Download - Physics and Social Science - The Approach of Synergetics Weidlich1991

Transcript
  • 8/9/2019 Physics and Social Science - The Approach of Synergetics Weidlich1991

    1/163

    PHYSICS REPORTS   (Review Section of  Physics Letters) 204,   No.   1(1991)1—163. North-Holland

    PHYSICS   AND SOCIAL   SCIENCE - THE APPROACH   OF   SYNERGETICS

    Wolfgang   WEIDLICH Inst itut  für  Theoretische   Physik,   Universitbt Stuttgart, Germany

    Editor:   B.   Muhlschlegel Received   September   1990

    Contents:

    Introduction   3   4.5.   Probability   distribution  and   stochastic  trajectories   51

    1 .   Comparison of  structures   7    5.   Collective   opinion formation   531.1.   The  level structure of nature and  society   7   5.1.   The   two-opinion case   54

    1.2.   The   interaction between   levels:   the   “reductionist”   5.2.   Dynamics of  party   images and  voters   opinions   in  the

    versus   the   holistic” view   9   democratic   system   691.3.   Quantitative  modelling   in   social   science   12   6.   Migration   of  populations   77

    2.   Interaction   of   macrovariables  — semi-quantitative   consid-   6.1.   Comparison   of  migration   and   opinion   formation   77

    erations   14   6.2.   The   migratory  equations  of motion   78

    2.1.   The   macroscopic  approach   14   6.3.  The   case of  two interacting   populations   81

    2.2.  An abstract   metamodel   describing   stability   and   cy-   6.4.   Deterministic   chaos   in   migratory  systems   92clicity   14   6.5.   Empirical  evaluation   of  interregional migration   95

    2.3.   Selected examples of  model   interpretation   23   7.   Formation   of settlements   10 9

    3.   The framework  of   microbehaviour and  macrostructures   25   7.1.   Master equation   description  of urban evolution   on  the3.1.   The   space   of   social structures— aspects,   issues   and microscale   11 0

    attitudes   25   7.2.   Migration   and   agglomeration on   the macroscale   12 03.2.   The   variables: socioconfiguration, associated  variables   7.3.   Settlement  formation   on  the mesoscale:   an integrated

    and   trend   configuration   27   economic   and   migratory  model   13 1

    3.3.   The   elements of   sociodynamics: dynamic utilities  and   7.4.   Alternative  approaches to  urban   dynamics   14 1

    probability   transition  rates   30   8.   Master equation approach   to   nonlinear   nonequilibrium

    4.   Constitutive  equations  of  motion   34   economics   14 6

    4.1.   The  master equation   for   the   socio an d   trend   configu-   8.1.   Introductory remarks   14 6ration   36   8.2.   Modelling concepts:   the  economic configuration   and

    4.2.   Mean-value   equations  for the components of the   socio   the  elementary  dynamic processes   14 8

    and   trend   configuration   38   8.3.   Master equation   and   mean-value   equations   for   the

    4.3.   Stationary   solutions   of the   mean-value   and   master   economic   evolution   15 2

    equations   41   8.4.   Analysis  of market   instabilities   15 4

    4.4.  A   special   time-dependent   solution   to   the   master References   16 2

    equation   47

     Abs tra ct:

    Universally applicable methods   originating in   statistical  physics an d   synergetics are  combined with  concepts from social  science in  order to set upand   to   apply  a  model   construction concept   for   the quantitative  description  of a  broad   class of  collective dynamical phenomena   within   society.

