Download - Slides essec

Transcript
Page 1: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

Extremes and dependence in the contextof Solvency II for insurance companies

Arthur Charpentier

Universite de Rennes 1 & Ecole Polytechnique

http ://blogperso.univ-rennes1.fr/arthur.charpentier/

1

Page 2: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

On risk dependence in QIS’s

http ://www.ceiops.eu/media/files/consultations/QIS/QIS3/QIS3TechnicalSpecificationsPart1.PDF

2

Page 3: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

On risk dependence in QIS’s

http ://www.ceiops.eu/media/files/consultations/QIS/QIS3/QIS3TechnicalSpecificationsPart1.PDF

3

Page 4: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

On risk dependence in QIS’s

http ://www.ceiops.eu/media/files/consultations/QIS/QIS3/QIS3TechnicalSpecificationsPart1.PDF

4

Page 5: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

On risk dependence in QIS’s

http ://www.ceiops.eu/media/files/consultations/QIS/QIS3/QIS3TechnicalSpecificationsPart1.PDF

5

Page 6: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

How to capture dependence in risk models ?

Is correlation relevant to capture dependence information ?

Consider (see McNeil, Embrechts & Straumann (2003)) 2 log-normal risks,

• X ∼ LN(0, 1), i.e. X = exp(X?) where X? ∼ N (0, 1)• Y ∼ LN(0, σ2), i.e. Y = exp(Y ?) where Y ? ∼ N (0, σ2)

Recall that corr(X?, Y ?) takes any value in [−1,+1].

Since corr(X,Y ) 6=corr(X?, Y ?), what can be corr(X,Y ) ?

6

Page 7: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

How to capture dependence in risk models ?

0 1 2 3 4 5

−0

.50

.00

.51

.0

Standard deviation, sigma

Co

rre

latio

n

Fig. 1 – Range for the correlation, cor(X,Y ), X ∼ LN(0, 1) ,Y ∼ LN(0, σ2).

7

Page 8: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

How to capture dependence in risk models ?

0 1 2 3 4 5

−0

.50

.00

.51

.0

Standard deviation, sigma

Co

rre

latio

n

Fig. 2 – cor(X,Y ), X ∼ LN(0, 1) ,Y ∼ LN(0, σ2), Gaussian copula, r = 0.5.

8

Page 9: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

What about official actuarial documents ?

9

Page 10: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

What about official actuarial documents ?

10

Page 11: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

What about official actuarial documents ?

11

Page 12: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

What about regulatory technical documents ?

12

Page 13: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

What about regulatory technical documents ?

13

Page 14: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

What about regulatory technical documents ?

14

Page 15: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

What about regulatory technical documents ?

15

Page 16: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

Motivations : dependence and copulas

Definition 1. A copula C is a joint distribution function on [0, 1]d, withuniform margins on [0, 1].

Theorem 2. (Sklar) Let C be a copula, and F1, . . . , Fd be d marginaldistributions, then F (x) = C(F1(x1), . . . , Fd(xd)) is a distribution function, withF ∈ F(F1, . . . , Fd).

Conversely, if F ∈ F(F1, . . . , Fd), there exists C such thatF (x) = C(F1(x1), . . . , Fd(xd)). Further, if the Fi’s are continuous, then C isunique, and given by

C(u) = F (F−11 (u1), . . . , F−1

d (ud)) for all ui ∈ [0, 1]

We will then define the copula of F , or the copula of X.

16

Page 17: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

Copula density Level curves of the copula

Fig. 3 – Graphical representation of a copula, C(u, v) = P(U ≤ u, V ≤ v).

17

Page 18: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

Copula density Level curves of the copula

Fig. 4 – Density of a copula, c(u, v) =∂2C(u, v)∂u∂v

.

18

Page 19: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

Some very classical copulas

• The independent copula C(u, v) = uv = C⊥(u, v).

The copula is standardly denoted Π, P or C⊥, and an independent version of(X,Y ) will be denoted (X⊥, Y ⊥). It is a random vector such that X⊥ L= X and

Y ⊥L= Y , with copula C⊥.

In higher dimension, C⊥(u1, . . . , ud) = u1 × . . .× ud is the independent copula.

• The comonotonic copula C(u, v) = min{u, v} = C+(u, v).

The copula is standardly denoted M , or C+, and an comonotone version of(X,Y ) will be denoted (X+, Y +). It is a random vector such that X+ L= X and

Y + L= Y , with copula C+.

(X,Y ) has copula C+ if and only if there exists a strictly increasing function h

such that Y = h(X), or equivalently (X,Y ) L= (F−1X (U), F−1

Y (U)) where U isU([0, 1]).

19

Page 20: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

Some very classical copulas

In higher dimension, C+(u1, . . . , ud) = min{u1, . . . , ud} is the comonotoniccopula.

• The contercomotonic copula C(u, v) = max{u+ v − 1, 0} = C−(u, v).

The copula is standardly denoted W , or C−, and an contercomontone version of(X,Y ) will be denoted (X−, Y −). It is a random vector such that X− L= X and

Y −L= Y , with copula C−.

(X,Y ) has copula C− if and only if there exists a strictly decreasing function h

such that Y = h(X), or equivalently (X,Y ) L= (F−1X (1− U), F−1

Y (U)).

In higher dimension, C−(u1, . . . , ud) = max{u1 + . . .+ ud − (d− 1), 0} is not acopula.

But note that for any copula C,

C−(u1, . . . , ud) ≤ C(u1, . . . , ud) ≤ C+(u1, . . . , ud)

20

Page 21: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

0.2

0.40.6

0.8

u_10.2

0.4

0.6

0.8

u_2

00.

20.

40.

60.

