Download - Recommender Systems, Part 1 - Introduction to approaches and algorithms

Transcript
Page 1: Recommender Systems, Part 1 - Introduction to approaches and algorithms

Recommender  Systems    

Ramzi  Alqrainy    Search  Guru  

[email protected]  

- 1 -  

Page 2: Recommender Systems, Part 1 - Introduction to approaches and algorithms

-  

Page 3: Recommender Systems, Part 1 - Introduction to approaches and algorithms

Recommender  Systems    

♣    Applica;on  areas    

- 3 -  

Page 4: Recommender Systems, Part 1 - Introduction to approaches and algorithms

In  the  Social  Web    

- 4 -  

Page 5: Recommender Systems, Part 1 - Introduction to approaches and algorithms

Even  more  …    

♣    Personalized  search    

♣    "Computa;onal  adver;sing"    

- 5 -  

Page 6: Recommender Systems, Part 1 - Introduction to approaches and algorithms

About  the  speaker    

♣    Ramzi  Alqrainy    -­‐  Ramzi  is  one  of  the  well  recognized  experts  within  Ar8ficial  Intelligence  and  

 Informa8on  Retrieval  fields  in  Middle  East.  Ac8ve  researcher  and  technology  blogger    

with  the  focus  on  informa8on  retrieval.  

- 6 -  

Page 7: Recommender Systems, Part 1 - Introduction to approaches and algorithms

Agenda    ♣    What  are  recommender  systems  for?     -­‐  Introduc8on  

 ♣    How  do  they  work  (Part  I)  ?     -­‐  Collabora8ve  Filtering  

 ♣    How  to  measure  their  success?     -­‐  Evalua8on  techniques  

 ♣    How  do  they  work  (Part  II)  ?     -­‐  Content-­‐based  Filtering  

 -­‐  Knowledge-­‐Based  Recommenda8ons    -­‐  Hybridiza8on  Strategies    

♣    Advanced  topics     -­‐  Explana8ons  

 -­‐  Human  decision  making    

- 7 -  

Page 8: Recommender Systems, Part 1 - Introduction to approaches and algorithms

-  

Page 9: Recommender Systems, Part 1 - Introduction to approaches and algorithms

Why  using  Recommender  Systems?    ♣    Value  for  the  customer     -­‐  Find  things  that  are  interes8ng  

 -­‐  Narrow  down  the  set  of  choices    -­‐  Help  me  explore  the  space  of  op8ons    -­‐  Discover  new  things    -­‐  Entertainment    -­‐    

…    

♣    Value  for  the  provider     -­‐  Addi8onal  and  probably  unique  personalized  service  for  the  customer  

 -­‐  Increase  trust  and  customer  loyalty    -­‐  Increase  sales,  click  trough  rates,  conversion  etc.    -­‐  Opportuni8es  for  promo8on,  persuasion    -­‐  Obtain  more  knowledge  about  customers    -­‐    

…    

- 9 -  

Page 10: Recommender Systems, Part 1 - Introduction to approaches and algorithms

Real-­‐world  check    

♣    Myths  from  industry     -­‐  Amazon.com  generates  X  percent  of  their  sales  through  the  recommenda8on

 lists  (30  <  X  <  70)    -­‐  NeVlix  (DVD  rental  and  movie  streaming)  generates  X  percent  of  their  sales  through  the  recommenda8on  lists  (30  <  X  <  70)  

 ♣    There  must  be  some  value  in  it     -­‐  See  recommenda8on  of  groups,  jobs  or  people  on  LinkedIn  

 -­‐  Friend  recommenda8on  and  ad  personaliza8on  on  Facebook    -­‐  Song  recommenda8on  at  last.fm    -­‐  News  recommenda8on  at  Forbes.com  (plus  37%  CTR)

♣    Academia  

  -­‐  A  few  studies  exist  that  show  the  effect     ♣  increased  sales,  changes  in  sales  behavior  

 - 10 -  

Page 11: Recommender Systems, Part 1 - Introduction to approaches and algorithms

Problem  domain    

♣    Recommenda;on  systems  (RS)  help  to  match  users  with  items     -­‐  Ease  informa8on  overload  

