Download - QUANTUM DOTS

Transcript
Page 1: QUANTUM DOTS

TitleQUANTUM DOTS : - Introduction & Experiments

Name: - Aakash Chandrakant Mhankale

CWID: - 803000470

======================================================

Introduction:-Quantum dots are tiny semiconductor crystals this means these can conduct or resist depending upon

the temperature and impurity of the semiconductor. Quantum dots ranges is from 2 to 10 Nano meters.

Because of the size of the physics is governed by the quantum mechanics.

Important properties of quantum dots depends on the following factors: -

Size, Energy Levels

By controlling these factors we can use quantum dots for verity of applications. Emission spectrum:-the color depends on the size of quantum dots and not on the material used. Bigger the quantum dots larger the wave length and smaller the frequency. Color depends on the wave length this means the largest quantum dots emits red light spectrum while the smallest quantum dots emits blue light and other colors are between this is the color changing phenomenon of quantum dots. The band gap is different in different size of quantum dots. The band gap of semiconductor is the energy required to enter the exited state. Small QD has large band gap so lots of energy is required to excite the QD i.e. high energy is required that leads to high energy frequency and so small wave length of light. For small dot it is blue and for large dot it is red spectrum.

The fig. Shows the relation between the frequency and Color.

Page 2: QUANTUM DOTS

Optical properties

In case of semiconductors, when light gets absorbed it generally tends an electron gets excited from valence to the conduction band, hole is left behind. Exciton recombines the excitons energy is emitted as light, this phenomenon is called Fluorescence. In simple words, the energy produced because of the emitted photon is equal to addition of the band gap energy between the highest level and the lowest energy level.

Confinement energy directly depends on the quantum dots size, absorption & fluorescence emission tuned by changing the size of the quantum dot. If the dot is larger it is reddish (i.e.lower energy) its absorption and fluorescence colour spectrum. Contrariwise, smaller dots absorb and emit bluer (i.e. higher energy) light. Further, the lifetime of fluorescence is determined by the size of the quantum dot. Larger dots are closely spaced. So, electron-hole pairs in larger dots live longer producing larger dots to show a longer lifetime.

For enlightening fluorescence quantum, quantum dots are invented that has larger bandgap semiconductor material around them. Band gap energy

Where ab is the, m is the mass, and εr is the size-dependent dielectric constant (Relative

permittivity), Bohr radius=0.053 nm, μ is the reduced mass,

Page 3: QUANTUM DOTS

Why Quantum Dots?

Unique properties of QD are used in the many applications such as Medical imaging, light emitting displays, photovoltaic cells. QD includes electrical and nonlinear optical properties. These properties are partly result of high surface to volume ration. The properties make QD important for the electronics industry.

• The average distance between an electron and a hole in an exciton is called the Excited Bohr Radius.

• When the size of the semiconductor falls below the Bohr Radius, the semiconductor is called a quantum dot.

Quantum dots can be simulated by the Ultra Violate rays or electricity. This property makes QD ideal for using solar cell. The verity in size of quantum dots used to synthesize the solar cell which results in greater energy absorption. The photons from the light travels into the cell and striking the quantum dots particles which will raise the energy of electrons in the quantum dots. Electrons will get injected into titanium dioxide and travel through it to the conductive surface of the electrodes and leave holes in the quantum dots. Quantum dots takes electrons from electrolyte and the electron deleted electrolyte in turn takes electron from the counter electrode and this will create a voltage across the cell.

Theoretically, this could boost solar power efficiency from 20-30% to as high as 65%.

So in short, the appropriate area of the solar spectrum absorbs the sunlight and it will tune the band gap of the semiconductor. Further by tuning the size of QD it allows the engineers to enhance the performance of the device. As the performance of the device is increasing by the process then it is the low cost and high-performance devices will make a high impact in energy conversion industry across the world.

Quantum dots used in vivid colour efficient display. Some companies are already working on it and used for flexible screen and vibrant colours. Quantum Dots are used in medical images for high clarity, but still lot of research to be done to see QD as a medical use.

• Medical Imaging: -

• Quantum Dots are useful for monitoring cancerous cells and provides a way to find out the root cause of the cancer.

• QDs are much more resistant to degradation than other optical imaging probes such as organic dyes, allowing them to track cell processes for longer periods of time.

