ๐›ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ)๐‘ฅ๐‘ฅ=๐‘ฆ๐‘ฆ,๐‘ง๐‘ง

๐ซ๐ซ๏ฟฝ๐‘ฅ๐‘ฅ๐œ•๐œ•๐‘ฆ๐‘ฆ โˆ’ ๏ฟฝ ๏ฟฝ๐œ€๐œ€๐‘ฆ๐‘ฆ๐‘ฅ๐‘ฅ โˆ’ ๐›ฅ๐›ฅ๐‘ฆ๐‘ฆ๐‘ฅ๐‘ฅ๏ฟฝ๐‘ฅ๐‘ฅ=๐‘ฅ๐‘ฅ,๐‘ง๐‘ง

๐ซ๐ซ๏ฟฝ๐‘ฅ๐‘ฅ๐œ•๐œ•๐‘ฅ๐‘ฅ

+ ๐ฑ๐ฑ๏ฟฝ ๏ฟฝ ๏ฟฝ๐œ€๐œ€๐‘ฆ๐‘ฆ๐‘ฅ๐‘ฅ โˆ’ ๐›ฅ๐›ฅ๐‘ฆ๐‘ฆ๐‘ฅ๐‘ฅ๏ฟฝ๐‘ฅ๐‘ฅ=๐‘ง๐‘ง,๐‘ฅ๐‘ฅ

๐œ•๐œ•๐‘ฅ๐‘ฅ โˆ’ ๐ฒ๐ฒ๏ฟฝ ๏ฟฝ (๐œ€๐œ€๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ โˆ’ ๐›ฅ๐›ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ)๐‘ฅ๐‘ฅ=๐‘ฆ๐‘ฆ,๐‘ง๐‘ง

๐œ•๐œ•๐‘ฅ๐‘ฅ๏ฟฝ ร— ๐ง๐ง๏ฟฝ , (๐‘†๐‘†14)

where ๐ซ๐ซ๏ฟฝ๐‘ฅ๐‘ฅ = ๐ฑ๐ฑ๏ฟฝ, ๐ซ๐ซ๏ฟฝ๐‘ฆ๐‘ฆ = ๐ฒ๐ฒ๏ฟฝ, ๐ซ๐ซ๏ฟฝ๐‘ง๐‘ง = ๐ณ๐ณ๏ฟฝ Again, the strain couplings are discarded later. Finally, when the microscopic magnetic moments may be considered fixed on individual atomic sites and adiabatically following the motion of the lattice, there will be an analogue of Coriolis force called spin-rotation coupling (22) given by

๐ผ๐ผ5 =โ„๐‘†๐‘†๐‘‰๐‘‰โˆซ ๐‘‘๐‘‘3๐‘Ÿ๐‘Ÿ๏ฟฝ๐‘›๐‘›๐‘ฅ๐‘ฅ๐œ•๐œ•๐œ”๐œ”๐›ฅ๐›ฅ๐‘ฆ๐‘ฆ๐‘ง๐‘ง + ๐‘›๐‘›๐‘ฆ๐‘ฆ๐œ•๐œ•๐œ”๐œ”๐›ฅ๐›ฅ๐‘ง๐‘ง๐‘ฅ๐‘ฅ + ๐‘›๐‘›๐‘ง๐‘ง๐œ•๐œ•๐œ”๐œ”๐›ฅ๐›ฅ๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ๏ฟฝ, (๐‘†๐‘†15)

where ๐‘†๐‘†/๐‘‰๐‘‰ is the effective length of spin per unit cell.

Each of the interaction terms introduces an effective rf field ๐’‰๐’‰๐‘ฅ๐‘ฅ acting on the magnetization ๐‘ด๐‘ด where ๐’‰๐’‰๐‘ฅ๐‘ฅ = โˆ’๐›ฟ๐›ฟ๐ผ๐ผ๐‘ฅ๐‘ฅ/๐›ฟ๐›ฟ(๐œ‡๐œ‡0๐‘€๐‘€๐‘Ÿ๐‘Ÿ๐’๐’),๐‘Ž๐‘Ž = 1,โ‹ฏ ,5. Evaluating these fields for the ground state configuration of ๐‘ด๐‘ด yields

๐ก๐ก1 =๐‘๐‘1๏ฟฝ๐œ€๐œ€๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ โˆ’ ๐œ€๐œ€๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ๏ฟฝsin2๐œƒ๐œƒ โˆ’ 2๐‘๐‘2๐œ–๐œ–๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆcos2๐œƒ๐œƒ

๐œ‡๐œ‡0๐‘€๐‘€๐‘Ÿ๐‘Ÿ๐ฏ๐ฏ๏ฟฝ โˆ’

2๐‘๐‘2๏ฟฝ๐œ–๐œ–๐‘ง๐‘ง๐‘ฅ๐‘ฅcos๐œƒ๐œƒ + ๐œ–๐œ–๐‘ง๐‘ง๐‘ฆ๐‘ฆsin๐œƒ๐œƒ๏ฟฝ๐œ‡๐œ‡0๐‘€๐‘€๐‘Ÿ๐‘Ÿ

๐ณ๐ณ๏ฟฝ, (๐‘†๐‘†16)

๐ก๐ก2= โˆ’

2๐พ๐พโˆฅcos2๐œƒ๐œƒ โˆ’ 2๐พ๐พ๐‘๐‘cos4๐œƒ๐œƒ๐œ‡๐œ‡0๐‘€๐‘€๐‘Ÿ๐‘Ÿ

๐›ฅ๐›ฅ๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ๐ฏ๐ฏ๏ฟฝ

โˆ’2๐พ๐พโŠฅ๏ฟฝ๐›ฅ๐›ฅ๐‘ง๐‘ง๐‘ฅ๐‘ฅcos๐œƒ๐œƒ + ๐›ฅ๐›ฅ๐‘ง๐‘ง๐‘ฆ๐‘ฆsin๐œƒ๐œƒ๏ฟฝ โˆ’ 2๐พ๐พโˆฅ๐›ฅ๐›ฅ๐‘ง๐‘ง๐‘ฅ๐‘ฅcos๐œƒ๐œƒ โˆ’ 2๐พ๐พ๐‘๐‘๏ฟฝ๐›ฅ๐›ฅ๐‘ง๐‘ง๐‘ฅ๐‘ฅcos3๐œƒ๐œƒ + ๐›ฅ๐›ฅ๐‘ฆ๐‘ฆ๐‘ง๐‘งsin3๐œƒ๐œƒ๏ฟฝ

๐œ‡๐œ‡0๐‘€๐‘€๐‘Ÿ๐‘Ÿ๐ณ๐ณ๏ฟฝ, (๐‘†๐‘†17)

๐ก๐ก3 =๐‘€๐‘€๐‘Ÿ๐‘Ÿ

4๐œ‹๐œ‹{๐ฏ๐ฏ๏ฟฝ(๐ฏ๐ฏ๏ฟฝ โ‹… ๐›ป๐›ป) + ๐ณ๐ณ๏ฟฝ๐œ•๐œ•๐‘ง๐‘ง}

ร— โˆซ ๐‘‘๐‘‘3๐‘Ÿ๐‘Ÿโ€ฒ ๏ฟฝ๐›ฟ๐›ฟ ๏ฟฝ๐‘ง๐‘งโ€ฒ โˆ’๐‘‘๐‘‘2๏ฟฝ โˆ’ ๐›ฟ๐›ฟ ๏ฟฝ๐‘ง๐‘งโ€ฒ +

๐‘‘๐‘‘2๏ฟฝ๏ฟฝ

1|๐ซ๐ซ โˆ’ ๐ซ๐ซโ€ฒ|

๏ฟฝcos๐œƒ๐œƒ๐œ•๐œ•๐‘ฅ๐‘ฅโ€ฒ

+ sin๐œƒ๐œƒ๐œ•๐œ•๐‘ฆ๐‘ฆโ€ฒ๏ฟฝ๐‘ข๐‘ข๐‘ง๐‘ง(๐ซ๐ซโ€ฒ), (๐‘†๐‘†18)

๐ก๐ก4 =๐ท๐ท

๐œ‡๐œ‡0๐‘€๐‘€๐‘Ÿ๐‘Ÿ๏ฟฝ๏ฟฝ๐œ•๐œ•๐‘ฆ๐‘ฆ(๐œ€๐œ€๐‘ง๐‘ง๐‘ฅ๐‘ฅ + ๐›ฅ๐›ฅ๐‘ง๐‘ง๐‘ฅ๐‘ฅ) โˆ’ ๐œ•๐œ•๐‘ฅ๐‘ฅ๏ฟฝ๐œ€๐œ€๐‘ฆ๐‘ฆ๐‘ง๐‘ง โˆ’ ๐›ฅ๐›ฅ๐‘ฆ๐‘ฆ๐‘ง๐‘ง๏ฟฝ๏ฟฝ๐ฏ๐ฏ๏ฟฝ