    Starting from the  decisions of  individuals and  introducing the  concept of  dynamical utilities,  probabilistic   transition  rates between attitudes and

    actions   can  be  constructed.  The latter enter the central   equation  of  motion,  i.e. the   master   equation,   for   the  probability   distribution   over the

    possible macroconfiguration s of   society. From   the master   equation   the  equations of  motion   for   the   expectation   values  of the   macrovariables of 

    society can   be   derived. These equations   are   in   general nonlinear.  Their   solutions   may   include stationary solutions,   limit   cycles   and   strange

    attractors,  and  with   varying trend  parameters   also   phase   transitions  between different modes  of  social behaviour   can  be  described.The   general  model   construction   approach   is   subsequently applied   to   characteristic   examples from   different  social  sciences, such  a s   sociology,

    demography,   regional   science and   economics.   These   examples refer   to   collective   political   opinion   formation,   to   interregional   migration   of 

    interactive  populations, to  settlement formation o n   the micro-,  meso- and  macroscale, and to  nonlinear   nonequilibrium economics, including  market

    instabilities.

    0   370-1573/91/$57.05  ©   1991   —   Elsevier  Science  Publishers  B.V.   (North-Holland)

  • 8/9/2019 Physics and Social Science - The Approach of Synergetics Weidlich1991

    2/163

    PHYSICS   AND   SOCIAL SCIENCE   -THE   APPROACH   OF   SYNERGETICS

    Wolfgang WEIDLICH

     Insti tu t   für  Theoretische  Physik,   Universitàt  Stuttgart,   Germany

    INORTH-HOLLAND

  • 8/9/2019 Physics and Social Science - The Approach of Synergetics Weidlich1991

    3/163

    W .   Weidlich,   Physics and   social  science  —   the approach   of  synergetics   3

    Introduction

    In   the   last   20   years   great   progress   has   been made in understanding   complex systems  in   physics,

    chemistry and biology.  The   new  concepts  necessary for this understanding were  primarily developed inthe   statistical  physics of open   systems far from  thermodynamic equilibrium and in  fields   like  quantum

    optics and the theory of  chemical   reactions, where new   types  of  “nonequilibrium dissipative structures”(using  the nomenclature of I.   Prigogine)   appear.The   conceptual framework  for the   mathematical   treatment   of   such   systems   finds  a  rather  general

    formulation   in   “synergetics”,   by   definition,   the   science  of the   macroscopic   space—time structures   of 

    multi-component   systems with   cooperative   interactions   between their   units.   The   framework   of synergetics has   been set   up  and worked out  since   1970,   mainly by  H.   Haken [1,  2 1 .

    It   is   the purpose of this   article   to   give   an   account   — in   view  of these   developments   in   naturalscience   — of   new   approaches   to make methods of   statistical   physics   and   synergetics available   andtransferable to a  quantifiable description of   dynamic  processes   in   human  society.

    In   doing so, we are not   aiming to present an uncoordinated collection of quantitative   treatments of sectors of   society.   Instead,  our intention   is  more  systematic.   W e   will   try to   set up   a general   “model

    construction strategy” for a   quantitative  — or at   least   semi-quantitative   — treatment of  a whole   class  of macrodynamic   evolutions   in   society, making   use   of   those   concepts   of   statistical   physics,   whoserelevance   is  not  only  particular to  physics but   is   much more   universal!

    However,   since   the   article   is   primarily written for   physicists,   we   will   also   make   side   remarkswhenever structural   analogies   between   physical   and   social systems   appear and seem   worthy   of consideration.   It is  our hope that the   interdisciplinary   relevance of  some concepts   of   synergetics  can  bedemonstrated   in  this way,  and that the approaches  developed  here contribute to the idea of the “unity

    of  sciences”.For   two   decades the author of this article, being a theoretical   physicist, has been   engaged   with

    increasing intensity in the problem of a   quantitative description   of  the   dynamics of  social  systems.   Someof the  main results of this research,  obtained in  cooperation with  a small   but highly   motivated group  of physicists,   are   summarized here   (cf. the   acknowledgements).

