Download - S uper WIMP Dark matter

Transcript
Page 1: S uper WIMP  Dark matter

SuperWIMP Dark matterSuperWIMP Dark matter

Shufang Su • U. of ArizonaShufang Su • U. of ArizonaShufang Su • U. of ArizonaShufang Su • U. of Arizona

J. Feng, F. Takayama, S. Suhep-ph/0404198, 0404231

in SUSY with a Gravitino LSP in SUSY with a Gravitino LSP

Page 2: S uper WIMP  Dark matter

S. Su SWIMP 2

Why gravitino not considered as CDM usually?

Why gravitino not considered as CDM usually?

ththGG vv-1-1 ( (gravitional gravitional coupling)coupling)-2 -2

(comparig to WIMP of (comparig to WIMP of weakweak coupling strength) coupling strength)

● vv too smalltoo small

● ththGG too big, overclose the Universe too big, overclose the Universe

~~

~~

However, gravitino can get relic density by other However, gravitino can get relic density by other meansmeans

SuperWIMPSuperWIMP

Page 3: S uper WIMP  Dark matter

S. Su SWIMP 3

WIMPWIMP

SWIMPSWIMPSMSM

101066

WIMP SWIMP + SM particle WIMP SWIMP + SM particle

FRT hep-ph/0302215, 0306024

101044 s s t t 10 1088 s s

Gravitino LSPGravitino LSP

LKK gravitonLKK graviton

Page 4: S uper WIMP  Dark matter

S. Su SWIMP 4

Outline Outline

SWIMP dark matter and SWIMP dark matter and gravitino LSPgravitino LSP

ConstraintsConstraints- Late time energy injection and BBNLate time energy injection and BBN

NLSPNLSP gravitino +SM particle gravitino +SM particle slepton, sneutrino, neutralinoslepton, sneutrino, neutralino

- approach I: - approach I: fix fix SWIMPSWIMP=0.23=0.23

- approach II: - approach II: SWIMPSWIMP=(m=(mSWIMPSWIMP/m/mNLSPNLSP) ) ththNLSPNLSP

Collider phenomenologyCollider phenomenology

ConclusionConclusion

Page 5: S uper WIMP  Dark matter

S. Su SWIMP 5

SWIMP and SUSY WIMP SWIMP and SUSY WIMP

SUSY caseSUSY case

NLSP NLSP G + SM particles G + SM particles~~

SWIMP: G (LSP) WIMP: NLSP SWIMP: G (LSP) WIMP: NLSP mmGG »» m mNLSPNLSP~~

nneutralino/eutralino/cchargino hargino NLSPNLSP

ssleptonlepton/sneutrino/sneutrino NLSP NLSP

BBBBNN

EMEM

hahadd

BrBrhadhad O(0.01) O(0.01) BrBrhadhad O(10 O(10-3-3))

101044 s s t t 10 1088 s s

Ellis et. al., hep-ph/0312262; Wang and Yang, hep-ph/0405186.

~~

Page 6: S uper WIMP  Dark matter

S. Su SWIMP 6

Constraints Constraints

NLSP NLSP G + SM particles G + SM particles~~

Dark matter density Dark matter density GG ·· 0.23 0.23~~

CMB photon energy distributionCMB photon energy distribution

||| | ·· 9 9 ££ 10 10-5-5 Fixsen et. al., astro-ph/9605054Hagiwara et. al., PDG

Big bang nucleosynthesisBig bang nucleosynthesis

LLate time EM/had injection could ate time EM/had injection could change the BBN change the BBN pprediction of rediction of light elements abundanceslight elements abundances

10-10 = 6.1 0.4

Fields, Sarkar, PDG (2002)

Page 7: S uper WIMP  Dark matter

S. Su SWIMP 7

BBN constraints on EM/had injection BBN constraints on EM/had injection

EM,hadEM,had==EM,hadEM,had Br BrEM,hadEM,had YYNLSPNLSP

Decay lifetime Decay lifetime NLSPNLSP

EM/had energy releaseEM/had energy release

» » mmNLSPNLSP-m-mGG

Cyburt, Ellis, Fields and Olive, PRD 67, 103521 (2003)

EMEM

EM

(G

eV)

Kawasaki, Kohri and Moroi, astro-ph/0402490

hadhad

had

(G

eV)

EMEM

Page 8: S uper WIMP  Dark matter

S. Su SWIMP 8

YNLSP: approach I YNLSP: approach I

slepton and sneutrinoslepton and sneutrino approach I:approach I: fix fix GG = = 0.230.23