+ ๐œ•๐œ•๐‘ง๐‘ง๏ฟฝ(๐œ€๐œ€๐‘ง๐‘ง๐‘ฅ๐‘ฅ + ๐›ฅ๐›ฅ๐‘ง๐‘ง๐‘ฅ๐‘ฅ)cos๐œƒ๐œƒ + ๏ฟฝ๐œ€๐œ€๐‘ฆ๐‘ฆ๐‘ง๐‘ง โˆ’ ๐›ฅ๐›ฅ๐‘ฆ๐‘ฆ๐‘ง๐‘ง๏ฟฝsin๐œƒ๐œƒ๏ฟฝ๐ณ๐ณ๏ฟฝ๏ฟฝ, (๐‘†๐‘†19)

๐ก๐ก5 = โˆ’โ„๐‘†๐‘†

๐œ‡๐œ‡0๐‘€๐‘€๐‘Ÿ๐‘Ÿ๐‘‰๐‘‰๐œ•๐œ•๐œ”๐œ”๏ฟฝ๏ฟฝ๐›ฅ๐›ฅ๐‘ง๐‘ง๐‘ฅ๐‘ฅcos๐œƒ๐œƒ โˆ’ ๐›ฅ๐›ฅ๐‘ฆ๐‘ฆ๐‘ง๐‘งsin๐œƒ๐œƒ๏ฟฝ๐ฏ๐ฏ๏ฟฝ + ๐›ฅ๐›ฅ๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ๐ณ๐ณ๏ฟฝ๏ฟฝ, (๐‘†๐‘†20)

Page 5: Supplementary Materials for - Science Advances...assumed to include an external magnetic field, cubic crystalline and interface-induced uniaxial magnetic anisotropies, and exchange,

where ๐ฏ๐ฏ๏ฟฝ = โˆ’๐ฑ๐ฑ๏ฟฝsin๐œƒ๐œƒ + ๐ฒ๐ฒ๏ฟฝcos๐œƒ๐œƒ โŠฅ ๐ง๐ง0 and the in-plane components have been projected onto this axis. To obtain Eq. (1) of the main text, we set ๐พ๐พโˆฅ = ๐พ๐พ๐‘๐‘ = 0 and discarded ๐’‰๐’‰4 and ๐’‰๐’‰5, which is justified in the next section. The main contribution of ๐’‰๐’‰3 is to replace ๐พ๐พโŠฅ in ๐’‰๐’‰2 by ๐พ๐พ๐‘ข๐‘ข . For the surface acoustic waves ๐’–๐’–ยฑ propagating in the positive and negative ๐‘ฅ๐‘ฅ directions, their non-vanishing components are given as follows:

๐œ€๐œ€๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅยฑ = ยฑ๐‘–๐‘–๐ถ๐ถ ๏ฟฝ1 โˆ’๐œ‰๐œ‰๐‘‡๐‘‡2

2๏ฟฝ ๏ฟฝ๐‘’๐‘’๐œ…๐œ…๐ฟ๐ฟ๏ฟฝ๐‘ง๐‘งโˆ’

๐‘‘๐‘‘2๏ฟฝ โˆ’ ๏ฟฝ1 โˆ’

๐œ‰๐œ‰๐‘‡๐‘‡2

2๏ฟฝ ๐‘’๐‘’๐œ…๐œ…๐‘‡๐‘‡๏ฟฝ๐‘ง๐‘งโˆ’

๐‘‘๐‘‘2๏ฟฝ๏ฟฝ , (๐‘†๐‘†21)

๐œ€๐œ€๐‘ง๐‘ง๐‘ง๐‘งยฑ = โˆ“๐‘–๐‘–๐ถ๐ถ ๏ฟฝ1 โˆ’๐œ‰๐œ‰๐‘‡๐‘‡2

2๏ฟฝ ๏ฟฝ(1 โˆ’ ๐œ‰๐œ‰๐ฟ๐ฟ2)๐‘’๐‘’๐œ…๐œ…๐ฟ๐ฟ๏ฟฝ๐‘ง๐‘งโˆ’

๐‘‘๐‘‘2๏ฟฝ โˆ’ ๏ฟฝ1 โˆ’

๐œ‰๐œ‰๐‘‡๐‘‡2

2๏ฟฝ ๐‘’๐‘’๐œ…๐œ…๐‘‡๐‘‡๏ฟฝ๐‘ง๐‘งโˆ’

๐‘‘๐‘‘2๏ฟฝ๏ฟฝ , (๐‘†๐‘†22)

๐œ€๐œ€๐‘ฅ๐‘ฅ๐‘ง๐‘งยฑ = ๐ถ๐ถ ๏ฟฝ1 โˆ’๐œ‰๐œ‰๐‘‡๐‘‡2

2๏ฟฝ๏ฟฝ1 โˆ’ ๐œ‰๐œ‰๐ฟ๐ฟ2 ๏ฟฝ๐‘’๐‘’

๐œ…๐œ…๐ฟ๐ฟ๏ฟฝ๐‘ง๐‘งโˆ’๐‘‘๐‘‘2๏ฟฝ โˆ’ ๐‘’๐‘’๐œ…๐œ…๐‘‡๐‘‡๏ฟฝ๐‘ง๐‘งโˆ’

๐‘‘๐‘‘2๏ฟฝ๏ฟฝ , (๐‘†๐‘†23)

๐›ฅ๐›ฅ๐‘ง๐‘ง๐‘ฅ๐‘ฅยฑ = โˆ’๐ถ๐ถ๐œ‰๐œ‰๐‘‡๐‘‡2

2๏ฟฝ1 โˆ’ ๐œ‰๐œ‰๐ฟ๐ฟ2๐‘’๐‘’

๐œ…๐œ…๐‘‡๐‘‡๏ฟฝ๐‘ง๐‘งโˆ’๐‘‘๐‘‘2๏ฟฝ. (๐‘†๐‘†24)

Note that we now omit the operation of taking real parts. Due to the free surface boundary conditions used to derive the solution, ๐œ€๐œ€๐‘ฅ๐‘ฅ๐‘ง๐‘ง vanishes at the surface and is smaller by a factor of ๐‘˜๐‘˜๐‘‘๐‘‘ in the magnetic region than ๐œ€๐œ€๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ,๐‘ง๐‘ง๐‘ง๐‘ง and ๐›ฅ๐›ฅ๐‘ง๐‘ง๐‘ฅ๐‘ฅ. Thus in the thin film limit, one can ignore ๐œ€๐œ€๐‘ฅ๐‘ฅ๐‘ง๐‘ง in ๐’‰๐’‰1,๐’‰๐’‰3 and ๐’‰๐’‰4.

The linearized Landau-Lifshitz-Gilbert equation with Gilbert damping ๐›ผ๐›ผ , after Fourier transforms in time and space, reads

๏ฟฝ๐‘›๐‘›๐‘ฃ๐‘ฃ๐‘›๐‘›๐‘ง๐‘ง๏ฟฝ =

1(๐ป๐ป + ๐ป๐ป๐‘ฃ๐‘ฃ)(๐ป๐ป + ๐ป๐ป๐‘ง๐‘ง) โˆ’ ๐›ผ๐›ผ2๐ป๐ป๐œ”๐œ”2 + ๐‘–๐‘–๐›ผ๐›ผ๐ป๐ป๐œ”๐œ”(2๐ป๐ป + ๐ป๐ป๐‘ฃ๐‘ฃ + ๐ป๐ป๐‘ง๐‘ง) โˆ’ (๐ป๐ป๐œ”๐œ” โˆ’ ๐ป๐ป๐ท๐ท๐‘€๐‘€๐ท๐ท)2

ร— ๏ฟฝ๐ป๐ป + ๐ป๐ป๐‘ง๐‘ง + ๐‘–๐‘–๐›ผ๐›ผ๐ป๐ป๐œ”๐œ” โˆ’๐‘–๐‘–(๐ป๐ป๐œ”๐œ” โˆ’ ๐ป๐ป๐ท๐ท๐‘€๐‘€๐ท๐ท)๐‘–๐‘–(๐ป๐ป๐œ”๐œ” โˆ’ ๐ป๐ป๐ท๐ท๐‘€๐‘€๐ท๐ท) ๐ป๐ป + ๐ป๐ป๐‘ฃ๐‘ฃ + ๐‘–๐‘–๐›ผ๐›ผ๐ป๐ป๐œ”๐œ”