    The  work in the   new   field has  also  led, due to their  gratefully acknowledged   open-minded  attitude,to new  contacts and even to  close cooperation with social scientists.   In this context  a special observationunder the   perspective of a   physicist should  be   made:

    Physicists   are   used   to a thoroughgoing mathematical  quantitative  fonnulation of their theories andconsider   qualitative argumentations only  as a  preliminary  stage   of  theorizing  about phenomena. On theother hand, the  mainstream   of  social   science   — with   the exception  of  economics   — concentrates   on   andprefers a qualitative  argumentation, perhaps   arguing that   social systems are too complex for  quantification (we  shall come back to this problem). But even dwelling on   a purely   qualitative description, socialscientists have   developed   a high-level   intuition and   ingenuity of introducing adequate   concepts whichcharacterize   the   complex   social   system   on   its   micro-  and   macrolevels.   Such   characteristics  of   societycorrespond to the   microvariables   as   well   as   to the   macrovariables   or   order  parameters   in   physical

    systems.  Therefore,   no   attempt at a correct   quantified  description  can   dispense   with   these   qualitativecharacteristics  of   social   systems   investigated   by   social scientists.  That   means  that a  close   cooperationbetween  scientists arguing qualitatively   and  scientists  constructing   quantitative models is desirable andalmost  indispensable.

    However,   before going   into   more detail, in chapter   1   in   comparing   the structures of   systems  ofnatural and social  sciences and in   considering the  possible  transfer of  concepts, we  must throw a glance

  • 8/9/2019 Physics and Social Science - The Approach of Synergetics Weidlich1991

    4/163

    4   W .   Weidlich,   Physics and   social science   —   the approach   of  synergetics

    on   the past, where the   mainstreams   of  natural   sciences   on  the one hand and   of  the arts and   socialsciences   on   the   other   appeared to diverge, separated   frequently   by  a gap,   denoted   by   Snow   in hisfamous lecture  [31as  “the gap between the   two  cultures”.

    As  this divergent evolution took  place   despite  the ever present   ideal of the unity of  sciences,   there

    must  have  existed   immanent reasons for the  failure of a closer  cooperation between  natural and   socialsciences.   Without   going   into   historical detail   we  must   briefly   analyse the causes  of this   dichotomy andalso  the   newly arising reasons  which lead to better prospects for a renewed  convergence   of   scientific

    approaches.On the   side  of natural  science, first attempts emerged  in the   last century to  describe social systems in

    terms of a   “social  physics”.  These  approaches  consisted of a more or   less  direct comparison  of  physicalsystems  and their   equations   with   social behaviour.  However,   the   shortcomings   of  this   “physicalistic”approach   soon   became   clear:   Generally,   on   the fundamental   level   there   does   not exist any   directstructural  isomorphism.  Indeed,   such an   isomorphism would  only exist  if the states and the   interactions

    of   the elementary  units   of  a physical  system could  be formally and  uniquely  mapped to the states and

    interactions  of the  units   (individuals) of the social   system.  Evidently   such an   isomorphism,   if  possible atall,   will   only   be  an exceptional  case.

    On the   other hand,  also  a direct  comparison of  physical  and social   systems  on  the phenomenologicallevel (for instance,  comparing the   equation of  state of  a  gas and concepts   like pressure, temperature andenergy with   the behaviour  of  a  society)   can   only lead to a   superficial,   short-breathed analogy lackingstructural depth. Therefore,   physicalistic approaches  of  this type to   explain social behaviour have beencriticized   by   social scientists   for   good   reasons [41.But,   along with   this   criticism,   the   whole  idea  of  athoroughgoing  quantitative treatment  of the   dynamics  of   social systems   is  perhaps in danger to bediscarded  prematurely.

    On the   side  of the arts and the   social   sciences   there   also existed   developments widening the   gapbetween these and the natural   sciences.  Thus, in the   last century the  arts and the   social sciences wereseeking to  establish their foundations independently  of  the natural  sciences. There  existed   good reasonsfor this endeavour.