Page 4: QUANTUM DOTS

Quantum Dots in Television Industry

Conventional TV:

Standard LED has a blue backlight and on it has yellow layer of phosphate added to them which make the blue light to change from blue to white. Further, it is filtered through red, green and blue sub pixels at varying intensity and creating pixels in entire area but the performance of white light for Red colour is not that good this is where the Quantum Dots LCD comes into the picture.

Quantum dots Liquid Crystal Display also uses blue as a back light but instead of using yellow phosphate layer to create white light it uses green n red Nano particles which are from 1 to 4nm and they actually emits light rather than just filtering. The blue backlight mixes with the Green and Red to make more bright and clear white light and it efficiently passed thought sub pixels to filter, which allow engineers to create screens which require less operational energy to achieve more vibrant colours. AS QDLCD operates at low energy cost the production companies are interested in this technology. As the cost of QDLCD is ½ or 1/3rd of the OLED TVs.

What are the benefits of quantum dots in Television industry?The tune ability of QDs gives them the ability to emit nearly any frequency of light - a traditional LED lacks this ability.

Higher peak brightnessBetter colour accuracy: - The light produced by QD is closely tied with size so that they can accurately emit the exact kind of light which is required.

Higher colour saturation: - On OLED screen the colours will “pop” more due to huge colour gamut OLED screen whereas the quantum dots can increase the colour gamut on LCD screen by 40 to 50%.

What are the downsides of quantum dots?

As there are many difficulties in integrating quantum dots into screen from users point of view there is only one downside seen so far but it is serious the issue is light bleed issue. The reader on kindle HDX which was 1st quantum dots tablet the content was not visible in many condition. It was bleeding blue light instead of white because the backlight is blue in QD. Solving this issue is very important as the money factor is involved in this. Apple is currently working on solution.

Page 5: QUANTUM DOTS

“Nanocrystal displays are 30% more in visible spectrum and using only 335 to 60% less power than LCDs. Further, blue quantum dots require timing control during the reaction, because blue quantum dots are somewhat above the minimum size. Sunlight contains approx. equal luminosities of red, green and blue, a display needs to harvest approximately equal luminosities of red, blue and green.

How quantum dots are made?

Colloidal Synthesis: This method can be used to create large numbers of quantum dots all at once. Additionally, it is the cheapest method and is able to occur at non-extreme conditions.

Electron-Beam Lithography: A pattern is etched by an electron beam device and the semiconducting material is deposited onto it.

• Electrons are accelerated out of an electron gun and sent through condenser lens optics directly

onto a wafer. λ = (12.3 Å / √V).

• Disadvantage(s):

• The lithography is serial (masks aren’t used; instead the beam itself sweeps across the wafer) Comparatively it has low throughput ~5 wafers per hour at less than 1 micrometer resolution

• The proximity effect: Electrons scatter because they are relatively low in mass, reducing the resolution.

• Molecular Beam Epitaxy: Molecular beam epitaxy (MBE) is the deposition of one or more pure materials onto a single crystal wafer one layer of atoms at a time in order to form a perfect

Page 6: QUANTUM DOTS

crystal. A thin layer of crystals can be produced by heating the constituent elements separately until they begin to evaporate; then allowing them to collect and react on the surface of a wafer.

MBE system consist of:• a growth chamber• a vacuum pump• a effusion (Knudsen) cells• a manipulator and substrate heater• an in-situ characterization tool – RHEED

(reflection high energy electron diffraction)

Generally the quantum dots are prepared by the chemical reaction in solution resulting in solid Nano

crystals. Chemicals combined to heat at 255 C the more the reaction time it will affects the size of the

crystal. As soon as the mixture is out of the heat the particles will retain their size and color.

Many semiconductor materials can be used to create Quantum Dots. For example

Cadmium Selenide, Lead Selenide, Indium Arsenic

Cadmium Sulfide , Lead Sulfide, Indium Phosphorus

But, these are the heavy metals and potentially dangerous for the health which limits the use of

Quantum Dots Technology.

The promising option for this is use of coper sulfide / zinc sulfide for protecting coating.

How do Quantum Dots work?

QCA Basics (quantum-dot cellular automata (QCA) cell):

Cells are basic elements of QCA. Each cell describes a bit with some charge.