๏ฟฝ ๏ฟฝโ„Ž๐‘ฃ๐‘ฃโ„Ž๐‘ง๐‘ง๏ฟฝ , (๐‘†๐‘†25)

where we set ๐œƒ๐œƒ = ๐œ™๐œ™ for simplicity (i.e. ignoring the effect of cubic anisotropy on the ground state), introduced ๐ป๐ป๐œ”๐œ” = ๐›ฅ๐›ฅ/๐›พ๐›พ๐œ‡๐œ‡0, and the components of the total effective field ๐’‰๐’‰ยฑ from SAW with wavenumber ยฑ๐‘˜๐‘˜ are given by

โ„Ž๐‘ฃ๐‘ฃยฑ = ๐‘–๐‘–๐ถ๐ถcos๐œ™๐œ™๐œ‡๐œ‡0๐‘€๐‘€๐‘Ÿ๐‘Ÿ

๐œ‰๐œ‰๐‘‡๐‘‡2

2๏ฟฝยฑ๐‘๐‘1(2 โˆ’ ๐œ‰๐œ‰๐‘‡๐‘‡2)sin๐œ™๐œ™ +

โ„๐›ฅ๐›ฅ๐‘†๐‘†๐‘‰๐‘‰

๏ฟฝ1 โˆ’ ๐œ‰๐œ‰๐ฟ๐ฟ2๏ฟฝ , (๐‘†๐‘†26)

โ„Ž๐‘ง๐‘งยฑ =๐ถ๐ถcos๐œ™๐œ™๐œ‡๐œ‡0๐‘€๐‘€๐‘Ÿ๐‘Ÿ

๏ฟฝ๏ฟฝ๐พ๐พโŠฅ โˆ’๐œ‡๐œ‡0๐‘€๐‘€๐‘Ÿ๐‘Ÿ

2

2โˆ’ ๐พ๐พโˆฅ โˆ’ ๐พ๐พ๐‘๐‘cos2๐œ™๐œ™๏ฟฝ ๐œ‰๐œ‰๐‘‡๐‘‡2๏ฟฝ1 โˆ’ ๐œ‰๐œ‰๐ฟ๐ฟ2 โˆ’ ๐ท๐ท๐‘˜๐‘˜๐œ‰๐œ‰๐ฟ๐ฟ2 ๏ฟฝ1 โˆ’

๐œ‰๐œ‰๐‘‡๐‘‡2

2๏ฟฝ๏ฟฝ . (๐‘†๐‘†27)

The constant ๐ถ๐ถ is irrelevant as it multiplies the overall magnitude of the excited spin waves. The energy absorbed from SAW into spin waves per unit time is expected to be proportional to the power ๐‘ƒ๐‘ƒยฑ๐‘˜๐‘˜ dissipated by the spin waves, which is equal to the amount of work done by ๐’‰๐’‰ยฑ

๐‘ƒ๐‘ƒ = ๐œ‡๐œ‡0๐‘€๐‘€๐‘Ÿ๐‘Ÿ ๏ฟฝRe ๏ฟฝ๐‘‘๐‘‘๐‘›๐‘›๐‘‘๐‘‘๐‘‘๐‘‘๏ฟฝ โ‹… Re[โ„Žยฑ]๏ฟฝ , (๐‘†๐‘†28)

where the angled bracket denotes averaging over one period of SAW. Substituting Eqs. ,(๐‘†๐‘†25), (๐‘†๐‘†26) and (๐‘†๐‘†27), one derives the formula for SAW absorption

Page 6: Supplementary Materials for - Science Advances...assumed to include an external magnetic field, cubic crystalline and interface-induced uniaxial magnetic anisotropies, and exchange,

๐‘ƒ๐‘ƒยฑ๐‘˜๐‘˜ =๐ถ๐ถ2๐›ผ๐›ผ๐›ฅ๐›ฅ2๐œ‰๐œ‰๐‘‡๐‘‡4 cos2 ๐œ™๐œ™ /2|๐›พ๐›พ|๐œ‡๐œ‡0๐‘€๐‘€๐‘Ÿ๐‘Ÿ

{(๐ป๐ป๐œ”๐œ” โˆ’ ๐ป๐ปDMI)2 โˆ’ (๐ป๐ป + ๐ป๐ป๐‘ฃ๐‘ฃ)(๐ป๐ป + ๐ป๐ป๐‘ง๐‘ง) + ๐›ผ๐›ผ2๐ป๐ป๐œ”๐œ”2 }2 + ๐›ผ๐›ผ2๐ป๐ป๐œ”๐œ”2 (2๐ป๐ป + ๐ป๐ป๐‘ฃ๐‘ฃ + ๐ป๐ป๐‘ง๐‘ง)2ร— [{(๐ป๐ป + ๐ป๐ป๐‘ง๐‘ง)2 + (๐ป๐ป๐œ”๐œ” โˆ’ ๐ป๐ปDMI)2 + ๐›ผ๐›ผ2๐ป๐ป๐œ”๐œ”2 }(ยฑ๐œŒ๐œŒME sin๐œ™๐œ™ + ๐œŒ๐œŒSR)2]+ 2(๐ป๐ป๐œ”๐œ” โˆ’ ๐ป๐ปDMI)(2๐ป๐ป + ๐ป๐ป๐‘ฃ๐‘ฃ + ๐ป๐ป๐‘ง๐‘ง)(ยฑ๐œŒ๐œŒME sin๐œ™๐œ™ + ๐œŒ๐œŒSR)๐œŒ๐œŒMR+ {(๐ป๐ป + ๐ป๐ป๐‘ฃ๐‘ฃ)2 + (๐ป๐ป๐œ”๐œ” โˆ’ ๐ป๐ปDMI)2 + ๐›ผ๐›ผ2๐›บ๐›บ2}๐œŒ๐œŒMR

2 , (๐‘†๐‘†29)

The parameters ๐œŒ๐œŒME,SR,MR measure, in unit of energy density, the contributions from magneto-elastic, spin-rotation and magneto-rotation couplings respectively, defined by

๐œŒ๐œŒME=๐‘๐‘1 ๏ฟฝ1 โˆ’ ๐œ‰๐œ‰๐‘‡๐‘‡2

2๏ฟฝ ,๐œŒ๐œŒSR = โ„๐œ”๐œ”๐‘†๐‘†

2๐‘‰๐‘‰๏ฟฝ1 โˆ’ ๐œ‰๐œ‰๐ฟ๐ฟ2, (๐‘†๐‘†30)

๐œŒ๐œŒMR = ๏ฟฝ๐พ๐พโŠฅ โˆ’๐œ‡๐œ‡0๐‘€๐‘€๐‘ ๐‘ 

2

2โˆ’ ๐พ๐พโˆฅ โˆ’ ๐พ๐พ๐‘๐‘ cos2 ๐œ™๐œ™๏ฟฝ๏ฟฝ1 โˆ’ ๐œ‰๐œ‰๐ฟ๐ฟ2 โˆ’

๐ท๐ท๐‘˜๐‘˜๐œ‰๐œ‰๐ฟ๐ฟ2

2๐œ‰๐œ‰๐‘‡๐‘‡2 ๏ฟฝ1 โˆ’ ๐œ‰๐œ‰๐‘‡๐‘‡

2

2๏ฟฝ , (๐‘†๐‘†31)

It can be clearly observed that nonreciprocity, i.e. dependence of ๐‘ƒ๐‘ƒยฑ๐‘˜๐‘˜ on the sign ยฑ, comes from cross terms between ๐œŒ๐œŒME and ๐œŒ๐œŒSR or ๐œŒ๐œŒME and ๐œŒ๐œŒMR . Any ยฑ dependence is accompanied by a factor sin ๐œ™๐œ™, which is dictated by the time-reversal symmetry. Note that in Eq. (๐‘†๐‘†29), the dependence of the absorption on the strength of external magnetic field has been all explicitly spelt out so that it may be directly used to fit the SAW transmission data. Section S2. Details of the attenuation fitting

Although the expression (๐‘†๐‘†29) can, in principle, be directly compared with the measured attenuation of SAWs, fitting of the data in practice is not entirely straightforward due to the relatively large number of fitting parameters. It should also be mentioned that the modeling is oversimplified in some aspects so that some discrepancies between the data and the theory are inevitable due to the neglected factors including crystalline anisotropy of LiNbO3 , roughness of the interfaces, and the difference in elastic properties between the different materials among other things. To extract the salient features of the relevant physics under discussion in this article, we split the fitting procedure into several steps, which is guided by the underlying physics. Throughout, fitting functions are denoted by block capitals and the corresponding script letters are used for the experimental data to be fitted. Step 1: Lorentzian fitting.