    Firstly,  the  high complexity  of the human   individual and  of  the human  society   required methods of research adequate for the   systems  under   consideration. Evidently   it   was  not   possible   to wait for   areductionist   explanation  in terms   of   biology,   neurology  or even  genetics   concerning the human being

    and   his  behaviour   within society   to be   found.Secondly,   and more   importantly,   it   was   even   claimed   that the   humanities   require   descriptive

    categories  which are  completely   independent of and irreducible to  concepts of the   natural sciences. (Weshall shortly  discuss  this problem  of   reductionism   versus holism in chapter   1.)

    Indeed,   the   level   of   human   existence comprises   essential   features not adequately tractable   byanalysis and  theory   in   the  terminology  of  natural  science.   These essentials   include the uniqueness of  thehuman   individual   and   his   history,   the   ultimate  meaning and purpose of   life,  the problems of  ethics,values and   norms.

    In   connection   with   these   new   qualities   emerging   at the   level  of man and his  society,   the   social

    scientist   is   in a different situation to that of the  natural  scientist. Whereas  the latter has no  problem inobserving and  analysing the objects   of  his science in  an   objective  manner “sine ira  et studio”, the   socialscientist   is,   simultaneously,   the   participant  and the observer   of  the   system  under   discussion.

    Being   participant   of   the   socio-political   system   he  makes   valuations   by  distinguishing,   for instance,between   its   desirable and   nondesirable evolutions according   to   his   social,   political, ethical   and

  • 8/9/2019 Physics and Social Science - The Approach of Synergetics Weidlich1991

    5/163

    W .   Weidlich,   Physics and   social   science  —  the approach of  synergetics   5

    ideological  attitudes and   norms.   But in his role   as   scientist   he must   observe   the same   system  in   a

    remote, objective   manner with  complete impartiality,   as if he were   not   affected  by its fate.   It seems notalways  easy to separate the valuating and the   objective perspectives,  to be  taken by  one and the  sameperson.

    However,   it   is  evident   that  any transfer   of   analytical   and mathematical   methods   from natural tosocial  science can  only contribute to the  descriptive  and objective   side  of  social  science,  but not to the“metatheoretical” problems  of  values   and   choice   of  norms.

    Having discussed some   reasons   which  may have  given   rise   to a divergent   evolution   of   social andnatural sciences, we now come back to the question of  why a  new  convergence between  sciences seems

    more  promising  at the moment   than  previously.A  first reason  i s that natural   science has  since  matured. More and more,  complex systems are  within

    the   focus   of  interest in  physics,   chemistry  and   biology. The problems of   dynamic phase   transitions inquantum   optics,   fluid dynamics   (turbulence)   and solid   state   physics;   chemical  reactions   and neural

    systems and the   deterministic   chaos in a variety of nonlinear  systems provide a manifold of   examples.Thus  the   overall   experience  in   finding  methods to   treat   complexity  has grown  in natural   science.

    Secondly,   and  most   importantly   in  our context, our approach   towards   a   quantified description   ofsocial   systems  has a   differing   structure to the   physicalistic   approaches mentioned   above.  The   lattermade   direct   use   of   physical models   in   order   to   interpret   them in   sociological   terms.   Instead,   our

    fundamental concepts   refer  to  social  systems from the   very  beginning.   In   the   further construction of thequantitative formulation, we make use of  mathematical  concepts to  describe   the  dynamics of   statisticalmulti-component systems, which  are   universal and  therefore   applicable to   social systems   as   well   as   to

     physical systems.  However,   whereas these methods have already found  widespread use in physics,  theiruse in the   social sciences   is   as yet  only  in an   initial  state.   In   pursuing their  consequences  in the   social

    sciences we   will   indeed   find   some   deep and  rather   universal   structural   analogies between   social  andphysical systems.   But these   analogies  are not  due to   a direct   similarity  between   physical   and  socialsystems.   Instead they   reflect   the   fact   that,  due to the   universal  applicability  of certain mathematical

    concepts to   statistical multi-component   systems,   all   such systems exhibit  an  indirect similarity   on   themacroscopic collective   level, which  is   independent  of their   possible   comparability   on   the   microscopic

    level.  The formation of  such   indirect  structural   similarities   will   be   shown   on   several   occasions  in theforthcoming  sections.   The   structural   differences  between   physicalistic   and   synergetic  approaches tosocial science  are schematically  exhibited in table  1 .1 .