~~

apply CMB and BBN constraints on (apply CMB and BBN constraints on (NLSPNLSP, , EM/hadEM/had ))

viable parameter spaceviable parameter space

NLSPNLSP, , EM,hadEM,had==EM,hadEM,had B BEM,hadEM,had Y YNLSPNLSP

m m ·· 80 80 »» 300 GeV 300 GeV200 GeV 200 GeV ·· m m ·· 400 400 »» 1500 GeV 1500 GeVmmGG ¸̧ 200 GeV 200 GeV~~

Page 9: S uper WIMP  Dark matter

S. Su SWIMP 9

Approach II: right-handed slepton Approach II: right-handed slepton

G G = (m= (mGG/m/mNLSPNLSP) ) ththNLSPNLSP~~ ~~

Page 10: S uper WIMP  Dark matter

S. Su SWIMP 10

Approach II: sneutrino Approach II: sneutrino

G G = (m= (mGG/m/mNLSPNLSP) ) ththNLSPNLSP~~ ~~

Page 11: S uper WIMP  Dark matter

S. Su SWIMP 11

Collider Phenomenology Collider Phenomenology

SWIMP Dark MatterSWIMP Dark Matter

no signals in direct / indirect dark matter searchesno signals in direct / indirect dark matter searches

SUSY NLSP:SUSY NLSP: rich collider phenomenologyrich collider phenomenology

NLSPNLSP in SWIMP in SWIMP: : long lifetime long lifetime stable inside the detectorstable inside the detector

Charged slepton Charged slepton highly ionizing track, almost background freehighly ionizing track, almost background free

Distinguish from stau NLSP and gravitino LSP in GMSBDistinguish from stau NLSP and gravitino LSP in GMSB

GMSB: gravitino GMSB: gravitino m m »» keV keV warm not cold DMwarm not cold DM

collider searches: collider searches: other sparticle (mass)other sparticle (mass)

(GMSB) (GMSB) ¿¿ (SWIMP): (SWIMP): distinguish experimentallydistinguish experimentally Feng, Murayama and Smith, in preparation.

Page 12: S uper WIMP  Dark matter

S. Su SWIMP 12

Sneutrino and neutralino NLSP Sneutrino and neutralino NLSP

ssneutrino neutrino and neutralino and neutralino NLSP NLSP missing energymissing energy

ssignal: energetic jets/leptons + missing energyignal: energetic jets/leptons + missing energy

angular distribution of events angular distribution of events (LC)(LC)

Does it decay into gravitino or not?Does it decay into gravitino or not?

sneutrino case: sneutrino case: most likely gravitino is LSPmost likely gravitino is LSP

neutralino case: neutralino case: most likely neutralino LSPmost likely neutralino LSP

vs.vs.

Is Is the lightest SM superpartner sneutrino or neutralino?the lightest SM superpartner sneutrino or neutralino?

direct/indirect dark matter searchdirect/indirect dark matter search positive detection positive detection disfavor gravitino LSP disfavor gravitino LSP

precision determination of SUSY parameter: precision determination of SUSY parameter: thth,,

,, 0.23 0.23 favor gravitino LSP favor gravitino LSP

Page 13: S uper WIMP  Dark matter

S. Su SWIMP 13

ConclusionsConclusions

SSuperuperWIMP is possible candidate for dark matterWIMP is possible candidate for dark matter

SUSY models SUSY models

SWIMP:SWIMP: gravitinogravitino LSP LSP WIMP:WIMP: sleptonslepton/sneutrino//sneutrino/neutralinoneutralino

Constraints from BBN: EM injection and Constraints from BBN: EM injection and hadronichadronic injection injection

need updated studies of BBN constraints on hadronic/EM injectionneed updated studies of BBN constraints on hadronic/EM injection

• Favored mass regionFavored mass region Approach I: Approach I: fix fix GG=0.23=0.23

Approach II: Approach II: G G = (m= (mGG/m/mNLSPNLSP) ) ththNLSPNLSP

• Rich collider phenomenologyRich collider phenomenology (no direct/indirect DM signal)(no direct/indirect DM signal) ccharged slepton:harged slepton: highly ionizing trackhighly ionizing track

distinguish from GMSBdistinguish from GMSB

ssneutrinoneutrino/neutralino/neutralino:: missing energymissing energy

stable or not?stable or not?

~~

~~

~~

Page 14: S uper WIMP  Dark matter

S. Su SWIMP 14

NLSPNLSP

~~GG

NLSPNLSPSMSM

~~GG

NLSPNLSPSMSM

~~GG

NLSPNLSPSMSM

~~GG

NLSPNLSPSMSM

~~GG

SMSM

● Decay life time Decay life time MMplpl

● SM energy distributionSM energy distribution

mmGG

SUSY breaking scaleSUSY breaking scale

~~