 -­‐  Sales  assistance  (guidance,  advisory,  persuasion,…)    

RS  are  so)ware  agents  that  elicit  the  interests  and  preferences  of  individual consumers  […]  and  make  recommenda<ons  accordingly.    They  have  the  poten<al  to  support  and  improve  the  quality  of  the    decisions  consumers  make  while  searching  for  and  selec<ng  products  online.     »  [Xiao  &  Benbasat,  MISQ, 2007]

 

♣    Different  system  designs  /  paradigms     -­‐  Based  on  availability  of  exploitable  data  

 -­‐  Implicit  and  explicit  user  feedback    -­‐  Domain  characteris8cs    

- 11 -  

Page 12: Recommender Systems, Part 1 - Introduction to approaches and algorithms

Recommender  systems    

♣    RS  seen  as  a  func;on  [AT05]

♣    Given:  

  -­‐  User  model  (e.g.  ra8ngs,  preferences,  demographics,  situa8onal  context)    -­‐  Items  (with  or  without  descrip8on  of  item  characteris8cs)

♣    Find:  

 -­‐  Relevance  score.  Used  for  ranking.

♣    Finally:  

  -­‐  Recommend  items  that  are  assumed  to  be  relevant

♣    But:  

  -­‐  Remember  that  relevance  might  be  context-­‐dependent    -­‐  Characteris8cs  of  the  list  itself  might  be  important  (diversity)    

- 12 -  

Page 13: Recommender Systems, Part 1 - Introduction to approaches and algorithms

Paradigms  of  recommender  systems    

Recommender  systems  reduce    informa;on  overload  by  es;ma;ng relevance    

- 13 -  

Page 14: Recommender Systems, Part 1 - Introduction to approaches and algorithms

Paradigms  of  recommender  systems    

Personalized  recommenda;ons    

- 14 -  

Page 15: Recommender Systems, Part 1 - Introduction to approaches and algorithms

Paradigms  of  recommender  systems    

Collabora;ve:  "Tell  me  what's  popular among  my  peers"    

- 15 -  

Page 16: Recommender Systems, Part 1 - Introduction to approaches and algorithms

Paradigms  of  recommender  systems    

Content-­‐based:  "Show  me  more  of  the same  what  I've  liked"  

- 16 -  

Page 17: Recommender Systems, Part 1 - Introduction to approaches and algorithms

Paradigms  of  recommender  systems    

Knowledge-­‐based:  "Tell  me  what  fits based  on  my  needs"    

- 17 -  

Page 18: Recommender Systems, Part 1 - Introduction to approaches and algorithms

Paradigms  of  recommender  systems    

Hybrid:  combina;ons  of  various  inputs and/or  composi;on  of  different mechanism    

- 18 -  

Page 19: Recommender Systems, Part 1 - Introduction to approaches and algorithms

Recommender  systems:  basic  techniques    

Pros    

Cons    Collabora8ve  

 No  knowledge-­‐    

Requires  some  form  of  ra8ng    engineering  effort,  

 feedback,  cold  start  for  new  users    serendipity  of  results,  

 and  new  items    learns  market  segments  

 Content-­‐based    

No  community  required,    

Content  descrip8ons  necessary,    comparison  between  

 cold  start  for  new  users,  no    items  possible  

 surprises    

Knowledge-­‐based    

Determinis8c    recommenda8ons, assured  quality,  no  cold-­‐ start,  can  resemble  sales dialogue    

Knowledge  engineering  effort  to bootstrap,  basically  sta8c,  does not  react  to  short-­‐term  trends    

- 19 -  

Page 20: Recommender Systems, Part 1 - Introduction to approaches and algorithms

- 20 -  

Page 21: Recommender Systems, Part 1 - Introduction to approaches and algorithms

Collabora;ve  Filtering  (CF)    

♣    The  most  prominent  approach  to  generate  recommenda;ons     -­‐  used  by  large,  commercial  e-­‐commerce  sites  

 -­‐  well-­‐understood,  various  algorithms  and  varia8ons  exist    -­‐  applicable  in  many  domains  (book,  movies,  DVDs,  ..)