    Our   further procedure of   explanation   is  organized   as   follows:

    Since  our   subject   is  of an  unusual   nature, we  will   go into more detail in  chapter  1 ,   comparing thestructure of the  objects   in  the sciences  involved.   The  contribution  of  synergetics to the general  problemsof    reductionism   versus   holism   will   also   be   discussed.   And   finally   the potential   achievements   ofquantitative modelling  i n   social  science are   considered. In chapter  2   semi-quantitative considerations onthe   basis  of   interacting   macrovariables   demonstrate   the   possibility  of   general insights  using  simple“metamodels”.  In chapters   3  and 4 the central  concepts  are developed. Starting from the  microlevel,the   decisions   of   individuals   are introduced   along   with  probability  transition   rates and their   effect   on

    certain classes of  macrovariables in  society. The  constitutive equation of  motion for the macro dynamicsof  society then turns out to be  a comprehensive  master equation of  the  probability distribution over themacrovariables. M ean-value equations of in general nonlinear structure  can  be derived from this masterequation.  Chapters   5   to   8   are   accordingly  devoted to   applications to different  sectors  of the society,demonstrating  that a   unified   treatment of   social dynamics   is   feasible.  The   applications  of the same

  • 8/9/2019 Physics and Social Science - The Approach of Synergetics Weidlich1991

    6/163

    6   W .   Weidlich,   Physics and   social science   —   the   approach  of  synergetics

    Table   1.1a)   The  questionable   direct application of  models of natural   science   to social science.  b) The   indirect structural  analogy  between   systems of nature

    and society  substantiated   by   universally  valid   synergetic  concepts

    (a )

    Models   and Theories   ~estioMe   Models   and TheoriesDirect Modelof Natural Science   A~iication   of Social   Science

    ft ft

    Str~ctures   MatI~ematical   Mathematical   S~ctu~s 1

    (b)Indirect   Structural   Analogies

    Between Systems  of 

    Nature and  Society

    Models  and   Theories   Models   and Theories

    of Natural  Science   of Social  Science

    ft   ____    f tAdequate   __________    Universally   ~   Adequate

    System     SystemConcept   “.   Synergetic Concepts  ]   /    Concepts

    formalism comprise   as  different   fields   as   opinion formation, migration of populations, formation   of settlements,   and non-equilibrium economics. The interest   focusses  on  the one hand   on  the   theoreticaldescription and partial explanation of certain collective self-organizing processes within society, in termsof   (semi-)quantitative   models,  and  on   the   other hand,   as far  as   it   is   possible,   on  the retrospective andprospective  quantitative  analysis  of concrete   processes.

  • 8/9/2019 Physics and Social Science - The Approach of Synergetics Weidlich1991

    7/163

    W.   Weidlich,   Physics   arid   social   science  —  the approach   of  synergetics   7 

    1.   Comparison   of   structures

    The formulation of a framework for the   quantitative   treatment   of   social   systems   is   not   such   anobvious   procedure   as   setting   up   quantitative  theories for   physical systems. Thus   initially   it   seems

    adequate to have a broader view  on  the structural relations between   sciences. Some principal  questionsof  a more  philosophic nature  must be  raised   in  this context and this must  be done  i n  terms of qualitativeformulations, since   qualitative considerations   always have to precede any possible   quantification. Let  us

    first   reflect   on   the   level structure of reality.

    1.1.   Th e   level structure  of  nature and  society

    It seems completely obvious   that   all  of reality,   including  the   inanimate   and the animate  world,   is

    stratified   into   sequences   of   organizational   levels of  varying  complexity.   The  higher, more  macroscopiclevels are   composed  of and   rest upon the lower, more   microscopic levels.