Let ๐’ซ๐’ซยฑ๐‘˜๐‘˜(๐ป๐ป,๐œ™๐œ™) be the attenuation data as a function of the external field ๐ป๐ป for a fixed angle ๐œ™๐œ™ and wavenumber ยฑ๐‘˜๐‘˜. We fit each data set ๐’ซ๐’ซยฑ๐‘˜๐‘˜(๐ป๐ป,๐œ™๐œ™) by a function ๐‘ƒ๐‘ƒยฑ๐‘˜๐‘˜(๐œ™๐œ™) with three parameters ๐’œ๐’œยฑ๐‘˜๐‘˜(๐œ™๐œ™), โ„‹ยฑ๐‘˜๐‘˜

๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ(๐œ™๐œ™), ๐›ฅ๐›ฅโ„‹ยฑ๐‘˜๐‘˜(๐œ™๐œ™):

๐‘ƒ๐‘ƒยฑ๐‘˜๐‘˜(๐œ™๐œ™) =1

2๐œ‹๐œ‹๐’œ๐’œยฑ๐‘˜๐‘˜(๐œ™๐œ™) ๐›ฅ๐›ฅโ„‹ยฑ๐‘˜๐‘˜(๐œ™๐œ™)

๏ฟฝ๐ป๐ป โˆ’โ„‹ยฑ๐‘˜๐‘˜๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ(๐œ™๐œ™)๏ฟฝ

2+ ๐›ฅ๐›ฅโ„‹ยฑ๐‘˜๐‘˜(๐œ™๐œ™)2/4

(๐‘†๐‘†32)

The best fit values for the parameters are now fed into the next steps as the data points. Step 2: Resonance field fitting.

We determine five parameters ๐ด๐ด,๐พ๐พโŠฅ,๐พ๐พโˆฅ,๐พ๐พ๐‘๐‘,๐ท๐ท by fitting the data โ„‹ยฑ๐‘˜๐‘˜res(๐œ™๐œ™)as a function of

๐œ™๐œ™ by the function

๐ป๐ปยฑ๐‘˜๐‘˜res(๐œ™๐œ™) =

โˆ’๐ป๐ป๐‘ฃ๐‘ฃ(๐œ™๐œ™) โˆ’ ๐ป๐ป๐‘ง๐‘ง(๐œ™๐œ™) + ๏ฟฝ{๐ป๐ป๐‘ฃ๐‘ฃ(๐œ™๐œ™) โˆ’ ๐ป๐ป๐‘ง๐‘ง(๐œ™๐œ™)}2 + 4{๐›ฅ๐›ฅ/๐›พ๐›พ๐œ‡๐œ‡0 โˆ’ ๐ป๐ปDMI(๐œ™๐œ™)}2

2 (๐‘†๐‘†33)

where ๐ป๐ป๐‘ฃ๐‘ฃ,๐‘ง๐‘ง,DMI(๐œ™๐œ™) are given by Eqs. (๐‘†๐‘†7) - (๐‘†๐‘†9). We use the value|๐›พ๐›พ| = 29.4 quoted from Ref. and measure ๐‘€๐‘€๐‘Ÿ๐‘Ÿ independently by MPMS. The best fit values for the parameters

Page 7: Supplementary Materials for - Science Advances...assumed to include an external magnetic field, cubic crystalline and interface-induced uniaxial magnetic anisotropies, and exchange,

are given in TABLE. S1 and plotted in Fig. S1. The DMI constant value presented in the main text was obtained at this step. Table S1. Summary of resonance field fitting.

๐ด๐ด(๐ฝ๐ฝ/m) ๐พ๐พโŠฅ(๐ฝ๐ฝ/๐‘š๐‘š3) ๐พ๐พโˆฅ(๐ฝ๐ฝ/๐‘š๐‘š3) ๐พ๐พ๐‘๐‘(๐ฝ๐ฝ/๐‘š๐‘š3) ๐ท๐ท(๐ฝ๐ฝ/๐‘š๐‘š2)

Best fit value

9.138ร— 10โˆ’11

6.134 ร— 105 7.212 ร— 103 โˆ’9.023ร— 103

8.9 ร— 10โˆ’5

Fitting error 1.112ร— 10โˆ’12

2.059ร— 10โˆ’15

6.30ร— 10โˆ’16

9.341ร—10โˆ’16 1.1 ร— 10โˆ’5

Note that the value of ๐ด๐ด is presumably overestimated due to the unquantifiable spatial variation across the film thickness costing significant exchange energy.

Fig. S1. Fittings for โ„‹+๐‘˜๐‘˜๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ(ฯ•), โ„‹โˆ’๐‘˜๐‘˜

๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ(๐œ™๐œ™) and โ„‹+๐‘˜๐‘˜๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ(ฯ•) โˆ’โ„‹โˆ’๐‘˜๐‘˜

๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ(๐œ™๐œ™) , respectively

Step 3: Linewidth fitting.

In our simple phenomenology, the linewidth is independent of the angle and given by ๐›ฅ๐›ฅ๐ป๐ป =๐›ผ๐›ผ|๐›ฅ๐›ฅ/2๐›พ๐›พ๐œ‡๐œ‡0|. We determine the value of Gilbert damping constant ๐›ผ๐›ผ by equating ๐›ฅ๐›ฅ๐ป๐ป to the ๐œ™๐œ™- and ยฑ๐‘˜๐‘˜-average of โ„‹ยฑ๐‘˜๐‘˜(๐œ™๐œ™). The estimated value is ๐›ผ๐›ผ = 0.059873, and the fitting results are plotted in Fig. S2.

Fig. S2. Fitting for ๐›ฅ๐›ฅ๐ป๐ป+๐‘˜๐‘˜ and ๐›ฅ๐›ฅ๐ป๐ป+๐‘˜๐‘˜ respectively.

Step 4: Amplitude fitting.

Finally, we carry out the fitting of the amplitude data ๐’œ๐’œยฑ๐‘˜๐‘˜(๐œ™๐œ™) by the function

Page 8: Supplementary Materials for - Science Advances...assumed to include an external magnetic field, cubic crystalline and interface-induced uniaxial magnetic anisotropies, and exchange,

๐’œ๐’œยฑ๐‘˜๐‘˜(๐œ™๐œ™) =๏ฟฝฬƒ๏ฟฝ๐ถ2 cos2 ฯ•

๏ฟฝ2๐ป๐ปยฑ๐‘˜๐‘˜๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ(ฯ•) + ๐ป๐ป๐‘ฃ๐‘ฃ(ฯ•) + ๐ป๐ป๐‘ง๐‘ง(ฯ•)๏ฟฝ

2

ร— ๏ฟฝ๏ฟฝ๏ฟฝ๐ป๐ปยฑ๐‘˜๐‘˜๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ(ฯ•) + ๐ป๐ป๐‘ง๐‘ง(ฯ•)๏ฟฝ

2+ ๏ฟฝ

ฯ‰ฮณฮผ0

โˆ’ ๐ป๐ป๐ท๐ท๐‘€๐‘€๐ท๐ท(ฯ•)๏ฟฝ2๏ฟฝ (๐‘Ÿ๐‘Ÿ2 ยฑ sinฯ•)2

+ 2 ๏ฟฝฯ‰ฮณฮผ0

โˆ’ ๐ป๐ป๐ท๐ท๐‘€๐‘€๐ท๐ท(ฯ•)๏ฟฝ ๏ฟฝ2๐ป๐ปยฑ๐‘˜๐‘˜๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ(ฯ•) + ๐ป๐ป๐‘ฃ๐‘ฃ(ฯ•) + ๐ป๐ป๐‘ง๐‘ง(ฯ•)๏ฟฝ(๐‘Ÿ๐‘Ÿ2

ยฑ sinฯ•)๐‘Ÿ๐‘Ÿ1+๏ฟฝ๐ป๐ปยฑ๐‘˜๐‘˜res (๐œ™๐œ™) + ๐ป๐ป๐‘ฃ๐‘ฃ(๐œ™๐œ™)๏ฟฝ

2+ ๏ฟฝ

๐›ฅ๐›ฅ๐›พ๐›พ๐œ‡๐œ‡0

โˆ’ ๐ป๐ป๐ท๐ท๐‘€๐‘€๐ท๐ท(๐œ™๐œ™)๏ฟฝ2๐‘Ÿ๐‘Ÿ12๏ฟฝ (๐‘†๐‘†34)