81

Frec

het lo

wer b

ound

0.2

0.4

0.6

0.8

u_10.2

0.4

0.6

0.8

u_2

00.

20.

40.

60.

81

Inde

pend

ence

copu

la

0.2

0.40.6

0.8

u_10.2

0.4

0.6

0.8

u_2

00.

20.

40.

60.

81

Frec

het u

pper

bou

nd

Fréchet Lower Bound

0.0 0.2 0.4 0.6 0.8 1.0

0.00.2

0.40.6

0.81.0

Independent copula

0.0 0.2 0.4 0.6 0.8 1.0

0.00.2

0.40.6

0.81.0

Fréchet Upper Bound

0.0 0.2 0.4 0.6 0.8 1.0

0.00.2

0.40.6

0.81.0

0.0 0.2 0.4 0.6 0.8 1.0

0.00.2

0.40.6

0.81.0

Scatterplot, Lower Fréchet!Hoeffding bound

0.0 0.2 0.4 0.6 0.8 1.0

0.00.2

0.40.6

0.81.0

Scatterplot, Indepedent copula random generation

0.0 0.2 0.4 0.6 0.8 1.0

0.00.2

0.40.6

0.81.0

Scatterplot, Upper Fréchet!Hoeffding bound

Fig. 5 – Contercomontonce, independent, and comonotone copulas.

21

Page 22: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

Elliptical (Gaussian and t) copulas

The idea is to extend the multivariate probit model, X = (X1, . . . , Xd) withmarginal B(pi) distributions, modeled as Yi = 1(X?

i ≤ ui), where X? ∼ N (I,Σ).

• The Gaussian copula, with parameter α ∈ (−1, 1),

C(u, v) =1

2π√

1− α2

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞exp

{−(x2 − 2αxy + y2)

2(1− α2)

}dxdy.

Analogously the t-copula is the distribution of (T (X), T (Y )) where T is the t-cdf,and where (X,Y ) has a joint t-distribution.

• The Student t-copula with parameter α ∈ (−1, 1) and ν ≥ 2,

C(u, v) =1

2π√

1− α2

∫ t−1ν (u)

−∞

∫ t−1ν (v)

−∞

(1 +

x2 − 2αxy + y2

2(1− α2)

)−((ν+2)/2)

dxdy.

22

Page 23: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

Archimedean copulas

• Archimedian copulas C(u, v) = φ−1(φ(u) + φ(v)), where φ is decreasing convex(0, 1), with φ(0) =∞ and φ(1) = 0.

Example 3. If φ(t) = [− log t]α, then C is Gumbel’s copula, and ifφ(t) = t−α − 1, C is Clayton’s. Note that C⊥ is obtained when φ(t) = − log t.

The frailty approach : assume that X and Y are conditionally independent, giventhe value of an heterogeneous component Θ. Assume further that

P(X ≤ x|Θ = θ) = (GX(x))θ and P(Y ≤ y|Θ = θ) = (GY (y))θ

for some baseline distribution functions GX and GY . Then

F (x, y) = ψ(ψ−1(FX(x)) + ψ−1(FY (y))),

where ψ denotes the Laplace transform of Θ, i.e. ψ(t) = E(e−tΘ).

23

Page 24: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

0 20 40 60 80 100

020

4060

80100

Conditional independence, continuous risk factor

!3 !2 !1 0 1 2 3

!3

!2

!1

01

23

Conditional independence, continuous risk factor

Fig. 6 – Continuous classes of risks, (Xi, Yi) and (Φ−1(FX(Xi)),Φ−1(FY (Yi))).

24

Page 25: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

Some more examples of Archimedean copulas

ψ(t) range θ

(1) 1θ

(t−θ − 1) [−1, 0) ∪ (0,∞) Clayton, Clayton (1978)

(2) (1 − t)θ [1,∞)

(3) log 1−θ(1−t)t

[−1, 1) Ali-Mikhail-Haq

(4) (− log t)θ [1,∞) Gumbel, Gumbel (1960), Hougaard (1986)

(5) − log e−θt−1e−θ−1

(−∞, 0) ∪ (0,∞) Frank, Frank (1979), Nelsen (1987)

(6) − log{1 − (1 − t)θ} [1,∞) Joe, Frank (1981), Joe (1993)

(7) − log{θt + (1 − θ)} (0, 1]

(8) 1−t1+(θ−1)t [1,∞)

(9) log(1 − θ log t) (0, 1] Barnett (1980), Gumbel (1960)

(10) log(2t−θ − 1) (0, 1]

(11) log(2 − tθ) (0, 1/2]

(12) ( 1t− 1)θ [1,∞)

(13) (1 − log t)θ − 1 (0,∞)

(14) (t−1/θ − 1)θ [1,∞)

(15) (1 − t1/θ)θ [1,∞) Genest & Ghoudi (1994)

(16) ( θt

+ 1)(1 − t) [0,∞)

25

Page 26: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

Extreme value copulas

• Extreme value copulas

C(u, v) = exp[(log u+ log v)A

(log u

log u+ log v

)],

where A is a dependence function, convex on [0, 1] with A(0) = A(1) = 1, et

max{1− ω, ω} ≤ A (ω) ≤ 1 for all ω ∈ [0, 1] .

An alternative definition is the following : C is an extreme value copula if for allz > 0,

C(u1, . . . , ud) = C(u1/z1 , . . . , u

1/zd )z.

Those copula are then called max-stable : define the maximum componentwise ofa sample X1, . . . ,Xn, i.e. Mi = max{Xi,1, . . . , Xi,n}.

Remark more difficult to characterize when d ≥ 3.