    A level i s  defined  as a stratum of  reality of a certain  self-contained   organization.   Each stratum at thisorganizational   level of  complexity has  various   characteristic  qualities  emerging; however,  these qualities

    cannot be found in   other   levels,   in particular   lower   levels.   If quantitative   formulations  of the   levelstructure exist,  certain macrovariables   (order parameters)   then characterize the  specific   qualities   of  thatlevel.  The relative  self-contained property  of  a level   is  then   expressed by  the   fact that  i ts  variables obeyan   almost self-contained,  autonomous  subdynamics.  The  structure of lower   levels, of  which that  level   is

    composed,   and the structure of   higher levels,   into   which   that   level   is   embedded,   enter   the   quasi-autonomous   dynamics   of   the   level   under   consideration,   but   only   in   terms   of   internal  or externalconstant constituents and boundary   conditions.

    Already physics   — not to mention   biology  —  provides  so   many   examples of this hierarchical structurethat   it   is   sufficient   to   conclude   with   this  example:   Take  molecules   as   the   organizational   level  underconsideration. Molecules are   composed of  nuclei and electrons.  But the detailed structure of the   lowerlevel of  nuclei,  i.e. their   composition of protons and   neutrons which are  again  composed   of  quarks  andgluons   etc.,   does   not   matter   for the molecular   level,   apart from   some global  nuclear constants   like

    mass, charge  and  spin.   And also   the higher level   into   which the   molecules may be  embedded,   namelythe   gas  or the molecular   crystal,   provides only  certain   conditions,   such   as   temperature  or the   crystal

    field,  under   which  the molecular  self-organized structure   exists.Since   the   level  structure of   reality   is   such  a dominant fact,   it   is  only natural   that   the   system  of 

    sciences,  where  each   science   is   defined   as   having a certain   domain of objects,   should   also  be seen   asstructured  according to the organizational  levels of the   inanimate and animate world. Tables 1.1  and  1.2depict  — in a  rather   coarse-grained   form   — how the sequence  of  levels of  reality   imposes   a sequence of sciences. The   interaction between the  levels   — to be  discussed now  — leads to a corresponding overlap of the   domains of  sciences.

    1.2.   The interaction between   levels: the   “reductionist”   versus the “holistic”   view

    The   level  structure   which  appears to be a dominant feature of  nature,   is  now seen   as  a problemdemanding an explanation.   We  begin  by formulating two extreme and opposite   standpoints  with respectto the nature of  levels.  Later both   standpoints   will be partially justified and   also made partially relative.

    The first   standpoint i s  named  reductionism.   According to   reductionism,   all   properties including the

  • 8/9/2019 Physics and Social Science - The Approach of Synergetics Weidlich1991

    8/163

    8   W .   Weidlich,   Physics and   social  science  —   the approach   of  synergetics

     — sai~tu~unllPu~s~1V  —‘ E l   —  A~OlO(j~Sd  —>

    4 ) — — sa~uap~lB!~0S   — —

    I   _    £BOjOi~j —  ot~O5   — —   —>

    CE l—   ~~~1oDB   —>

    <   iC~o~oqdioj~>C4 )

    •0C~)   <   £~O)OiS~Ctj~f >I   V ~‘d   1   (~C~ojo!

    111~P~4)l015J>

    <   t1Otfl~OA~JO £.iOaqj~   ——-—~-—>

    ~   < >E   0

    ‘5     I~I4)