• QCA CELLS CAN ONLY BE FOUND IN TWO STATES (LOGIC ‘0’ AND ‘1’)

Page 7: QUANTUM DOTS

As shown in the picture, it has 4 metal conductors which is quantum dots. 4 dots of QCA cell with one electron in with two of the dots and mostly settled diagonally opposite because the coulomb repulsion is less.

Electron can pass through tunnel junction but they are not allowed to leave the cell.

We can change the logic state of the cell just by applying the –ve potential to the corner where the quantum dot has electron. Because of this the next cell changes the state to lower the coulomb repulsion. The above figure shows the logic-1 and logic-0 due to coulomb repulsion. That’s why to carry information from one end to other only one position change of electron is sufficient unlike CMOS where transfer of charge is required end to end.

Page 8: QUANTUM DOTS

The above figure shows that when you are applying 0 input the output is 1. This shows that this pattern is implementing the Invertor logic. Today’s digital technology the logic gates are driven by the voltages and the information in QCA is defined by the position of electrons within the dots. The output cell should be at 45 degree from the 2 logic inputs to realize the invertor logic.

QCA Wire:-

• By placing two “cells” together and forcing the first cell into a certain state, the second cell will assume the same state in order to lower its energy.

The diagram shows that the net output effect “1” is moved on to the next cell.By placing cells near to each other as shown “pseudo-wire” so signal can transport from one end to other.

Majority gate M (A, B, C) = AB + BC + AC

When C selected as 0 will act as a AND gate M (A, B, 0) = AB and if C =1 then M

(A, B, 1) = A+B.

A majority gate requires the same number of cells in QCA as an AND gate & OR

gate. This is contrasted with MOSFET technology (where the number of

transistors required to realize a 3-input majority gate is much more than that

required for some other gates).

Page 9: QUANTUM DOTS

Clocking in QCA-Role and Types

Clocking is applying an appropriate voltage to a cell it leads to adjustment of

tunnelling barriers so that the electrons can transfer from one end to other. There

can be a case where the cell be in metastable state so the clocking play an

important role in this scenario.

Shows clocking of a QCA cell. Here Vc means clock voltage is applied. Clocking is performed in one of two ways: zone clocking and continuous clocking. In zone clocking, each QCA cell is clocked using a four-phase clocking scheme as shown in below figure. The four phases correspond to switch, hold, release and relax. In the switch phase,Cells begin un-polarized and with low potential barriers but the barriers are raised during this phase. In the hold phase, the barriers are held high while in the release phase, the barriers are lowered. In the last phase, namely relax, the barriers remain lowered and keep the

cells in an un-polarized state. An alternative to zone clocking is continuous clocking, involves generation of a potential field by a system of submerged electrodes.

The main difference between circuit design in QCA and that in conventional CMOS technology is that a circuit in QCA has no control over the clocks contrasting in CMOS.Hence, information is only transmitted through each cell and not retained. Each cell “erases” its own state through every clock cycle. Further, every logic element in a QCA circuit is clocked.

Page 10: QUANTUM DOTS

When we rotate dots at 45 degree, the cells will act inversely. So, the wire created by this type of pattern is called as “inversion chain” where each cell in the chain takes on the opposite polarization of its nearest neighbours.

• Both dots are assumed to be identical but in reality, the upper dot is ~ 10% larger than the lower one

Bound Exciton Energy

Quantum DotsBetween positive and negative charged electrons there is always a coulomb attraction. Negative energy involved in this is inversely proportional to the square of the size-dependent dielectric constant and directly proportional to the Rydberg’s energy. If the size of the crystal is small than the exciton Bohr radius then the coulomb interaction must be modified as per the condition.So, these energies can be represented as: -

Where  me is the free electron mass, mh is the hole mass, εr is the size-dependent dielectric constant, a is the radius, μ is the reduced mass,Quantum Dots energy is dependent on the size due to confinement effects.Other Quantum Confined semiconductors are: -

1) Quantum Wells: - in which electrons or holes are in one dimension and allow free propagation in 2 dimension.

nx

nz

ny

Page 11: QUANTUM DOTS

2) Quantum Wire: - electrons or holes are in the 2 spatial dimension and allow free propagation in the 3rd dimension.