26

Page 27: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

On copula parametrization

• Gaussian, Student t (and elliptical) copulas

Focuses on pairwise dependence through the correlation matrix,X1

X2

X3

X4

∼ N0,

1 r12 r13 r14

r12 1 r23 r24

r13 r23 1 r34

r14 r24 r34 1

Dependence in [0, 1]d ←→ summarized in d(d+ 1)/2 parameters,

27

Page 28: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

On copula parametrization

• Archimedean copulas

Initially, dependence in [0, 1]d ←→ summarized in one functional parameters on[0, 1]. But appears less flexible because of exchangeability features.

It is possible to introduce hierarchical Archimedean copulas (see Savu & Trede(2006) or McNeil (2007)). Let U = (U1, U2, U3, U4),

C(u1, u2, u3, u4) = φ−11 [φ1(u1) + φ1(u2) + φ1(u3) + φ1(u4)],

which, if φi is parametrized with parameter αi, can be summarized through

A =

1 α2 α4 α4

α2 1 α4 α4

α4 α4 1 α3

alpha4 α4 α3 1

28

Page 29: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

On copula parametrization

• Archimedean copulas

Initially, dependence in [0, 1]d ←→ summarized in one functional parameters on[0, 1]. But appears less flexible because of exchangeability features.

It is possible to introduce hierarchical Archimedean copulas (see Savu & Trede(2006) or McNeil (2007)). Let U = (U1, U2, U3, U4),

C(u1, u2, u3, u4) = φ−14 (φ4

[φ−1

2 (φ2(u1) + φ2(u2))]

+ φ4

[φ−1

3 (φ3(u3) + φ3(u4))]),

which, if φi is parametrized with parameter αi, can be summarized through

A =

1 α2 α4 α4

α2 1 α4 α4

α4 α4 1 α3

alpha4 α4 α3 1

29

Page 30: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

On copula parametrization

• Archimedean copulas

Initially, dependence in [0, 1]d ←→ summarized in one functional parameters on[0, 1]. But appears less flexible because of exchangeability features.

It is possible to introduce hierarchical Archimedean copulas (see Savu & Trede(2006) or McNeil (2007)). Let U = (U1, U2, U3, U4),

C(u1, u2, u3, u4) = φ−14 (φ4

[φ−1

2 (φ2(u1) + φ2(u2))]

+ φ4

[φ−1

3 (φ3(u3) + φ3(u4))]),

which, if φi is parametrized with parameter αi, can be summarized through

A =

1 α2 α4 α4

α2 1 α4 α4

α4 α4 1 α3

alpha4 α4 α3 1

30

Page 31: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

On copula parametrization

• Archimedean copulas

Initially, dependence in [0, 1]d ←→ summarized in one functional parameters on[0, 1]. But appears less flexible because of exchangeability features.

It is possible to introduce hierarchical Archimedean copulas (see Savu & Trede(2006) or McNeil (2007)). Let U = (U1, U2, U3, U4),

C(u1, u2, u3, u4) = φ−14 (φ4

[φ−1

2 (φ2(u1) + φ2(u2))]

+ φ4

[φ−1

3 (φ3(u3) + φ3(u4))]),

which, if φi is parametrized with parameter αi, can be summarized through

A =

1 α2 α4 α4

α2 1 α4 α4

α4 α4 1 α3

α4 α4 α3 1

31

Page 32: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

On copula parametrization

• Archimedean copulas

Initially, dependence in [0, 1]d ←→ summarized in one functional parameters on[0, 1]. But appears less flexible because of exchangeability features.

It is possible to introduce hierarchical Archimedean copulas (see Savu & Trede(2006) or McNeil (2007)). Let U = (U1, U2, U3, U4),

C(u1, u2, u3, u4) = φ−14 (φ4[φ−1

3 (φ3

[φ−1

2 (φ2(u1) + φ2(u2))]

+ φ3(u3))] + φ4(u4)),

which, if φi is parametrized with parameter αi, can be summarized through

A =

1 α2 α3 α4

α2 1 α3 α4

α3 α3 1 α4

α4 α4 α4 1

32

Page 33: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

On copula parametrization

• Archimedean copulas

Initially, dependence in [0, 1]d ←→ summarized in one functional parameters on[0, 1]. But appears less flexible because of exchangeability features.

It is possible to introduce hierarchical Archimedean copulas (see Savu & Trede(2006) or McNeil (2007)). Let U = (U1, U2, U3, U4),

C(u1, u2, u3, u4) = φ−14 (φ4[φ−1

3 (φ3

[φ−1

2 (φ2(u1) + φ2(u2))]

+ φ3(u3))] + φ4(u4)),

which, if φi is parametrized with parameter αi, can be summarized through

A =

1 α2 α3 α4

α2 1 α3 α4

α3 α3 1 α4

α4 α4 α4 1

33

Page 34: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

On copula parametrization

• Archimedean copulas

Initially, dependence in [0, 1]d ←→ summarized in one functional parameters on[0, 1]. But appears less flexible because of exchangeability features.

It is possible to introduce hierarchical Archimedean copulas (see Savu & Trede

(2006) or McNeil (2007)). Let U = (U1, U2, U3, U4),

C(u1, u2, u3, u4) = φ−14 (φ4[φ−1

3 (φ3

[φ−1

2 (φ2(u1) + φ2(u2))]

+ φ3(u3))] + φ4(u4)),

which, if φi is parametrized with parameter αi, can be summarized through

A =

1 α2 α3 α4

α2 1 α3 α4

α3 α3 1 α4

α4 α4 α4 1

34

Page 35: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

On copula parametrization

• Extreme value copulas

Here, dependence in [0, 1]d ←→ summarized in one functional parameters on[0, 1]d−1.

Further, focuses only on first order tail dependence.