    at   it~I   ~‘5—     0   ~.,   V

    C10     ~IC   I~IQ   ~

    V    0   ri.,   .~   ‘4   .—   C / U )4) I~   ~   I.9I~   ~50

    U4)   V 

    ~C-~   4 )   4)   _ ,   4)0   00   ~   00   mi~   ~in..   ~ ~IrI0 ~   0

    Pl’°M~p~witiy JO  iIfl~UTO~j

    Oi~tJAI   —   I~A~’T  —

    51!A!~P1IJo

    ‘E l—   Cwouoi~sy   —><   SsIUi4)UApO1pa~   ‘SU~4)~   sD!sAq~J l4)54SS4410   >

    El—   —   ~siwaq3   —  —>

    U

    C ~~~~sAqd   ~sp1108>

    ~ ~‘~~qd   ~tmOflr>~   ~ ~ioaqj~   PP~duin1u~nb>

    0   El—   —   —   LioVqJ,   uin~tI~nb   —  — —   —>~

    —‘5 

    I-   — ‘B

    V V C   ‘~ B   1 2

    -C   4)   I.t    V ;~.~,   ~   ..-.   -~   C    ,.   ‘4 -~   V~   ~   °   0   ~   .2’   ‘~ B   -~   ~   -~   •B0   tel~., Z   ~   C)   - ~   Ct)   0.~   Ct)   C )

    PIJOM   ~~mTUetiJ   JO Ufl~U5OQ

    OIMIAJI   I~A~T —   Oi~fl~1~

  • 8/9/2019 Physics and Social Science - The Approach of Synergetics Weidlich1991

    9/163

    W .   Weidlich,   Physics and   social  science  —  the  approach   of  synergetics   9

    newly emerging  qualities of the level  of  higher   complexity  must and  can  be reduced to   — and  thereforeexplained by   — the   properties and   qualities of the  lower   (microscopic)   level   forming   the units  of  whichthe  higher level   is   composed.

    The   second   and   opposing   standpoint   is   named   holism.   According   to   holism,   the   properties   andqualities  of a complex,  organizational  level define   the  wholeness of this  level. These   qualities have an

    existence   of   their own and it   is   neither   necessary   nor   possible   to   derive   them   from lower levelstructures.   Thus the separation  of   levels, each in  its  own  specific wholeness,   is  considered   as an  absoluteontological  structure.

    It   seems   that   physicists   and   most   natural   scientists   are more   inclined   to adopt the reductioniststandpoint,   whereas psychologists  and   scholars   of the arts   seem   to prefer   holism.  At   least   theseattitudes appear   understandable for the   following reasons:

    In  physics   there  already exist successful   examples of a procedure of reduction.   The   most prominent

    example   is  the derivation of the   laws  of   phenomenological   thermodynamics   from   the   microlevel,  thefundamental   laws  of   statistical   mechanics.

    On the   other hand,  psychologists,   scholars   and social scientists  have to work  with  the mind and  its

    interactions.   But  the   level  of mind structure   —  including   logic   and the   ability   to act  scientifically   —

    exhibits a  self-quality   of  its own of  almost  perfect autonomy,  whereas the reductionist postulate   hereleads to the  psycho-physic  problem,  which   is, as yet, unsettled.

    However,   we   can   now   see   that the   two   standpoints   of   reductionism   and   holism,   if formulatedproperly, are not   as   irreconcilable   as it   first appears. On the   side  of  holism it  becomes more  and moreclear that the independence of the   qualities of a   complex level  cannot be an absolute one but  only   arelative one.   Indeed, since the  complex organizational levels are  composed of  units belonging  to a lowerlevel,   all   qualities of the   higher   level have to be the  collective   resultant and   somehow the   aggregatedeffect  of   interactions   between the constituent elementary   units,  even if this   macroeffect   cannot beexplicitly  decoded   (see,   e.g.,  ref.   [5]).

    On the  other  side, a  close  reductionist   inspection of the   interaction of  units within   multi-unit systemshas, perhaps  surprisingly,  led to   rather universal   insights into   the  manner of how levels of relative (not

    absolute!)   self-contained   structure are   organizing   themselves  and how these   levels,  once   established,

    mutually interact.In   this respect, let   us   consider   two   principles originally  formulated in   physics  but  also   applicable,

    mutatis   mutandis,   to  other  systems like human society, namely the  principle  of  self-consistency  and theslaving  principle.