Successful Switch between cells

For successful switch between the cell the energy should be equal to or greater that Ekink.Where Ekink= =Amount of Energy

Required for Successful TransmissionIf the energy is less than the given equation then the cell may get into the metastable state.The minimum difference in energy between the electron and hole is not simply the band gap, but the energy difference between the n=1 energy state of the hole in the valence band, and the n=1 energy state of the electron in the conduction band. This difference is equal to the quantum well energy equation for the electron, plus the quantum well energy equation for the hole, plus the material band gap energy.

QCA Conclusions: -

• QCA is the most suitable successor to the CMOS VLSI system because of the advantages mentioned before.

• The QCA technology is very useful in the future for developing of the processors and ASICs that can be used for the general purpose or real time computing requirement.

• QCA will be the problem solver in the next coming era which will solve many problems in electronic industry.

NECESSITY OF QUANTUM DOTS: LIMITATIONS OF CURRENT CMOS BASED TECHNOLOGY

● CMOS transistors size is saturating and it can’t be scaled beyond a particular size any further

● CMOS interconnects are not fast enough ● Power consumption due to leakage current is noteworthy in the CMOS

technology

nz

kykx

ny

nz

kx

Page 12: QUANTUM DOTS

● Positive assumptions indicate that the technology has the capacity to break the terahertz barrier.

● Power consumption is significantly very low compared to the CMOS technology

● QCA will be faster and will work almost up to the speed of the processing device which enhance the system performance

Medical Application: -

Application of quantum dots is in biological research where the QDs are used as tracers inside living cells. The quantum dots that have been injected into the tissue can be excited using short wavelength light and the dots can then be observed at their peak frequency.

Disadvantages of Quantum Dots: -

There are several advantages over others but there are some difficulties present and we have to take a look on it. Quantum dots can have surface defects which will affect the recombination of electron and hole and will trap temporarily. This results in blinking of the QDs and damages the whole system. The blinking affect can be reduced by having shell around the core. The QDs are in Nano range but if it combines with the other size of atom it makes transfer more difficult.

In spite of disadvantages, the versatility and flexibility of QDs is valuable and capable of overshadowing any negative aspects. These mentioned great advantage makes QDs excellent contenders for the production line and future development.

References

1. Introduction to Quantum Dots and Solar Energy Conversion Deviceshttps://www.youtube.com/watch?v=im5hDra2EZA2. Quantum-dot Cellular Automata: Introduction and Experimental Overviewhttp://ieeexplore.ieee.org.lib-proxy.fullerton.edu/stamp/stamp.jsp?tp=&arnumber=9664683. http://www.ijiee.org/vol5/568-C0009.pdf4. http://web.cecs.pdx.edu/~mperkows/CLASS_FUTURE/QDCA/qcapaper2.pdf

Page 13: QUANTUM DOTS

5. http://www.natcoresolar.com/core/wp-content/uploads/2014/04/Solar-cells-and-Quantum-Dots.pdf6. http://www.cornellcollege.edu/physics-and-engineering/research/Student-Projects/QD-solar-cells/QD-solar-cells.html7. https://matterchatter.wordpress.com/2015/01/25/quantum-dots-in-your-tv/9. https://en.wikipedia.org/wiki/Quantum_dot_cellular_automaton8. http://www.howtogeek.com/207061/what-exactly-is-a-%E2%80%9Cquantum-dot%E2%80%9D-tv/9.  "Chemistry and Physics of Semiconductor Nanocrystals" (PDF). Retrieved 7 July 2009.Brus, L.E. (2007). 10.  "Size control and quantum confinement in Cu2ZnSnS4 nanocrystals". Chem. Commun. 47 (42): 47. doi:10.1039/C1CC14687DKhare, Ankur, Wills, Andrew W., Ammerman, Lauren M., Noris, David J., and Aydil, Eray S. (2011)..11.   Science 296 (5569):8925.Bibcode:2002Sci...296..892L. doi:10.1126/science.1068054. PMID 11988570, Lee SW, Mao C, Flynn CE, Belcher AM (2002).12. C.S. Lent, P.D. Tougaw, A device architecture for computing with quantum dots. Proc. IEEE85(4), 541–557 (1997)

13. K. Walus, G.A. Jullien, Design tools for an emerging SoC technology: quantum-dot cellularautomata. Proc. IEEE 94(6), 1225–1244 (2006)

14, QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–29 (2004), . K. Walus, T. Dysart, G. Jullien, R. Budiman