Download - Simple Harmonic OscillatorSimple Harmonic Oscillator Quantum harmonic oscillator Eigenvalues and eigenfunctions The energy eigenfunctions and eigenvalues can be found by analytically

Transcript
  • Simple Harmonic OscillatorClassical harmonic oscillator

    Linear force acting on a particle (Hooke’s law):

    F = !kx

    F = ma = md2x

    dt2= !kx

    "d2x

    dt2+#

    2x = 0, # = k / m

    x(t) = x(0)cos(!t) +p(0)

    m!sin(!t)

    p(t) = mdx

    dt= p(0)cos !t( ) " m!x(0)sin(!t)

    From Newton’s law:

    Position and momentum solutions oscillate in time:

  • Simple Harmonic OscillatorClassical harmonic oscillator

    Classical Hamiltonian

    H = T +V

    T =p2

    2m

    F = !"V

    "x#V =

    1

    2kx

    2=1

    2m$

    2x2

    V(x)

    x

    H =p2

    2m+1

    2m!

    2x2

  • Simple Harmonic OscillatorQuantum harmonic oscillator

    Quantum Hamiltonian: replace x and p variables with operators

    H = T +V =p2

    2m+1

    2m!

    2x2

    Define a dimensionless operator

    a =m!

    2!x + i

    1

    2m!!p

    Then

    a†=

    m!2!

    x + i1

    2m!!p

    "

    #$%

    &'

    =m!2!

    x ( i1

    2m!!p

    Position, momentum operators obey the canonical commutation relation:

    [x, p] = i!

  • Simple Harmonic OscillatorQuantum harmonic oscillator

    Commutation relation:

    a,a†!" #$ =

    m%2!

    x + i1

    2m%!p

    &

    '()

    *+,

    m%2!

    x , i1

    2m%!p

    &

    '()

    *+!

    "--

    #

    $..

    =m%2![x, x]+

    i

    2![p, x],

    i

    2![x, p]+

    1

    2m%![p, p]

    =i

    2!(,i!) ,

    i

    2!(i!) = 1

    a,a†!" #$ = 1

    a†,a!" #$ = %1

  • Simple Harmonic OscillatorQuantum harmonic oscillator

    Number operator:

    Hence we can rewrite the Hamiltonian in terms of the number operator:

    N = a†a =

    m!2!

    x "i1

    2m!!p

    #

    $%&

    '(m!2!

    x + i1

    2m!!p

    #

    $%&

    '(

    =1

    !!p2

    2m+1

    2m! 2x2

    #$%

    &'("1

    2

    N = a†a =

    m!2!

    x " i1

    2m!!p

    #

    $%&

    '(m!2!

    x + i1

    2m!!p

    #

    $%&

    '(

    H =p2

    2m+1

    2m! 2x2 = !! a†a +

    1

    2

    #$%

    &'(

  • Simple Harmonic OscillatorQuantum harmonic oscillatorNumber operator:

    [N ,H ] = a†a,H!" #$ = !% a

    †a, a

    †a +

    1

    2

    &'(

    )*+

    !

    ",

    #

    $- = 0

    [N ,a] = a†a,a!" #$ = a

    †a,a[ ] + a†,a!" #$a = %a

    [N ,a†] = a

    †a,a

    †!" #$ = a†a,a

    †!" #$ + a†,a

    †!" #$a = a†

    N†= a

    †a( )

    = a†a†( )†

    = a†a = N

    Commutation relations

    [H ,a] = !! N +1 2,a[ ] = !! N ,a[ ] = "!!a

    [H ,a†] = !! N +1 2,a†#$ %& = !! N ,a

    †#$ %& = !!a†

  • Simple Harmonic OscillatorQuantum harmonic oscillator

    Eigenvalues and eigenfunctionsThe energy eigenfunctions and eigenvalues can be found by analyticallysolving the TISE. Here we will use operator algebra:

    Energy eigenvalue equation (TISE):

    H =p2

    2m+1

    2m! 2x2 = !! N +

    1

    2

    "#$

    %&'= !! a†a +

    1

    2

    "#$

    %&'

    H !n= E

    n!n

    Ha !n= aH " !#a( ) !

    n= E

    n" !#( )a !n

    Ha† !

    n= a

    †H + !#a†( ) !n = En + !#( )a

    † !n

    Notice that:

    The parentheses around ψ are standard (Dirac) notation for states that isindependent of x or p representation. More on this notation later.