♣    Approach  

  -­‐  use  the  "wisdom  of  the  crowd"  to  recommend  items

♣    Basic  assump;on  and  idea  

  -­‐  Users  give  ra8ngs  to  catalog  items  (implicitly  or  explicitly)    -­‐  Customers  who  had  similar  tastes  in  the  past,  will  have  similar  tastes  in  the  future  

 

- 21 -  

Page 22: Recommender Systems, Part 1 - Introduction to approaches and algorithms

User-­‐based  nearest-­‐neighbor  collabora;ve  filtering  (1)    

♣  The  basic  technique:     -­‐  Given  an  "ac8ve  user"  (Alice)  and  an  item  I  not  yet  seen  by  Alice  

 -­‐  The  goal  is  to  es<mate  Alice's  ra<ng  for  this  item,  e.g.,  by     ♣  find  a  set  of  users  (peers)  who  liked  the  same  items  as  Alice  in  the  past  and

 who  have  rated  item  I    ♣  use,  e.g.  the  average  of  their  ra8ngs  to  predict,  if  Alice  will  like  item  I ♣  do  this  for  all  items  Alice  has  not  seen  and  recommend  the  best-­‐rated    

Item1    

Item2    

Item3    

Item4    

Item5    Alice  

 5    

3    

4    

4    

?    User1  

 3    

1    

2    

3    

3    

User2    

4    

3    

4    

3    

5    

User3    

3    

3    

1    

5    

4    

User4    

1    

5    

5    

2    

1     - 24 -

 

Page 23: Recommender Systems, Part 1 - Introduction to approaches and algorithms

User-­‐based  nearest-­‐neighbor  collabora;ve  filtering  (2)    

♣    Some  first  ques;ons     -­‐  How  do  we  measure  similarity?  

 -­‐  How  many  neighbors  should  we  consider?    -­‐  How  do  we  generate  a  predic8on  from  the  neighbors'  ra8ngs?    

Item1    

Item2    

Item3    

Item4    

Item5    

Alice    

5    

3    

4    

4    

?    User1  

 3    

1    

2    

3    

3    

User2    

4    

3    

4    

3    

5    

User3    

3    

3    

1    

5    

4    

User4    

1    

5    

5    

2    

1    

- 25 -  

Page 24: Recommender Systems, Part 1 - Introduction to approaches and algorithms

Measuring  user  similarity    

♣    A  popular  similarity  measure  in  user-­‐based  CF:  Pearson  correla;on    

a,  b    :  users    ra,p    

:  ra8ng  of  user  a  for  item  p    P  

 :  set  of  items,  rated  both  by  a  and  b    Possible  similarity  values  between  -­‐1  and  1;  

 ͿԨԩԪԫԬԭԮԯՠֈ֍֎ࢽࢼࢻࢺࢹࢸࢷࢶࢴࢳࢲࢱࢰࢯࢮࢭࢡࡪࡩࡨࡧࡦࡥࡤࡣࡢࡡࡠ߿߾ׯॸঀৼ৽ͿԨԩԪԫԬԭԮԯՠֈ֍֎ࢽࢼࢻࢺࢹࢸࢷࢶࢴࢳࢲࢱࢰࢯࢮࢭࢡࡪࡩࡨࡧࡦࡥࡤࡣࡢࡡࡠ߿߾ׯॸঀৼ৽, ͿԨԩԪԫԬԭԮԯՠֈ֍֎ࢽࢼࢻࢺࢹࢸࢷࢶࢴࢳࢲࢱࢰࢯࢮࢭࢡࡪࡩࡨࡧࡦࡥࡤࡣࡢࡡࡠ߿߾ׯॸঀৼ৽ͿԨԩԪԫԬԭԮԯՠֈ֍֎ࢽࢼࢻࢺࢹࢸࢷࢶࢴࢳࢲࢱࢰࢯࢮࢭࢡࡪࡩࡨࡧࡦࡥࡤࡣࡢࡡࡠ߿߾ׯॸঀৼ৽