The functions and parameters appearing in the above equation have all been obtained in the previous steps except for those to be fitted, i.e. ๏ฟฝฬƒ๏ฟฝ๐ถ, ๐‘Ÿ๐‘Ÿ1 and ๐‘Ÿ๐‘Ÿ2. The overall constant ๏ฟฝฬƒ๏ฟฝ๐ถ does not contain any meaningful information. The other two ๐‘Ÿ๐‘Ÿ1,2 are the central objects of interest in this study, which respectively measure the ratio of the magneto-rotation and spin-rotation coupling energies ๐œŒ๐œŒMR , ๐œŒ๐œŒSR to the magnetoelastic coupling energy ๐œŒ๐œŒME : ๐‘Ÿ๐‘Ÿ1 =๐œŒ๐œŒMR/๐œŒ๐œŒME, ๐‘Ÿ๐‘Ÿ2 = ๐œŒ๐œŒSR/๐œŒ๐œŒME (c.f. Eqs. (๐‘†๐‘†30) and (๐‘†๐‘†31)). The nonreciprocity arises from the terms that are linear in ๐‘Ÿ๐‘Ÿ1,2. It turns out that these two parameters are highly degenerate: both of them can fit the data equally well on their own and when being fitted at the same time, the error bars tend to be much greater than when only one of them is fitted. The results of the fitting are given in TABLE. S2 and plotted in Fig. S3. In the end, we convert ๐ด๐ดยฑ๐‘˜๐‘˜(๐œ™๐œ™) into ๐‘ƒ๐‘ƒยฑ๐‘˜๐‘˜(๐œ™๐œ™) and plot ๐‘ƒ๐‘ƒยฑ๐‘˜๐‘˜(๐œ™๐œ™) and rectifier ratio [๐‘ƒ๐‘ƒ+๐‘˜๐‘˜(๐œ™๐œ™) โˆ’ ๐‘ƒ๐‘ƒ+๐‘˜๐‘˜(๐œ™๐œ™)]/[๐‘ƒ๐‘ƒ+๐‘˜๐‘˜(๐œ™๐œ™) + ๐‘ƒ๐‘ƒ+๐‘˜๐‘˜(๐œ™๐œ™] in Fig. S4. Table S2. Summary of amplitude fitting.

๐ถ๐ถ ๐ถ๐ถerr ๐‘Ÿ๐‘Ÿ1 ๐‘Ÿ๐‘Ÿ1err ๐‘Ÿ๐‘Ÿ2 ๐‘Ÿ๐‘Ÿ2err

Fitting with ๐‘Ÿ๐‘Ÿ2 = 0 192.340259 1.8981 0.187254 0.013432 N/A N/A

Fitting with ๐‘Ÿ๐‘Ÿ1 = 0 192.229955 1.88400 N/A N/A -0.08537 0.006042

3-parameter fitting 1.717393 -5.190078 0.976959 -2.441063 0.442856 1.717393

Page 9: Supplementary Materials for - Science Advances...assumed to include an external magnetic field, cubic crystalline and interface-induced uniaxial magnetic anisotropies, and exchange,

Fig. S3. Fitting for ๐ด๐ด+๐‘˜๐‘˜(๐œ™๐œ™) , ๐ด๐ด+๐‘˜๐‘˜(๐œ™๐œ™) and [๐ด๐ด+๐‘˜๐‘˜(๐œ™๐œ™) โˆ’ ๐ด๐ด+๐‘˜๐‘˜(๐œ™๐œ™)]/[๐ด๐ด+๐‘˜๐‘˜(๐œ™๐œ™) + ๐ด๐ด+๐‘˜๐‘˜(๐œ™๐œ™]) under conditions ๐‘Ÿ๐‘Ÿ2 = 0, ๐‘Ÿ๐‘Ÿ1 = 0 and ๐‘Ÿ๐‘Ÿ1, ๐‘Ÿ๐‘Ÿ2 โ‰  0, respectively.

Fig. S4. Fitting for ๐‘ƒ๐‘ƒ+๐‘˜๐‘˜(๐œ™๐œ™), ๐‘ƒ๐‘ƒ+๐‘˜๐‘˜(๐œ™๐œ™) and [๐‘ƒ๐‘ƒ+๐‘˜๐‘˜(๐œ™๐œ™) โˆ’ ๐‘ƒ๐‘ƒ+๐‘˜๐‘˜(๐œ™๐œ™)]/[๐‘ƒ๐‘ƒ+๐‘˜๐‘˜(๐œ™๐œ™) + ๐‘ƒ๐‘ƒ+๐‘˜๐‘˜(๐œ™๐œ™]) under the condition ๐‘Ÿ๐‘Ÿ2 = 0. Even though the nonreciprocity data alone is insufficient to decide which of the magneto-rotation and spin-rotation couplings is the dominant mechanism, we can argue in favor of the former by considering how plausible the best fit values of ๐‘Ÿ๐‘Ÿ1,2 are. First of all, we note that the value of ๐œŒ๐œŒMR is completely known from the resonance field fitting and estimated to be ๐œŒ๐œŒMR โˆผ โˆ’106 J/m3. In order to estimate ๐œŒ๐œŒSR, one would need to know the effective spin density ๐‘†๐‘†/๐‘‰๐‘‰ for CoFeB thin films. Although it cannot be precisely determined due to the uncertainties in the microscopic magnetic structure, one could safely assume ๐‘†๐‘†

๐‘‰๐‘‰< 1030 m3

since ๐‘†๐‘† โˆผ ๐‘‚๐‘‚(1) and the unit cell size cannot be smaller than 1 ร… . Thus for ๐›ฅ๐›ฅ =2๐œ‹๐œ‹ ร— 6.1 GHz , one obtains ๐œŒ๐œŒSR < 6๐œ‹๐œ‹ ร— 105 J/m3 . Therefore, |๐‘Ÿ๐‘Ÿ2| would be at best comparable to |๐‘Ÿ๐‘Ÿ1| even in the most optimistic scenario. While we do not know the value of ๐‘๐‘1 for our sample, typical values for transition metals are of order 107 J/m3 (23) so that the best fit value ๐‘Ÿ๐‘Ÿ1 โ‰ˆ 0.2 is very reasonable while achieving ๐‘Ÿ๐‘Ÿ2 โ‰ˆ โˆ’0.1 would require a significantly lower magnetostriction for CoFeB than Co or Fe alone. These estimates also suggest that the shear strain mechanism should be far less effective than the magneto-rotation coupling for our thin films as ๐‘๐‘2 should be of the same order as ๐‘๐‘1 and ๐‘˜๐‘˜๐‘‘๐‘‘ โˆผ1/500. Therefore, we conclude that the observed giant nonreciprocity is mainly due to the

Page 10: Supplementary Materials for - Science Advances...assumed to include an external magnetic field, cubic crystalline and interface-induced uniaxial magnetic anisotropies, and exchange,

magneto-rotation coupling induced by the uniaxial anisotropy field ๐พ๐พ๐‘ข๐‘ข = ๐พ๐พโŠฅ โˆ’ ๐œ‡๐œ‡0๐‘€๐‘€๐‘Ÿ๐‘Ÿ2/2.

Although we are unable to exclude a contribution from the spin-rotation coupling, it would be at most of similar order of magnitude to the contribution from the magneto-rotation coupling. Section S3. Influence of the substrate anisotropy on the angular dependence of the SAW attenuation

The theoretical model used for fitting the data above assumes an isotropic elastic medium. However, LiNbO3 is trigonal and its elastic properties are anisotropic. Here we consider possible corrections to the SAW attenuation signal arising from the substrate anisotropy. The power dissipated by spin waves is given by

๐‘ƒ๐‘ƒ = โˆ’ฮฑ๐‘€๐‘€๐‘Ÿ๐‘Ÿฯ‰2

2ฮณ[{(๐ป๐ป + ๐ป๐ป๐‘ฃ๐‘ฃ)(๐ป๐ป + ๐ป๐ป๐‘ง๐‘ง) โˆ’ (๐ป๐ปฯ‰ โˆ’๐ป๐ปDMI)2}2 + ฮฑ2(2๐ป๐ป + ๐ป๐ป๐‘ฃ๐‘ฃ + ๐ป๐ป๐‘ง๐‘ง)2๐ป๐ปฯ‰2 ]โˆ’1

ร— [{(๐ป๐ป + ๐ป๐ป๐‘ง๐‘ง)2 + (๐ป๐ปฯ‰ โˆ’ ๐ป๐ปDMI)2}|โ„Ž๐‘ฃ๐‘ฃ|2+ {(๐ป๐ป + ๐ป๐ป๐‘ฃ๐‘ฃ)2 + (๐ป๐ปฯ‰ โˆ’ ๐ป๐ปDMI)2}|โ„Ž๐‘ง๐‘ง|2 +2(2๐ป๐ป + ๐ป๐ป๐‘ฃ๐‘ฃ + ๐ป๐ป๐‘ง๐‘ง)(๐ป๐ปฯ‰โˆ’ ๐ป๐ปDMI)โ„‘๏ฟฝโ„Ž๐‘ง๐‘งโ„Ž๐‘ฃ๐‘ฃ๏ฟฝ๏ฟฝ