35

Page 36: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

Natural properties for dependence measures

Definition 4. κ is measure of concordance if and only if κ satisfies

• κ is defined for every pair (X,Y ) of continuous random variables,

• −1 ≤ κ (X,Y ) ≤ +1, κ (X,X) = +1 and κ (X,−X) = −1,

• κ (X,Y ) = κ (Y,X),

• if X and Y are independent, then κ (X,Y ) = 0,

• κ (−X,Y ) = κ (X,−Y ) = −κ (X,Y ),

• if (X1, Y1) �PQD (X2, Y2), then κ (X1, Y1) ≤ κ (X2, Y2),

• if (X1, Y1) , (X2, Y2) , ... is a sequence of continuous random vectors thatconverge to a pair (X,Y ) then κ (Xn, Yn)→ κ (X,Y ) as n→∞.

36

Page 37: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

Natural properties for dependence measures

If κ is measure of concordance, then, if f and g are both strictly increasing, thenκ(f(X), g(Y )) = κ(X,Y ). Further, κ(X,Y ) = 1 if Y = f(X) with f almost surelystrictly increasing, and analogously κ(X,Y ) = −1 if Y = f(X) with f almostsurely strictly decreasing (see Scarsini (1984)).

Rank correlations can be considered, i.e. Spearman’s ρ defined as

ρ(X,Y ) = corr(FX(X), FY (Y )) = 12∫ 1

0

∫ 1

0

C(u, v)dudv − 3

and Kendall’s τ defined as

τ(X,Y ) = 4∫ 1

0

∫ 1

0

C(u, v)dC(u, v)− 1.

37

Page 38: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

Historical version of those coefficients

Similarly Kendall’s tau was not defined using copulae, but as the probability ofconcordance, minus the probability of discordance, i.e.

τ(X,Y ) = 3[P((X1 −X2)(Y1 − Y2) > 0)− P((X1 −X2)(Y1 − Y2) < 0)],

where (X1, Y1) and (X2, Y2) denote two independent versions of (X,Y ) (seeNelsen (1999)).

Equivalently, τ(X,Y ) = 1− 4Qn(n2 − 1)

where Q is the number of inversions

between the rankings of X and Y (number of discordance).

38

Page 39: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

!2.0 !1.5 !1.0 !0.5 0.0 0.5 1.0

!0.5

0.0

0.5

1.0

1.5

Concordant pairs

X

Y

!2.0 !1.5 !1.0 !0.5 0.0 0.5 1.0

!0.5

0.0

0.5

1.0

1.5

Discordant pairs

XY

Fig. 7 – Concordance versus discordance.

39

Page 40: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

Alternative expressions of those coefficients

Note that those coefficients can also be expressed as follows

ρ(X,Y ) =

∫[0,1]×[0,1]

C(u, v)− C⊥(u, v)dudv∫[0,1]×[0,1]

C+(u, v)− C⊥(u, v)dudv

(the normalized average distance between C and C⊥), for instance.

The case of the Gaussian random vector

If (X,Y ) is a Gaussian random vector with correlation r, then (Kruskal (1958))

ρ(X,Y ) =6π

arcsin(r

2

)and τ(X,Y ) =

arcsin (r) .

40

Page 41: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

From Kendall’tau to copula parameters

Kendall’s τ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Gaussian θ 0.00 0.16 0.31 0.45 0.59 0.71 0.81 0.89 0.95 0.99 1.00

Gumbel θ 1.00 1.11 1.25 1.43 1.67 2.00 2.50 3.33 5.00 10.0 +∞

Plackett θ 1.00 1.57 2.48 4.00 6.60 11.4 21.1 44.1 115 530 +∞

Clayton θ 0.00 0.22 0.50 0.86 1.33 2.00 3.00 4.67 8.00 18.0 +∞

Frank θ 0.00 0.91 1.86 2.92 4.16 5.74 7.93 11.4 18.2 20.9 +∞Joe θ 1.00 1.19 1.44 1.77 2.21 2.86 3.83 4.56 8.77 14.4 +∞

Galambos θ 0.00 0.34 0.51 0.70 0.95 1.28 1.79 2.62 4.29 9.30 +∞

Morgenstein θ 0.00 0.45 0.90 - - - - - - - -

41

Page 42: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

From Spearman’s rho to copula parameters

Spearman’s ρ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Gaussian θ 0.00 0.10 0.21 0.31 0.42 0.52 0.62 0.72 0.81 0.91 1.00

Gumbel θ 1.00 1.07 1.16 1.26 1.38 1.54 1.75 2.07 2.58 3.73 +∞

A.M.H. θ 1.00 1.11 1.25 1.43 1.67 2.00 2.50 3.33 5.00 10.0 +∞

Plackett θ 1.00 1.35 1.84 2.52 3.54 5.12 7.76 12.7 24.2 66.1 +∞

Clayton θ 0.00 0.14 0.31 0.51 0.76 1.06 1.51 2.14 3.19 5.56 +∞

Frank θ 0.00 0.60 1.22 1.88 2.61 3.45 4.47 5.82 7.90 12.2 +∞

Joe θ 1.00 1.12 1.27 1.46 1.69 1.99 2.39 3.00 4.03 6.37 +∞

Galambos θ 0.00 0.28 0.40 0.51 0.65 0.81 1.03 1.34 1.86 3.01 +∞

Morgenstein θ 0.00 0.30 0.60 0.90 - - - - - - -

42

Page 43: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Marges uniformes

Cop

ule

de G

umbe

l

!2 0 2 4!

20

24

Marges gaussiennes

Fig. 8 – Simulations of Gumbel’s copula θ = 1.2.

43

Page 44: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Marges uniformes

Cop

ule

Gau

ssie

nne

!2 0 2 4!

20

24

Marges gaussiennes

Fig. 9 – Simulations of the Gaussian copula (θ = 0.95).