=  user's  average  ra8ngs    

Item1    

Alice  5    User1  3    

Item2  Item3    3  4    1  2    

Item4  Item5    4  ?    3  3    

sim  =  0,85 sim  =  0,70     sim  =  -­‐0,79    User2  

 4    

3    

4    

3    

5    

User3    

3    

3    

1    

5    

4    

User4    

1    

5    

5    

2    

1    

- 26 -  

Page 25: Recommender Systems, Part 1 - Introduction to approaches and algorithms

Pearson  correla;on    

♣    Takes  differences  in  ra;ng  behavior  into  account    

6  

5  

4  

Ratings   3

 

2  

1  

0   Item1 Item2

 

Alice  

User1  

User4  

Item3 Item4  

♣    Works  well  in  usual  domains,  compared  with  alterna;ve  measures     -­‐  such  as  cosine  similarity  

 - 27 -  

Page 26: Recommender Systems, Part 1 - Introduction to approaches and algorithms

Making  predic;ons    

♣    A  common  predic8on  func8on:    

♣    Calculate,  whether  the  neighbors'  ra8ngs  for  the  unseen  item  i  are  higher  or  lower  than  their  average  

 ♣    Combine  the  ra8ng  differences  -­‐  use  the  similarity  as  a  weight    ♣    Add/subtract  the    neighbors'  bias  from  the  ac8ve  user's  average  and  use

 this  as  a  predic8on    

- 28 -  

Page 27: Recommender Systems, Part 1 - Introduction to approaches and algorithms

Making  recommenda;ons    

♣    Making  predic;ons  is  typically  not  the  ul;mate  goal

♣    Usual  approach  (in  academia)  

  -­‐  Rank  items  based  on  their  predicted  ra8ngs

♣    However  

  -­‐  This  might  lead  to  the  inclusion  of  (only)  niche  items    -­‐  In  prac;ce  also:  Take  item  popularity  into  account

♣    Approaches  

  -­‐  "Learning  to  rank"     ♣  Op8mize  according  to  a  given  rank  evalua8on  metric  (see  later)  

 

- 29 -  

Page 28: Recommender Systems, Part 1 - Introduction to approaches and algorithms

Improving  the  metrics    /  predic;on  func;on    

♣    Not  all  neighbor  ra;ngs  might  be  equally  "valuable"     -­‐  Agreement  on  commonly  liked  items  is  not  so  informa8ve  as  agreement  on

 controversial  items    -­‐  Possible  solu;on:    Give  more  weight  to  items  that  have  a  higher  variance

♣    Value  of  number  of  co-­‐rated  items  

  -­‐  Use  "significance  weigh8ng",  by  e.g.,  linearly  reducing  the  weight  when  the  number  of  co-­‐rated  items  is  low  

 ♣    Case  amplifica;on     -­‐  Intui8on:  Give  more  weight  to  "very  similar"  neighbors,  i.e.,  where  the

 similarity  value  is  close  to  1.    

♣    Neighborhood  selec;on     -­‐  Use  similarity  threshold  or  fixed  number  of  neighbors  

 

- 30 -  

Page 29: Recommender Systems, Part 1 - Introduction to approaches and algorithms

Memory-­‐based  and  model-­‐based  approaches    

♣    User-­‐based  CF  is  said  to  be  "memory-­‐based"     -­‐  the  ra8ng  matrix  is  directly  used  to  find  neighbors  /  make  predic8ons  

 -­‐  does  not  scale  for  most  real-­‐world  scenarios    -­‐  large  e-­‐commerce  sites  have  tens  of  millions  of  customers  and  millions  of  items  

 ♣    Model-­‐based  approaches     -­‐  based  on  an  offline  pre-­‐processing  or  "model-­‐learning"  phase  

 -­‐  at  run-­‐8me,  only  the  learned  model  is  used  to  make  predic8ons    -­‐  models  are  updated  /  re-­‐trained  periodically    -­‐  large  variety  of  techniques  used    -­‐  model-­‐building  and  upda8ng  can  be  computa8onally  expensive    

- 31 -  

Page 30: Recommender Systems, Part 1 - Introduction to approaches and algorithms

Item-­‐based  collabora;ve  filtering    

♣    Basic  idea:     -­‐  Use  the  similarity  between  items  (and  not  users)  to  make  predic8ons