= โˆ’ฮฑ๐‘€๐‘€๐‘Ÿ๐‘Ÿฯ‰2

2ฮณ[{(๐ป๐ป + ๐ป๐ป๐‘ฃ๐‘ฃ)(๐ป๐ป + ๐ป๐ป๐‘ง๐‘ง) โˆ’ (๐ป๐ปฯ‰ โˆ’ ๐ป๐ปDMI)2}2 + ฮฑ2(2๐ป๐ป + ๐ป๐ป๐‘ฃ๐‘ฃ + ๐ป๐ป๐‘ง๐‘ง)2๐ป๐ปฯ‰2 ]โˆ’1

ร— {|(๐ป๐ป + ๐ป๐ป๐‘ง๐‘ง)โ„Ž๐‘ฃ๐‘ฃ + ๐‘–๐‘–(๐ป๐ปฯ‰ โˆ’ ๐ป๐ปDMI)โ„Ž๐‘ง๐‘ง|2+ |(๐ป๐ป + ๐ป๐ป๐‘ฃ๐‘ฃ)โ„Ž๐‘ง๐‘ง โˆ’ ๐‘–๐‘–(๐ป๐ปฯ‰ โˆ’ ๐ป๐ปDMI)โ„Ž๐‘ฃ๐‘ฃ|2} , (๐‘†๐‘†35)

This is essentially Eq. (S29), written in terms of hv,z instead of ฯME,MR ,SR via Eqs. (S26) and (S27). Assuming near resonance H~Hres, we separate it into the Lorentzian and the residual amplitude

๐‘ƒ๐‘ƒ โ‰ˆฮฑ|๐ป๐ปฯ‰|๐ด๐ด/ฯ€

(๐ป๐ป โˆ’๐ป๐ปres)2 + ฮฑ2๐ป๐ปฯ‰2, (๐‘†๐‘†36)

๐ด๐ด =ฯ€2

ฮผ0๐‘€๐‘€๐‘Ÿ๐‘Ÿ|ฯ‰|(2๐ป๐ปres + ๐ป๐ป๐‘ฃ๐‘ฃ + ๐ป๐ป๐‘ง๐‘ง)2

ร— {|(๐ป๐ป + ๐ป๐ป๐‘ง๐‘ง)โ„Ž๐‘ฃ๐‘ฃ + ๐‘–๐‘–(๐ป๐ปฯ‰ โˆ’ ๐ป๐ปDMI)โ„Ž๐‘ง๐‘ง|2+ |(๐ป๐ป + ๐ป๐ป๐‘ฃ๐‘ฃ)โ„Ž๐‘ง๐‘ง โˆ’ ๐‘–๐‘–(๐ป๐ปฯ‰ โˆ’ ๐ป๐ปDMI)โ„Ž๐‘ฃ๐‘ฃ|2} , (๐‘†๐‘†37)

We are doing this splitting because this model evidently fails to fit the observed anisotropic linewidth data (which is down to the back reaction of spin waves onto SAWs) so that the amplitude part should be isolated in comparing the theory with the data. If the magnetic resonance is isotropic, i.e. ๐ป๐ป๐‘ง๐‘ง = ๐ป๐ป๐‘ฃ๐‘ฃ, one also has (๐ป๐ป + ๐ป๐ป๐‘ฃ๐‘ฃ)2 = (๐ป๐ป + ๐ป๐ป๐‘ง๐‘ง)2 = (๐ป๐ปฯ‰ โˆ’๐ป๐ปDMI)2 at the resonance. Although this approximation is not very good in the present setup where the dipolar shape anisotropy is clearly visible, for simplicity we take it here. Conventionally choosing ๐ป๐ปฯ‰ > 0, one obtains at the resonance

๐ด๐ด =ฯ€4ฮผ0๐‘€๐‘€๐‘Ÿ๐‘Ÿ|ฯ‰||โ„Ž๐‘ฃ๐‘ฃ + ๐‘–๐‘–โ„Ž๐‘ง๐‘ง|2 , (๐‘†๐‘†38)

With the cubic magneto-elastic coupling and out-of-plane uniaxial anisotropy, the effective magnetic field generated by acoustic waves is given by

Page 11: Supplementary Materials for - Science Advances...assumed to include an external magnetic field, cubic crystalline and interface-induced uniaxial magnetic anisotropies, and exchange,

โ„Ž๐‘ฃ๐‘ฃ =1

ฮผ0๐‘€๐‘€๐‘Ÿ๐‘Ÿ๏ฟฝ๐‘๐‘1๏ฟฝฯต๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ โˆ’ ฯต๐‘ฆ๐‘ฆ๐‘ฆ๐‘ฆ๏ฟฝ sin 2ฯ• โˆ’ 2๐‘๐‘2ฯต๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ cos 2ฯ•๏ฟฝ , (๐‘†๐‘†39)

โ„Ž๐‘ง๐‘ง = โˆ’2

ฮผ0๐‘€๐‘€๐‘Ÿ๐‘Ÿ๏ฟฝ(๐‘๐‘2ฯต๐‘ง๐‘ง๐‘ฅ๐‘ฅ + ๐พ๐พโŠฅฯ‰๐‘ง๐‘ง๐‘ฅ๐‘ฅ) cosฯ• + ๏ฟฝ๐‘๐‘2ฯต๐‘ง๐‘ง๐‘ฆ๐‘ฆ + ๐พ๐พโŠฅฯ‰๐‘ง๐‘ง๐‘ฆ๐‘ฆ๏ฟฝ sinฯ•๏ฟฝ, (๐‘†๐‘†40)

Suppose that the surface acoustic wave propagates in the ๐‘ฅ๐‘ฅ direction, but still has a nonzero ๐‘ฆ๐‘ฆ component of the deformation. In our original analysis, we did not include this component since it is absent for SAWs in isotropic media. The boundary conditions force ฯต๐‘ง๐‘ง๐‘ฅ๐‘ฅ = ฯต๐‘ง๐‘ง๐‘ฆ๐‘ฆ at the boundary, and the effective magnetic field reduces to

โ„Ž๐‘ฃ๐‘ฃ =1

ฮผ0๐‘€๐‘€๐‘Ÿ๐‘Ÿ๏ฟฝ๐‘๐‘1ฯต๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ sin 2ฯ•โˆ’ 2๐‘๐‘2ฯต๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ cos 2ฯ•๏ฟฝ, (๐‘†๐‘†41)

โ„Ž๐‘ง๐‘ง = โˆ’2๐พ๐พโŠฅฮผ0๐‘€๐‘€๐‘Ÿ๐‘Ÿ

๏ฟฝฯ‰๐‘ง๐‘ง๐‘ฅ๐‘ฅ cosฯ• + ฯ‰๐‘ง๐‘ง๐‘ฆ๐‘ฆ sinฯ•๏ฟฝ , (๐‘†๐‘†42)

We cannot derive analytical expressions for the strain and vorticity tensor components in general anisotropic media, but here the purpose is to capture the qualitative trend. First of all, let us assume ฯต๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ,ฯ‰๐‘ง๐‘ง๐‘ฅ๐‘ฅ are given by those of the SAWs in isotropic media, meaning they are of a similar order of magnitude and have a phase difference of ยฑฯ€/2 for ยฑk respectively. Next, ฯต๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ = โˆ‚๐‘ฅ๐‘ฅ๐‘ข๐‘ข๐‘ฆ๐‘ฆ/2,ฯ‰๐‘ง๐‘ง๐‘ฆ๐‘ฆ = โˆ‚๐‘ง๐‘ง๐‘ข๐‘ข๐‘ฆ๐‘ฆ/2 arise from the anisotropy correction so that they are expected to be smaller than ฯต๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ,ฯ‰๐‘ง๐‘ง๐‘ฅ๐‘ฅ. For surface localized waves, one expects โˆ‚๐‘ฅ๐‘ฅ โˆผ ๐‘–๐‘–๐‘˜๐‘˜, โˆ‚๐‘ง๐‘ง โˆผ ฮบ > 0, where ๐‘˜๐‘˜, ๐œ…๐œ… are real so that it is reasonable to assume the relative phase between ฯต๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ and ฯ‰๐‘ง๐‘ง๐‘ฅ๐‘ฅ is also ยฑฯ€/2. Hence we introduce the following parameterisation:

๐‘๐‘1ฯต๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = ๐‘–๐‘–๐‘Ž๐‘Ž, 2๐พ๐พโŠฅฯ‰๐‘ง๐‘ง๐‘ฅ๐‘ฅ = ๐‘๐‘, 2๐‘๐‘2ฯต๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ = ๐‘–๐‘–๐‘๐‘๐‘’๐‘’๐‘–๐‘–ฮด, 2๐พ๐พโŠฅฯ‰๐‘ง๐‘ง๐‘ฆ๐‘ฆ = ๐‘‘๐‘‘๐‘’๐‘’๐‘–๐‘–ฮด , (๐‘†๐‘†43)

where ๐‘Ž๐‘Ž, ๐‘๐‘, ๐‘๐‘,๐‘‘๐‘‘, ๐›ฟ๐›ฟ can be taken to be real. The experimental data already suggested |๐‘๐‘/๐‘Ž๐‘Ž| โˆผ 0.35 and ๐‘๐‘,๐‘‘๐‘‘ represent the anisotropy correction so that|๐‘๐‘|, |๐‘‘๐‘‘| โ‰ช |๐‘Ž๐‘Ž|.๐‘Ž๐‘Ž and ๐‘๐‘ are even and odd with respect to ยฑ๐‘˜๐‘˜ respectively, while the behavior under +๐‘˜๐‘˜ โ†’ โˆ’๐‘˜๐‘˜ is not known for ๐‘๐‘,๐‘‘๐‘‘. However, given ฯต๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ โˆผ ๐‘–๐‘–๐‘˜๐‘˜๐‘ข๐‘ข๐‘ฆ๐‘ฆ/2,ฯ‰๐‘ง๐‘ง๐‘ฆ๐‘ฆ โˆผ ฮบ๐‘ข๐‘ข๐‘ฆ๐‘ฆ/2, it is expected that one is odd and the other is even. One obtains

๐ด๐ด =ฯ€4

|ฯ‰|ฮผ0๐‘€๐‘€๐‘Ÿ๐‘Ÿ

๏ฟฝ๐‘Ž๐‘Ž sin 2ฯ• โˆ’ ๐‘๐‘ cosฯ• โˆ’ (๐‘๐‘ cos 2ฯ• + ๐‘‘๐‘‘ sinฯ•)๐‘’๐‘’๐‘–๐‘–ฮด๏ฟฝ2

, (๐‘†๐‘†44)

where the cross term between ๐‘Ž๐‘Ž sin 2๐œ™๐œ™ and ๐‘๐‘ cos๐œ™๐œ™ gives the main nonreciprocal term in the amplitude, while the anisotropy corrections may have angular dependencies that do not appear from the isotropic part, i.e. a term proportional to sin 4๐œ™๐œ™. These terms can explain at least parts of the features in Fig. 3 that are not accounted for by our fitting curve. Section S4. Details of 100% nonreciprocity

In the angular dependence spectrum near ๐œ™๐œ™ =180o, there is an abrupt change of nonreciprocity (Fig. 3.). It is also the region where the nonreciprocity reaches its maxima. According to the theory, the maxima are indeed 100% as we shall demonstrate now. Defining nonreciprocity by (๐ด๐ด+ โˆ’ ๐ด๐ดโˆ’)/(๐ด๐ด+ + ๐ด๐ดโˆ’) where ๐ด๐ดยฑ corresponds to ๐ด๐ด in Eq. (S44) evaluated for ยฑ๐‘˜๐‘˜ , i.e. ยฑ๐‘๐‘ respectively, it is expected that 100% nonreciprocity may be achieved at angles where either ๐ด๐ด+ or ๐ด๐ดโˆ’ is equal to zero. By considering the isotropic case with ๐‘๐‘ = ๐‘‘๐‘‘ = 0, this angle can be determined by the condition

Page 12: Supplementary Materials for - Science Advances...assumed to include an external magnetic field, cubic crystalline and interface-induced uniaxial magnetic anisotropies, and exchange,

2๐‘Ž๐‘Ž sin๐œ™๐œ™ + ๐‘๐‘ = 0 . (๐‘†๐‘†45) Since |๐‘๐‘/2๐‘Ž๐‘Ž| < 0 in our sample, this always has a solution near ฯ• = 0,๐œ‹๐œ‹ and if ๐‘๐‘ >0 one gets ๐ด๐ด+ = 0 at a ๐œ™๐œ™ < 0 for instance. And obviously ๐ด๐ด+ = 0 implies (๐ด๐ด+ โˆ’ ๐ด๐ดโˆ’)/(๐ด๐ด+ + ๐ด๐ดโˆ’) = โˆ’1, i.e. 100% non-reciprocity.

Fig. S5. The nonreciprocity ratio of the absorption amplitude ๐ด๐ด (๐ธ๐ธ๐ธ๐ธ. (๐‘†๐‘†45)) when the SAW is assumed isotropic, i.e. ๐‘๐‘ = ๐‘‘๐‘‘ = 0 . We set ๐‘Ž๐‘Ž = 1, ๐‘๐‘ = ยฑ0.35. The non-reciprocity reaches 100 % at an angle very close to ฯ• = 0.

In the experiment, we rotated the magnetic field angle from ๐œ™๐œ™ = 172o to ๐œ™๐œ™ = 188o , tracking the variation in the nonreciprocity (Fig. S6). From the spectra, we confirmed the rapid change of nonreciprocity amplitude and sign. Also, interestingly, when ๐œ™๐œ™ =184o , we observed a total flat line for SAW(-k), i.e. a vanishing ๐ด๐ดโˆ’, while maintaining SAW(+k) with a robust peak, namely 100% nonreciprocity ratio in accordance with the theory.

Page 13: Supplementary Materials for - Science Advances...assumed to include an external magnetic field, cubic crystalline and interface-induced uniaxial magnetic anisotropies, and exchange,

Fig. S6. (A- I) Absorption spectra at ๐œ™๐œ™ = 172o ,174o ,176o ,178o ,180o ,182o ,184o , 186o , 188o, respectively. Section S5. Characterization of Dzyaloshinskii-Moriya interaction via Brillouin light scattering spectroscopy Dzyaloshinskii-Moriya interaction (DMI) is the antisymmetric exchange coupling, which favours the canting alignment of the neighboring magnetic spins ๐‘†๐‘†๐‘–๐‘– and ๐‘†๐‘†๐‘–๐‘–. In recent years, due to its intriguing application in stabilizing magnetic skyrmions and chiral domain walls, DMI has attracted intensive research. In the magnetic heterostructure, DMI appears as a consequence of the broken structural inversion symmetry in the magnet. Among the experimental methods for investigating DMI, Brillouin light scattering (BLS) spectroscopy has been most widely used due to its high sensitivity. In the presence of the DMI, because of the different canting arrangement, spin waves with wavenumbers ยฑ๐‘˜๐‘˜ give opposite contributions to the total energy, which results in an asymmetric spin wave dispersion relation. And this asymmetry in ยฑ๐‘˜๐‘˜ leads to Eq. (๐‘†๐‘†45) (10, 14, 24, 25) for estimating DMI constant ๐ท๐ท:

๐›ฅ๐›ฅ๐›ฅ๐›ฅ =๐›ฅ๐›ฅ(โˆ’๐‘˜๐‘˜) โˆ’ ๐›ฅ๐›ฅ(๐‘˜๐‘˜)

2๐œ‹๐œ‹=

2๐ท๐ท๐‘˜๐‘˜|๐›พ๐›พ|๐œ‹๐œ‹๐‘€๐‘€๐‘†๐‘†

(๐‘†๐‘†46)

๐‘˜๐‘˜ = sgn(๐‘€๐‘€๐‘ฅ๐‘ฅ) 4๐‘–๐‘–sinฮ˜ฮปlaser

(๐‘†๐‘†47)

where we take gyromagnetic ratio |๐›พ๐›พ| = 29.4 GHz/T (26), saturation magnetization ๐œ‡๐œ‡0๐‘€๐‘€๐‘Ÿ๐‘Ÿ = 1.5 T , wavelength of the laser ฮปlaser = 473 nm and sgn(๐‘€๐‘€๐‘ฅ๐‘ฅ) is the polarity of the ๐‘ฅ๐‘ฅ component of static magnetization, ฮ˜ the angle between incident light and sample plane.

Page 14: Supplementary Materials for - Science Advances...assumed to include an external magnetic field, cubic crystalline and interface-induced uniaxial magnetic anisotropies, and exchange,

Fig. S7. Characterization of Dzyaloshinskii-Moriya interaction via Brillouin light scattering spectroscopy. (A) Schematics of Brillouin light scattering geometry, with scattering plane (in blue), and Cartesian coordinates. (B) Brillouin spectra of the Ta/CoFeB(1.6nm)/MgO film measured at incident angle ฮ˜ = 65โˆ˜ . Red and blue dots represent spectra measured under applied field ๐œ‡๐œ‡0๐ป๐ป= 50 mT along respective +๐‘ฅ๐‘ฅ and โˆ’๐‘ฅ๐‘ฅ directions. Solid lines represent Lorentzian fitting of spectra. ๐‘˜๐‘˜๐‘€๐‘€ is the magnitude of wavenumber ๐‘˜๐‘˜. Stokes and anti-Stokes peaks were normalized to a peak amplitude of 1, respectively.