  • Simple Harmonic OscillatorQuantum harmonic oscillator

    Eigenvalues and eigenfunctions

    The state is an energy eigenfunction with eigenvalue

    The state is an energy eigenfunction with eigenvalue

    H !n= E

    n!n

    Ha !n= E

    n" !#( )a !n

    Ha† !

    n= E

    n+ !#( )a† !n

    Hence a and a+ are called the raising and lowering (ladder) operatorssince they raise or lower the energy by a definite amount.

    a !n

    a† !

    n

    En! !"( )

    En+ !!( )

  • Simple Harmonic OscillatorQuantum harmonic oscillator

    Eigenvalues and eigenfunctions

    Consider the lowest eigenvalue of H (ground state energy):

    H !n= E

    n!n

    H !0= E

    0!0

    The lowering operator a cannot lower the energy of this eigenstate anyfurther. Hence,

    a !0= 0

    !!a†( )a "0 = !!N "0 = H #!!2

    $%&

    '()"0= E

    0#!!2

    $%&

    '()"0= 0

    E0=!!

    2

    Ground state energy:

  • Simple Harmonic OscillatorQuantum harmonic oscillator

    Eigenvalues and eigenfunctions

    H !n= E

    n!n

    H !0= E

    0!0

    We have seen that the states

    are energy eigenstates with energy .

    Thus starting with the lowest energy E0, the energy eigenvalues are

    E0,E

    0+ !! ,E

    0+ 2!! ,......

    En= E

    0+ n!! = n +

    1

    2

    "#$

    %&'!!

    E0=!!

    2

    a† !

    n

    En+ !!( )

  • Simple Harmonic OscillatorQuantum harmonic oscillator

    Eigenvalues and eigenfunctions

    A unique feature of the quantum harmonic oscillator is that the energyeigenvalues are equally spaced:

    En= n +

    1

    2

    !"#

    $%&!'

  • Simple Harmonic OscillatorQuantum harmonic oscillator

    !0(x) = N

    0e" x2 x

    c

    2

    N0

    2=

    m#

    $!, x

    c=

    2!

    m#

    Consider the ground state:

    !m"

    2!#0+!

    2m"

    $#0

    $x= 0

    Normalized solution:

    The lowering operator a cannot lower the energy of this eigenstate anyfurther. Hence,

    a !0= 0

  • Simple Harmonic OscillatorQuantum harmonic oscillator

    !0(x) = N

    0e" x2 x

    c

    2

    N0

    2=

    m#

    $!, x

    c=

    2!

    m#

    Now we can calculate the higher energy (excited) states:

    !1(x) = N

    1a†!0(x) = N

    1

    x

    xc

    "xc

    2

    ##x

    $

    %&'

    ()!0(x)

    !2(x) = N

    2a†( )2

    !0(x) = N

    2

    x

    xc

    "xc

    2

    ##x

    $

    %&'

    ()

    2

    !0(x)

    !n(x) = N

    na†( )

    n

    !0(x) = N

    n

    x

    xc

    "xc

    2

    ##x

    $

    %&'

    ()

    n

    !0(x)

  • Simple Harmonic OscillatorQuantum harmonic oscillator

    !0(x) = N

    0e" x2 x

    c

    2

    N0

    2=

    m#

    $!, x

    c=

    2!

    m#

    Now we can calculate the higher energy (excited) states:

    !n(x) =

    1

    2nn!H

    ny( )!0 (x)

    Normalized solutions:

    Hn(y): Hermite polynomials

    y =2x

    xc

  • Simple Harmonic OscillatorFirst few Hermite polynomials:

    H0(x) = 1, H

    1(x) = x, H

    2(x) = 4x

    2! 2

    There are many properties known about Hermite polynomials.See http://mathworld.wolfram.com/HermitePolynomial.html or yourfavourite mathematics book of special functions for more.

  • Simple Harmonic OscillatorQuantum harmonic oscillator

    Ground State Expectation values (verify this using the ladderoperators, a and a+. See Example 2.5 in the textbook)

    !p0= p

    2

    0" p

    2

    =m#!

    2

    !x0= x

    2

    0" x

    2

    =!

    2m#

    !x0!p

    0=!

    2

    The ground state is a minimum uncertainty state.Recall that such a state must be Gaussian.