♣    Example:  

  -­‐  Look  for  items  that  are  similar  to  Item5    -­‐  Take  Alice's  ra8ngs  for  these  items  to  predict  the  ra8ng  for  Item5    

Item1    

Item2    

Item3    

Item4    

Item5    

Alice    

5    

3    

4    

4    

?    User1  

 3    

1    

2    

3    

3    

User2    

4    

3    

4    

3    

5    

User3    

3    

3    

1    

5    

4    

User4    

1    

5    

5    

2    

1    

- 33 -  

Page 31: Recommender Systems, Part 1 - Introduction to approaches and algorithms

The  cosine  similarity  measure    

♣    Produces  beber  results  in  item-­‐to-­‐item  filtering     -­‐  for  some  datasets,  no  consistent  picture  in  literature  

 ♣    Ra;ngs  are  seen  as  vector  in  n-­‐dimensional  space    ♣    Similarity  is  calculated  based  on  the  angle  between  the  vectors    

♣    Adjusted  cosine  similarity     -­‐  take  average  user  ra8ngs  into  account,  transform  the  original  ra8ngs  

 

- 34 -  

Page 32: Recommender Systems, Part 1 - Introduction to approaches and algorithms

Pre-­‐processing  for  item-­‐based  filtering    

♣    Item-­‐based  filtering  does  not  solve  the  scalability  problem  itself

♣    Pre-­‐processing  approach  by  Amazon.com  (in  2003)  

  -­‐  Calculate  all  pair-­‐wise  item  similari8es  in  advance    -­‐  The  neighborhood  to  be  used  at  run-­‐8me  is  typically  rather  small,  because  only  items  are  taken  into  account  which  the  user  has  rated  

 -­‐  Item  similari8es  are  supposed  to  be  more  stable  than  user  similari8es

♣    Memory  requirements  

  -­‐  Up  to  N2  pair-­‐wise  similari8es  to  be  memorized  (N  =  number  of  items)  in  theory  

 -­‐  In  prac8ce,  this  is  significantly  lower  (items  with  no  co-­‐ra8ngs)    -­‐  Further  reduc8ons  possible     ♣  Minimum  threshold  for  co-­‐ra8ngs  (items,  which  are  rated  at  least  by  n  users)

♣  Limit  the  size  of  the  neighborhood  (might  affect  recommenda8on  accuracy)    

- 35 -  

Page 33: Recommender Systems, Part 1 - Introduction to approaches and algorithms

More  on  ra;ngs    

♣    Pure  CF-­‐based  systems  only  rely  on  the  ra;ng  matrix

♣    Explicit  ra;ngs  

  -­‐  Most  commonly  used  (1  to  5,  1  to  7  Likert  response  scales)    -­‐  Research  topics     ♣  "Op8mal"  granularity  of  scale;  indica8on  that  10-­‐point  scale  is  berer  accepted  in

 movie  domain    ♣  Mul8dimensional  ra8ngs  (mul8ple  ra8ngs  per  movie)    -­‐  Challenge  

  ♣  Users  not  always  willing  to  rate  many  items;  sparse  ra8ng  matrices ♣  How  to  s8mulate  users  to  rate  more  items?    ♣    Implicit  ra;ngs  

  -­‐  clicks,  page  views,  8me  spent  on  some  page,  demo  downloads  …    -­‐  Can  be  used  in  addi8on  to  explicit  ones;  ques8on  of  correctness  of  interpreta8on    

- 36 -  

Page 34: Recommender Systems, Part 1 - Introduction to approaches and algorithms

Data  sparsity  problems    

♣    Cold  start  problem     -­‐  How  to  recommend  new  items?  What  to  recommend  to  new  users?