44

Page 45: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

Tail correlation and Solvency II

45

Page 46: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

Tail correlation and Solvency II

46

Page 47: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

Strong tail dependence

Joe (1993) defined, in the bivariate case a tail dependence measure.

Definition 5. Let (X,Y ) denote a random pair, the upper and lower taildependence parameters are defined, if the limit exist, as

λL = limu→0

P(X ≤ F−1

X (u) |Y ≤ F−1Y (u)

),

= limu→0

P (U ≤ u|V ≤ u) = limu→0

C(u, u)u

,

and

λU = limu→1

P(X > F−1

X (u) |Y > F−1Y (u)

)= lim

u→0P (U > 1− u|V ≤ 1− u) = lim

u→0

C?(u, u)u

.

47

Page 48: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

Gaussian copula

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

●●

●●

●●

●●

● ●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

● ●

●●

● ●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

L and R concentration functions

L function (lower tails) R function (upper tails)

GAUSSIAN

Fig. 10 – L and R cumulative curves.

48

Page 49: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

Gumbel copula

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

● ●

●●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

L and R concentration functions

L function (lower tails) R function (upper tails)

GUMBEL

Fig. 11 – L and R cumulative curves.

49

Page 50: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

Clayton copula

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

●●

●●

●●

●●

●●

● ●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

● ●

● ●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

L and R concentration functions

L function (lower tails) R function (upper tails)

CLAYTON

Fig. 12 – L and R cumulative curves.

50

Page 51: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

Student t copula

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

L and R concentration functions

L function (lower tails) R function (upper tails)

STUDENT (df=5)

Fig. 13 – L and R cumulative curves.

51

Page 52: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

Student t copula

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

●●

●● ●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

● ●

● ●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

● ●

●●

●●

●●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

L and R concentration functions

L function (lower tails) R function (upper tails)

STUDENT (df=3)

Fig. 14 – L and R cumulative curves.

52

Page 53: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

Estimation of tail dependence

53

Page 54: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

Estimating (strong) tail dependence

From

P ≈P(X > F−1

X (u) , Y > F−1Y (u)

)P(Y > F−1

Y (u)) for u closed to 1,

as for Hill’s estimator, a natural estimator for λ is obtained with u = 1− k/n,

λ(k)U =

1n

∑ni=1 1(Xi > Xn−k:n, Yi > Yn−k:n)

1n

∑ni=1 1(Yi > Yn−k:n)

,

hence

λ(k)U =

1k

n∑i=1

1(Xi > Xn−k:n, Yi > Yn−k:n).

λ(k)L =

1k

n∑i=1

1(Xi ≤ Xk:n, Yi ≤ Yk:n).

54

Page 55: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

Asymptotic convergence, how fast ?

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(Upper) tail dependence, Gaussian copula, n=200

Exceedance probability

0.001 0.005 0.050 0.500

0.0

0.2

0.4

0.6

0.8

1.0

Log scale, (lower) tail dependence

Exceedance probability (log scale)

Fig. 15 – Convergence of L and R functions, Gaussian copula, n = 200.

55

Page 56: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

Asymptotic convergence, how fast ?

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(Upper) tail dependence, Gaussian copula, n=200

Exceedance probability

0.001 0.005 0.050 0.500

0.0

0.2

0.4

0.6

0.8

1.0

Log scale, (lower) tail dependence

Exceedance probability (log scale)

Fig. 16 – Convergence of L and R functions, Gaussian copula, n = 2, 000.

56

Page 57: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

Asymptotic convergence, how fast ?

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(Upper) tail dependence, Gaussian copula, n=200

Exceedance probability

0.001 0.005 0.050 0.500

0.0

0.2

0.4

0.6

0.8

1.0

Log scale, (lower) tail dependence

Exceedance probability (log scale)

Fig. 17 – Convergence of L and R functions, Gaussian copula, n = 20, 000.

57

Page 58: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

Weak tail dependence

If X and Y are independent (in tails), for u large enough

P(X > F−1X (u), Y > F−1

Y (u)) = P(X > F−1X (u)) · P(Y > F−1

Y (u)) = (1− u)2,

or equivalently, log P(X > F−1X (u), Y > F−1

Y (u)) = 2 · log(1− u). Further, if Xand Y are comonotonic (in tails), for u large enough

P(X > F−1X (u), Y > F−1

Y (u)) = P(X > F−1X (u)) = (1− u)1,

or equivalently, log P(X > F−1X (u), Y > F−1

Y (u)) = 1 · log(1− u).

=⇒ limit of the ratiolog(1− u)

log P(Z1 > F−11 (u), Z2 > F−1

2 (u)).

58

Page 59: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

Weak tail dependence

Coles, Heffernan & Tawn (1999) defined

Definition 6. Let (X,Y ) denote a random pair, the upper and lower taildependence parameters are defined, if the limit exist, as

ηL = limu→0

log(u)log P(Z1 ≤ F−1

1 (u), Z2 ≤ F−12 (u))

= limu→0

log(u)logC(u, u)

,

and

ηU = limu→1

log(1− u)log P(Z1 > F−1

1 (u), Z2 > F−12 (u))

= limu→0

log(u)logC?(u, u)

.

59

Page 60: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

Gaussian copula

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

● ●

●●

●●

●●

● ●

●●

●●

● ●

●●

● ●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

● ●

●●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Chi dependence functions

lower tails upper tails

GAUSSIAN

●●

Fig. 18 – χ functions.

60

Page 61: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

Gumbel copula

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

●●

● ●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

● ●

●●

●●

●● ●

●●

●●

● ●

●●

● ●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

● ●

● ●

●●

● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Chi dependence functions

lower tails upper tails

GUMBEL

Fig. 19 – χ functions.