Fig. S8. Frequency difference ๐›ฅ๐›ฅ๐›ฅ๐›ฅ of ยฑ๐‘˜๐‘˜ spin waves as a function of wavevector ๐‘˜๐‘˜. Purple circles and solid line denote measured data and fitting by Eq. (๐‘†๐‘†46)

In order to estimate ๐ท๐ท, we performed BLS measurement on the Ta/CoFeB(1.6nm)/MgO thin film in Damon-Eshbach geometry (as depicted in Fig. S7A). Figure Fig. S7B shows measurement of BLS spectra at ฮ˜ =65โˆ˜ while applying magnetic field ๐œ‡๐œ‡0๐ป๐ป of ยฑ50mT. Owing to in-plane momentum conservation of the light scattering process, spin waves travelling with the wavenumber ยฑ๐‘˜๐‘˜ appear as anti-Stokes and Stokes peaks, respectively. The difference of spectra center frequency ๐›ฅ๐›ฅ๐›ฅ๐›ฅ in ยฑ๐‘˜๐‘˜ are plotted in Fig. S8. By fitting with Eq. (๐‘†๐‘†46), we obtain DMI constant ๐ท๐ท = 0.063ยฑ 0.0023 mJ/m2 , which is in a good agreement with the estimation from acoustic ferromagnetic resonance ๐ท๐ทa-FMR = 0.089 ยฑ0.011 mJ/m2.

Page 15: Supplementary Materials for - Science Advances...assumed to include an external magnetic field, cubic crystalline and interface-induced uniaxial magnetic anisotropies, and exchange,

REFERENCES AND NOTES

1. X.-F. Li, X. Ni, L. Feng, M.-H. Lu, C. He, Y.-F. Chen, Tunable unidirectional sound propagation

through a sonic-crystal-based acoustic diode. Phys. Rev. Lett. 106, 084301 (2011).

2. B. Liang, X. S. Guo, J. Tu, D. Zhang, J. C. Cheng, An acoustic rectifier. Nat. Mater. 9, 989โ€“992

(2010).

3. C. W. Chang, D. Okawa, A. Majumdar, A. Zettl, Solid-state thermal rectifier. Science 314, 1121โ€“

1124 (2006).

4. T. Nomura, X.-X. Zhang, S. Zherlitsyn, J. Wosnitza, Y. Tokura, N. Nagaosa, S. Seki, Phonon

magnetochiral effect. Phys. Rev. Lett. 122, 145901 (2019).

5. L. Feng, M. Ayache, J. Huang, Y.-L. Xu, M.-H. Lu, Y.-F. Chen, Y. Fainman, A. Scherer,

Nonreciprocal light propagation in a silicon photonic circuit. Science 333, 729โ€“733 (2011).

6. M. Weiler, L. Dreher, C. Heeg, H. Huebl, R. Gross, M. S. Brandt, S. T. B. Goennenwein, Elastically

driven ferromagnetic resonance in nickel thin films. Phys. Rev. Lett. 106, 117601 (2011).

7. L. Dreher, M. Weiler, M. Pernpeintner, H. Huebl, R. Gross, M. S. Brandt, S. T. B. Goennenwein,

Surface acoustic wave driven ferromagnetic resonance in nickel thin films: Theory and experiment.

Phys. Rev. B. 86, 134415 (2012).

8. M. Xu, J. Puebla, F. Auvray, B. Rana, K. Kondou, Y. Otani, Inverse Edelstein effect induced by

magnon-phonon coupling. Phys. Rev. B. 97, 180301 (2018).

9. M. Weiler, H. Huebl, F. S. Goerg, F. D. Czeschka, R. Gross, S. T. B. Goennenwein, Spin pumping

with coherent elastic waves. Phys. Rev. Lett. 108, 176601 (2012).

10. R. Sasaki, Y. Nii, Y. Iguchi, Y. Onose, Nonreciprocal propagation of surface acoustic wave in

Ni/LiNbO3. Phys. Rev. B. 95, 020407 (2017).

Page 16: Supplementary Materials for - Science Advances...assumed to include an external magnetic field, cubic crystalline and interface-induced uniaxial magnetic anisotropies, and exchange,

11. A. Hernรกndez-Mรญnguez, F. Maciร , J. M. Hernร ndez, J. Herfort, P. V. Santos, Large non-reciprocal

propagation of surface acoustic waves in epitaxial ferromagnetic/semiconductor hybrid structures.

Phys. Rev. Applied 13, 044018 (2020).

12. S. Maekawa, M. Tachiki, in AIP Conference Proceedings (2008), vol. 29, pp. 542โ€“543.

13. V. G. Barโ€™yakhtar, V. M. Loktev, S. M. Ryabchenko, Rotational invariance and magnetoflexural

oscillations of ferromagnetic plates and rods. Sov. Phys. JETP. 61, 1040โ€“1042 (1985).

14. H. T. Nembach, J. M. Shaw, M. Weiler, E. Juรฉ, T. J. Silva, Linear relation between Heisenberg

exchange and interfacial Dzyaloshinskii-Moriya interaction in metal films. Nat. Phys. 11, 825โ€“829

(2015).

15. R. Lo Conte, E. Martinez, A. Hrabec, A. Lamperti, T. Schulz, L. Nasi, L. Lazzarini, R. Mantovan, F.

Maccherozzi, S. S. Dhesi, B. Ocker, C. H. Marrows, T. A. Moore, M. Klรคui, Role of B diffusion in

the interfacial Dzyaloshinskii-Moriya interaction in Ta/Co20 Fe60 B20/MgO nanowires. Phys. Rev. B

91, 014433 (2015).

16. V. R. Manfrinato, L. Zhang, D. Su, H. Duan, R. G. Hobbs, E. A. Stach, K. K. Berggren, Resolution

limits of electron-beam lithography toward the atomic scale. Nano Lett. 13, 1555โ€“1558 (2013).

17. R. Verba, I. Lisenkov, I. Krivorotov, V. Tiberkevich, A. Slavin, Nonreciprocal surface acoustic

waves in multilayers with magnetoelastic and interfacial Dzyaloshinskii-Moriya interactions. Phys.

Rev. Appl. 9, 064014 (2018).

18. K. Miura, S. Yabuuchi, M. Yamada, M. Ichimura, B. Rana, S. Ogawa, H. Takahashi, Y. Fukuma, Y.

Otani, Voltage-induced magnetization dynamics in CoFeB/MgO/CoFeB magnetic tunnel junctions.

Sci. Rep. 7, 42511 (2017).

19. B. Rana, Y. C. Otani, Towards magnonic devices based on voltage-controlled magnetic anisotropy.

Commun. Phys. 2, 90 (2019).

20. A. Khitun, M. Bao, K. L. Wang, Magnonic logic circuits. J. Phys. D Appl. Phys. 43, 264005 (2010).

Page 17: Supplementary Materials for - Science Advances...assumed to include an external magnetic field, cubic crystalline and interface-induced uniaxial magnetic anisotropies, and exchange,

21. T. Yu, S. Sharma, Y. M. Blanter, G. E. W. Bauer, Surface dynamics of rough magnetic films. Phys.

Rev. B. 99, 174402 (2019).

22. M. Matsuo, J. Ieda, K. Harii, E. Saitoh, S. Maekawa, Mechanical generation of spin current by spin-

rotation coupling. Phys. Rev. B 87, 180402 (2013).

23. Z. Tian, D. Sander, J. Kirschner, Nonlinear magnetoelastic coupling of epitaxial layers of Fe, Co,

and Ni on Ir(100). Phys. Rev. B 79, 024432 (2009).

24. K. Di, V. L. Zhang, H. S. Lim, S. C. Ng, M. H. Kuok, X. Qiu, H. Yang, Asymmetric spin-wave

dispersion due to Dzyaloshinskii-Moriya interaction in an ultrathin Pt/CoFeB film. Appl. Phys. Lett.

106, 052403 (2015).

25. A. K. Chaurasiya, C. Banerjee, S. Pan, S. Sahoo, S. Choudhury, J. Sinha, A. Barman, Direct

observation of Interfacial Dzyaloshinskii-Moriya interaction from asymmetric spin-wave

propagation in W/CoFeB/SiO2 heterostructures down to sub-nanometer CoFeB thickness. Sci. Rep.

6, 32592 (2016).

26. B. Rana, Y. Fukuma, K. Miura, H. Takahashi, Y. Otani, Excitation of coherent propagating spin

waves in ultrathin CoFeB film by voltage-controlled magnetic anisotropy. Appl. Phys. Lett. 111,

052404 (2017).