♣    Straigheorward  approaches  

  -­‐  Ask/force  users  to  rate  a  set  of  items    -­‐  Use  another  method  (e.g.,  content-­‐based,  demographic  or  simply  non-­‐  personalized)  in  the  ini8al  phase  

 ♣    Alterna;ves     -­‐  Use  berer  algorithms  (beyond  nearest-­‐neighbor  approaches)  

 -­‐  Example:     ♣  In  nearest-­‐neighbor  approaches,  the  set  of  sufficiently  similar  neighbors  might

 be  to  small  to  make  good  predic8ons    ♣  Assume  "transi8vity"  of  neighborhoods    

- 37 -  

Page 35: Recommender Systems, Part 1 - Introduction to approaches and algorithms

Example  algorithms  for  sparse  datasets    

♣    Recursive  CF     -­‐  Assume  there  is  a  very  close  neighbor  n  of  u  who  however  has  not  rated  the

 target  item  i  yet.    -­‐  Idea:     ♣  Apply  CF-­‐method  recursively  and  predict  a  ra8ng  for  item  i  for  the  neighbor

♣  Use  this  predicted  ra8ng  instead  of  the  ra8ng  of  a  more  distant  direct  neighbor  

 Item1    

Item2    

Item3    

Item4    

Item5    

Alice    

5    

3    

4    

4    

?     sim  =  0,85  

 User1    

3    

1    

2    

3    

?    

User2  4  3    

4  3  5     Predict  

 User3  3  3    User4  1  5    

1  5  4  ra8ng  for     User1  

 5  2  1     - 38 -

 

Page 36: Recommender Systems, Part 1 - Introduction to approaches and algorithms

Graph-­‐based  methods    

♣    "Spreading  ac;va;on"  (sketch)     -­‐  Idea:  Use  paths  of  lengths  >  3

 to  recommend  items    -­‐  Length  3:  Recommend  Item3  to  User1    -­‐  Length  5:  Item1  also  recommendable    

- 39 -  

Page 37: Recommender Systems, Part 1 - Introduction to approaches and algorithms

More  model-­‐based  approaches    

♣    Plethora  of  different  techniques  proposed  in  the  last  years,  e.g.,     -­‐  Matrix  factoriza8on  techniques,  sta8s8cs  

  ♣  singular  value  decomposi8on,  principal  component  analysis    -­‐  Associa8on  rule  mining  

  ♣  compare:  shopping  basket  analysis    -­‐  Probabilis8c  models  

  ♣  clustering  models,  Bayesian  networks,  probabilis8c  Latent  Seman8c  Analysis    -­‐  Various  other  machine  learning  approaches  

 ♣    Costs  of  pre-­‐processing     -­‐  Usually  not  discussed  

 -­‐  Incremental  updates  possible?    

- 40 -  

Page 38: Recommender Systems, Part 1 - Introduction to approaches and algorithms

Matrix  factoriza;on    

•    SVD:    

Uk  Dim1    

Alice  0.47    

M  

k  

Dim2    -­‐0.30    

T  =U×Σ×V

  k k k  

T    

Vk    Dim1    

-­‐0.44  -­‐0.57  0.06  0.38  0.57    Bob  -­‐0.44  0.23  

 Dim2  0.58  -­‐0.66    

0.26  0.18  -­‐0.36    Mary  0.70  -­‐0.06  

 Sue  0.31  0.93    

Σ  Dim1  Dim2  

 k  

•    Predic;on:    

r  

ui  =  

r +U (Alice)×Σ  u k  

T  ×V (EPL)

 k k  

Dim1  5.63  0    Dim2  0  3.23    

=  3  +  0.84  =  3.84    

- 43 -  

Page 39: Recommender Systems, Part 1 - Introduction to approaches and algorithms

Associa;on  rule  mining    

♣    Commonly  used  for  shopping  behavior  analysis     -­‐  aims  at  detec8on  of  rules  such  as  

  "If  a  customer  purchases  baby-­‐food  then  he  also  buys  diapers in  70%  of  the  cases"    

♣    Associa;on  rule  mining  algorithms     -­‐  can  detect  rules  of  the  form  X  =>  Y  (e.g.,  baby-­‐food  =>  diapers)  from  a  set  of

 sales  transac8ons  D  =  {t1,  t2,  …  tn}    -­‐  measure  of  quality:  support,  confidence    

- 44 -  

Page 40: Recommender Systems, Part 1 - Introduction to approaches and algorithms

Probabilis;c  methods    

♣    Basic  idea  (simplis;c  version  for  illustra;on):     -­‐  given  the  user/item  ra8ng  matrix  

 -­‐  determine  the  probability  that  user  Alice  will  like  an  item  i    -­‐  base  the  recommenda8on  on  such  these  probabili8es    

♣    Calcula;on  of  ra;ng  probabili;es  based  on  Bayes  Theorem     -­‐  How  probable  is  ra8ng  value  "1"  for  Item5  given  Alice's  previous  ra8ngs?  