61

Page 62: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

Clayton copula

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

●●

●●

●●

● ●

●●

●●

●●

●●

● ●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

● ●

● ●

●●

●●

● ●

●●

● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Chi dependence functions

lower tails upper tails

CLAYTON

Fig. 20 – χ functions.

62

Page 63: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

Student t copula

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

● ●

●●

●●

● ●

●●

●●

●●

●●

●●

● ●

●●

●●

● ●

●●

●●

●●

●●

● ●

●●

● ●

●●

●●

●●

● ●

●●

●●

●●

● ●

●●

●●

● ●

●●

●●

● ●

● ●

●●

● ●

●●

● ●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Chi dependence functions

lower tails upper tails

STUDENT (df=3)

Fig. 21 – χ functions.

63

Page 64: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

Application in risk management : Loss-ALAE

●●

●●

●●

●●●●

●●●

●●●

●●

●●

●●

●●

●●●●●

●●●●●●

●●

●●●●●●

●●

●●●●●

●●

●●

●●●●

●●●●●

●●●●

●●

●●

●●

●●●

●●

●●●

●●

●●

●●

●●●●

●●

●●●●

●●●●

●●

●●●●●●

●●

●●●

●●

●●●●

●●●●●●●●●●

●●●●●●●

●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●

●●●●●●●●●

●●●●●

●●●●

●●●●●

●●

●●

●●

●●

●●

●●

●●●●

●●

●●●●●

●●

●●

●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●●●●●

●●

●●●

●●

●●

●●

●●

●●●●●●●●

●●●

●●

●●●

●●●●●●

●●●●●●●

●●●

●●●

●●●

●●

●●

●●

●●●

●●

●●●●●

●●●

●●●●●●●●●●

●●●

●●●●●●●

●●●●●

●●

●●●●●●

●●●●●●●●●●●●●●

●●●●●

●●●●●●

●●●●●

●●●

●●

●●●

●●

●●●

●●

●●

●●●●

●●

●●

●●

●●●●●

●●●

●●●●●●●●●●

●●

●●●●

●●●●●●●●●●●●●

●●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●●●

●●

●●●●●●●●●●●●

●●

●●●

●●●

●●●

●●

●●

●●

●●

●●●●

●●

●●●

●●●●●

●●●●

●●●●●●●●●●●●●

●●

●●

●●●

●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●

●●

●●

●●

●●

●●●●●●●●●

●●●●●●●●

●●●

●●

●●●

●●

●●●

●●

●●

●●●●

●●●●●

●●

●●●

●●●●●●●●

●●●●

●●

●●

●●●

●●

●●

●●●

●●

●●●●●

●●●

●●

●●●

●●●●

●●

●●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Loss

Allo

cate

d E

xpe

nse

s

Fig. 22 – Losses and allocated expenses.

64

Page 65: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

Application in risk management : Loss-ALAE

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

L and R concentration functions

L function (lower tails) R function (upper tails)

●●●

●●●

●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●

●●●

Gumbel copula

0.0 0.2 0.4 0.6 0.8 1.00

.00

.20

.40

.60

.81

.0

Chi dependence functions

lower tails upper tails

●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●

Gumbel copula

Fig. 23 – L and R cumulative curves, and χ functions.

65

Page 66: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

Application in risk management : car-household

● ●

● ●

●●●

●●

●●

●●

●● ●

●●

●●

●●

●●

●●

● ●

● ●

●●●

●●

● ●●

●●

● ●

●●

●●

● ●

●●

● ●

●●

●●

●●

●●

●●

● ●

● ●

●●

● ●

●●

● ●

●●

●●

●●

● ●

●●

● ●

●●

●●

●●

●●

●●

● ●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Car claims

Ho

use

ho

ld c

laim

s

Fig. 24 – Motor and Household claims.

66

Page 67: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

Application in risk management : car-household

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

L and R concentration functions

L function (lower tails) R function (upper tails)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●

●●●●●●

●●

Gumbel copula

0.0 0.2 0.4 0.6 0.8 1.00

.00

.20

.40

.60

.81

.0

Chi dependence functions

lower tails upper tails

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

Gumbel copula

Fig. 25 – L and R cumulative curves, and χ functions.

67

Page 68: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

Case of Archimedean copulas

For an exhaustive study of tail behavior for Archimedean copulas, seeCharpentier & Segers (2008).

• upper tail : function of φ′(1) and θ1 = − lims→0

sφ′(1− s)φ(1− s)

,

◦ φ′(1) < 0 : tail independence

◦ φ′(1) = 0 and θ1 = 1 : dependence in independence

◦ φ′(1) = 0 and θ1 > 1 : tail dependence

• lower tail : function of φ(0) and θ0 = − lims→0

sφ′(s)φ(s)

,

◦ φ(0) <∞ : tail independence

◦ φ(0) =∞ and θ0 = 0 : dependence in independence

◦ φ(0) =∞ and θ0 > 0 : tail dependence

0.0 0.2 0.4 0.6 0.8 1.005

1015

20

68

Page 69: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

Measuring risks ?

the pure premium as a technical benchmark

Pascal, Fermat, Condorcet, Huygens, d’Alembert in the XVIIIth centuryproposed to evaluate the “produit scalaire des probabilites et des gains”,

< p,x >=n∑i=1

pixi =n∑i=1

P(X = xi) · xi = EP(X),

based on the “regle des parties”.

For Quetelet, the expected value was, in the context of insurance, the price thatguarantees a financial equilibrium.

From this idea, we consider in insurance the pure premium as EP(X). As inCournot (1843), “l’esperance mathematique est donc le juste prix des chances”(or the “fair price” mentioned in Feller (1953)).