 -­‐  Corresponds  to  condi8onal  probability  P(Item5=1  |  X),  where ♣  X  =  Alice's  previous  ra8ngs  =  (Item1  =1,  Item2=3,  Item3=  …  )  

 -­‐  Can  be  es8mated  based  on  Bayes'  Theorem

♣    Usually  more  sophis;cated  methods  used  

  -­‐  Clustering    -­‐  pLSA  …    

- 45 -  

Page 41: Recommender Systems, Part 1 - Introduction to approaches and algorithms

Summarizing  recent  methods    

♣    Recommenda;on  is  concerned  with  learning  from  noisy  observa;ons     (x,  y),  where  

  f(x)=ŷ  

2  

has  to  be  determined  such    that is  minimal.    

∑   ˆ  

( ˆ -y)  

♣    A  variety  of  different  learning  strategies  have  been  applied  trying  to  es;mate  f(x)  

  -­‐  Non  parametric  neighborhood  models    -­‐  MF  models,  SVMs,  Neural  Networks,  Bayesian  Networks,…    

- 48 -  

Page 42: Recommender Systems, Part 1 - Introduction to approaches and algorithms

Collabora;ve  Filtering  Issues    

♣    Pros:     -­‐    well-­‐understood,  works  well  in  some  domains,  no  knowledge  engineering  required  

 ♣    Cons:     -­‐    requires  user  community,  sparsity  problems,  no  integra8on  of  other  knowledge  sources,

 no  explana8on  of  results    

♣    What  is  the  best  CF  method?     -­‐    In  which  situa8on  and  which  domain?  Inconsistent  findings;  always  the  same  domains

 and  data  sets;  differences  between  methods  are  o|en  very  small  (1/100)    

♣    How  to  evaluate  the  predic;on  quality?     -­‐    MAE  /  RMSE:  What  does  an  MAE  of  0.7  actually  mean?  

 -­‐    Serendipity:  Not  yet  fully  understood    

♣    What  about  mul;-­‐dimensional  ra;ngs?    

- 49 -  

Page 43: Recommender Systems, Part 1 - Introduction to approaches and algorithms

- 50 -  

Page 44: Recommender Systems, Part 1 - Introduction to approaches and algorithms

Recommender  Systems  in  e-­‐Commerce    

♣    One  Recommender  Systems  research  ques;on     -­‐  What  should  be  in  that  list?  

 

- 51 -  

Page 45: Recommender Systems, Part 1 - Introduction to approaches and algorithms

Recommender  Systems  in  e-­‐Commerce    

♣    Another  ques;on  both  in  research  and  prac;ce     -­‐  How  do  we  know  that  these  are  good  

  recommenda8ons?    

- 52 -  

Page 46: Recommender Systems, Part 1 - Introduction to approaches and algorithms

Recommender  Systems  in  e-­‐Commerce    

♣    This  might  lead  to  …     -­‐    What  is  a  good  recommenda8on?  

 -­‐    What  is  a  good  recommenda8on  strategy?    -­‐    What  is  a  good  recommenda8on  strategy  for  my

 business?    

These have been in stock for quite a while now …  

- 53 -  

Page 47: Recommender Systems, Part 1 - Introduction to approaches and algorithms

What  is  a  good  recommenda;on?    What  are  the  measures  in  prac;ce?    ♣    Total  sales  numbers    ♣    Promo;on  of  certain  items    ♣

…    

♣    Click-­‐through-­‐rates    ♣    Interac;vity  on  plaeorm    ♣

…    

♣    Customer  return  rates    ♣    Customer  sa;sfac;on  and  loyalty    

- 54 -  

Page 48: Recommender Systems, Part 1 - Introduction to approaches and algorithms

You  have  Ques8ons  and  we  have  Answers