Problem : Saint Peterburg’s paradox, i.e. infinite mean risks (cf. naturalcatastrophes)

69

Page 70: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

the pure premium as a technical benchmark

For a positive random variable X, recall that EP(X) =∫ ∞

0

P(X > x)dx.

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

Expected value

Loss value, X

Pro

babi

lity

leve

l, P

Fig. 26 – Expected value EP(X) =∫xdFX(x) =

∫P(X > x)dx.

70

Page 71: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

from pure premium to expected utility principle

Ru(X) =∫u(x)dP =

∫P(u(X) > x))dx

where u : [0,∞)→ [0,∞) is a utility function.

Example with an exponential utility, u(x) = [1− e−αx]/α,

Ru(X) =1α

log(EP(eαX)

),

i.e. the entropic risk measure.

See Cramer (1728), Bernoulli (1738), von Neumann & Morgenstern

(1944), Rochet (1994)... etc.

71

Page 72: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

Distortion of values versus distortion of probabilities

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

Expected utility (power utility function)

Loss value, X

Pro

babi

lity

leve

l, P

Fig. 27 – Expected utility∫u(x)dFX(x).

72

Page 73: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

Distortion of values versus distortion of probabilities

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

Expected utility (power utility function)

Loss value, X

Pro

babi

lity

leve

l, P

Fig. 28 – Expected utility∫u(x)dFX(x).

73

Page 74: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

from pure premium to distorted premiums (Wang)

Rg(X) =∫xdg ◦ P =

∫g(P(X > x))dx

where g : [0, 1]→ [0, 1] is a distorted function.

Example• if g(x) = I(X ≥ 1− α) Rg(X) = V aR(X,α),• if g(x) = min{x/(1− α), 1} Rg(X) = TV aR(X,α) (also called expected

shortfall), Rg(X) = EP(X|X > V aR(X,α)).See D’Alembert (1754), Schmeidler (1986, 1989), Yaari (1987), Denneberg

(1994)... etc.

Remark : Rg(X) might be denoted Eg◦P. But it is not an expected value sinceQ = g ◦ P is not a probability measure.

74

Page 75: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

Distortion of values versus distortion of probabilities

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

Distorted premium beta distortion function)

Loss value, X

Pro

babi

lity

leve

l, P

Fig. 29 – Distorted probabilities∫g(P(X > x))dx.

75

Page 76: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

Distortion of values versus distortion of probabilities

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

Distorted premium beta distortion function)

Loss value, X

Pro

babi

lity

leve

l, P

Fig. 30 – Distorted probabilities∫g(P(X > x))dx.

76

Page 77: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

some particular cases a classical premiums

The exponential premium or entropy measure : obtained when the agentas an exponential utility function, i.e.

π such that U(ω − π) = EP(U(ω − S)), U(x) = − exp(−αx),

i.e. π =1α

log EP(eαX).

Esscher’s transform (see Esscher ( 1936), Buhlmann ( 1980)),

π = EQ(X) =EP(X · eαX)

EP(eαX),

for some α > 0, i.e.dQdP

=eαX

EP(eαX).

Wang’s premium (see Wang ( 2000)), extending the Sharp ratio concept

E(X) =∫ ∞

0

F (x)dx and π =∫ ∞

0

Φ(Φ−1(F (x)) + λ)dx

77

Page 78: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

Risk measures

The two most commonly used risk measures for a random variable X (assumingthat a loss is positive) are, q ∈ (0, 1),

• Value-at-Risk (VaR),

V aRq(X) = inf{x ∈ R,P(X > x) ≤ α},

• Expected Shortfall (ES), Tail Conditional Expectation (TCE) or TailValue-at-Risk (TVaR)

TV aRq(X) = E (X|X > V aRq(X)) ,

Artzner, Delbaen, Eber & Heath (1999) : a good risk measure issubadditive,

TVaR is subadditive, VaR is not subadditive (in general).

78

Page 79: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

Risk measures and diversification

Any copula C is bounded by Frchet-Hoeffding bounds,

max

{d∑i=1

ui − (d− 1), 0

}≤ C(u1, . . . , ud) ≤ min{u1, . . . , ud},

and thus, any distribution F on F(F1, . . . , Fd) is bounded

max

{d∑i=1

Fi(xi)− (d− 1), 0

}≤ F (x1, . . . , xd) ≤ min{F1(x1), . . . , Ff (xd)}.

Does this means the comonotonicity is always the worst-case scenario ?

Given a random pair (X,Y ), let (X−, Y −) and (X+, Y +) denotecontercomonotonic and comonotonic versions of (X,Y ), do we have

R(φ(X−, Y −))?≤ R(φ(X ,Y ))

?≤ R(φ(X+, Y +)).

79

Page 80: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

Tchen’s theorem and bounding some pure premiums

If φ : R2 → R is supermodular, i.e.

φ(x2, y2)− φ(x1, y2)− φ(x2, y1) + φ(x1, y1) ≥ 0,

for any x1 ≤ x2 and y1 ≤ y2, then if (X,Y ) ∈ F(FX , FY ),

E(φ(X−, Y −)

)≤ E (φ(X,Y )) ≤ E

(φ(X+, Y +)

),

as proved in Tchen (1981).

Example 7. the stop loss premium for the sum of two risks E((X + Y − d)+) issupermodular.

80

Page 81: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

Example 8. For the n-year joint-life annuity,

axy:nq =n∑k=1

vkP(Tx > k and Ty > k) =n∑k=1

vkkpxy.

Thena−xy:nq ≤ axy:nq ≤ a+

xy:nq,

where

a−xy:nq =n∑k=1

vk max{kpx + kpy − 1, 0}( lower Frchet bound ),

a+xy:nq =

n∑k=1

vk min{kpx, kpy}( upper Frchet bound ).

81

Page 82: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

Makarov’s theorem and bounding Value-at-Risk

In the case where R denotes the Value-at-Risk (i.e. quantile function of the P&Ldistribution),

R− ≤ R(X− + Y −)6≤R(X + Y ) 6≤R(X+ + Y +) ≤ R+,

where e.g. R+ can exceed the comonotonic case. Recall that

R(X + Y ) = VaRq[X + Y ] = F−1X+Y (q) = inf{x ∈ R|FX+Y (x) ≥ q}.

Proposition 9. Let (X,Y ) ∈ F(FX , FY ) then for all s ∈ R,

τC−(FX , FY )(s) ≤ P(X + Y ≤ s) ≤ ρC−(FX , FY )(s),

whereτC(FX , FY )(s) = sup

x,y∈R{C(FX(x), FY (y)), x+ y = s}

and, if C(u, v) = u+ v − C(u, v),

ρC(FX , FY )(s) = infx,y∈R

{C(FX(x), FY (y)), x+ y = s}.

82

Page 83: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

0.0 0.2 0.4 0.6 0.8 1.0

!4!2

02

4

Bornes de la VaR d’un portefeuille

Somme de 2 risques Gaussiens

Fig. 31 – Value-at-Risk for 2 Gaussian risks N (0, 1).

83

Page 84: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

0.90 0.92 0.94 0.96 0.98 1.00

01

23

45

6

Bornes de la VaR d’un portefeuille

Somme de 2 risques Gaussiens

Fig. 32 – Value-at-Risk for 2 Gaussian risks N (0, 1).

84

Page 85: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

0.0 0.2 0.4 0.6 0.8 1.0

05

1015

20

Bornes de la VaR d’un portefeuille

Somme de 2 risques Gamma

Fig. 33 – Value-at-Risk for 2 Gamma risks G(3, 1).

85

Page 86: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

0.90 0.92 0.94 0.96 0.98 1.00

05

1015

20

Bornes de la VaR d’un portefeuille

Somme de 2 risques Gamma

Fig. 34 – Value-at-Risk for 2 Gamma risks G(3, 1).

86

Page 87: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

The more correlated, the more risky ?

Will the risk of the portfolio increase with correlation ?

Recall the following theoretical result :

Proposition 10. Assume that X and X ′ are in the same Frechet space (i.e.

XiL= X ′i), and define

S = X1 + · · ·+Xn and S′ = X ′1 + · · ·+X ′n.

If X �X ′ for the concordance order, then S �TV aR S′ for the stop-loss orTVaR order.

A consequence is that if X and X ′ are exchangeable,

corr(Xi, Xj) ≤ corr(X ′i, X ′j) =⇒ TV aR(S, p) ≤ TV aR(S′, p), for all p ∈ (0, 1).

See Muller & Stoyen (2002) for some possible extensions.

87

Page 88: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

The more correlated, the more risky ?

Consider• d lines of business,• simply a binomial distribution on each line of business, with small loss

probability (e.g. π = 1/1000).

Let

1 if there is a claim on line i

0 if not, and S = X1 + · · ·+Xd.

Will the correlation among the Xi’s increase the Value-at-Risk of S ?

Consider a probit model, i.e. Xi = 1(X?i ≤ ui), where X? ∼ N (0,Σ), i.e. a

Gaussian copula.

Assume that Σ = [σi,j ] where σi,j = ρ ∈ [−1, 1] when i 6= j.

88

Page 89: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

The more correlated, the more risky ?

Fig. 35 – 99.75% TVaR (or expected shortfall) for Gaussian copulas.

89

Page 90: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

The more correlated, the more risky ?

Fig. 36 – 99% TVaR (or expected shortfall) for Gaussian copulas.

90

Page 91: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

The more correlated, the more risky ?

What about other risk measures, e.g. Value-at-Risk ?

corr(Xi, Xj) ≤ corr(X ′i, X ′j) ; V aR(S, p) ≤ V aR(S′, p), for all p ∈ (0, 1).

(see e.g. Mittnik & Yener (2008)).

91

Page 92: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

The more correlated, the more risky ?

Fig. 37 – 99.75% VaR for Gaussian copulas.

92

Page 93: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

The more correlated, the more risky ?

Fig. 38 – 99% VaR for Gaussian copulas.

93

Page 94: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

The more correlated, the more risky ?

What could be the impact of tail dependence ?

Previously, we considered a Gaussian copula, i.e. tail independence. What if therewas tail dependence ?

Consider the case of a Student t-copula, with ν degrees of freedom.

94

Page 95: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

The more correlated, the more risky ?

Fig. 39 – 99.75% TVaR (or expected shortfall) for Student t-copulas.

95

Page 96: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

The more correlated, the more risky ?

Fig. 40 – 99% TVaR (or expected shortfall) for Student t-copulas.

96

Page 97: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

The more correlated, the more risky ?

Fig. 41 – 99.75% VaR for Student t-copulas.

97

Page 98: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

The more correlated, the more risky ?

Fig. 42 – 99% VaR for Student t-copulas.

98

Page 99: Slides essec

Arthur CHARPENTIER - Extremes and correlation in risk management

Conclusion

• (standard) correlation is definitively not an appropriate tool to describedependence features,◦ in order to fully describe dependence, use copulas,◦ since major focus in risk management is related to extremal event, focus on

tail dependence meausres,• which copula can be appropriate ?◦ Elliptical copulas offer a nice and simple parametrization, based on pairwise

comparison,◦ Archimedean copulas might be too restrictive, but possible to introduce

Hierarchical Archimedean copulas,• Value-at-Risk might yield to non-intuitive results,◦ need to get a better understanding about Value-at-Risk pitfalls,◦ need to consider alternative downside risk measures (namely TVaR).

99