    It  i s   well known in  physics   that  self-consistent  calculations,   like   the   Hartree—Fock  theory, are  one of

    the backbones of  multi-particle  theory, particularly  applicable to  particles  with   long-range interactions,such   as  electrons with  Coulomb interaction in the   atom  or in a   solid.  Here, we are interested in  thatprinciple with   respect to   its  potential transfer to more  general  multi-component  systems.

    It is  the essence  of   the self-consistency principle, that   each particle contributes to the generation of  acollective   field   and   that,   conversely,   each   particle   moves   (according   to an   effective   one-particleSchrödinger   equation) under the   influence   of   this   collective   field. Self-consistency   expresses   the

    compatibility  of the   cyclic   relation between   causes   and   effects: The   field   is   the   collective   effect  ofindividual particles in certain modes of  motion   (wave functions), where the   individual  modes   of  motionare, in turn, determined   by   that   collective   field.   Simultaneously   the whole   system   is  split into   twointeracting   levels.  Instead of  multiples of individually and directly   interacting particles,  we now have thelevel of the   global   field   generated   by all   particles,   and,   on   the   other  hand, the   level  of   individual

  • 8/9/2019 Physics and Social Science - The Approach of Synergetics Weidlich1991

    10/163

    10   W .   Weidlich,  Physics  a nd    social  science  —  t he   approach  of  synergetics

    particles   moving   within   that   field.   Hence,   the   direct   interaction   between the   particles   has beensubstituted by  an indirect   interaction   via   the   medium of the  global  field.

    In this formulation   it   is   now   possible   to transfer the   self-consistency   principle   to   social systems.

    Originally   and fundamentally,   society  (and its  history)   could   also  be  viewed  as  a system  of   interactingindividuals (including the  momentary interactions between   living persons and the   retarded interactionsof   historical   with   living   persons). However,   this   description   would   be   extremely cumbersome   andinconvenient and   would   disguise   the relevant determinants of   the   sociological   process.   Instead thefollowing formulation   was   chosen   and i s   fully   in   accordance   with   the   self-consistency principle:

    The   individual members   of   society   contribute,   via   their   cultural   and   economic   activities,   to the

    generation   of   a general   “field”   of   civilisation consisting   of   cultural, political,   religious,   social   andeconomic components. In  particular,  all   institutions  of  the state, religion, economy, jurisdiction and thepolitical  ideology belong to this collective field, which determines the   socio-political atmosphere  as  well

    as   the cultural   and  economic   situation of a   society.   This   field   may  therefore  be considered   as   therelevant   (multi-component) order  parameter   of   society.

    Conversely, this collective  field  strongly   influences the range  of  possible   activities of  an  individual,  bygiving him  orientation and incorporation into cultural traditions, by   extending or narrowing the  scope   of information   available   and  of   thought and action,   by   partially  relieving   the   individual   from   making

    decisions   about   issues already   predetermined   by   the structure of   society,   and   by   activating   or

    deactivating   his  latent   aptitudes.Again, the  two   levels  of  individual behaviour and of the  collective   social  field   have been   organized in

    a  self-consistent  manner, and the  direct   interaction  between  individuals  i s  to a large   extent substitutedby an indirect   interaction  mediated through the institutions and   organizations   of  society.

    The   other   principle relevant to the problem   of   level  structure   is   the   “slaving  principle”,  set   up by

    Haken [1]. It  was his ingenious idea to  explain the fact that  on  the   macroscopic level only a  few orderparameters dominate the  dynamics   of  the  system  via   consideration   of  the   time   scales   of  motion   of  a  setof   interacting variables.   The   essence   of   his   algorithm   can   be   described   as   follows:   Start   from   thestationary   solution   of  a set  of  nonlinear equations   of  motion  for the   system  variables.  After   changing

    some   exogenous   control parameters,   it   appears that in general   only   a   few  variables   v~(t)become

    unstable and   slowly  begin   to   grow, whereas  the motion  of  the bulk  of   the variables   v~(t)around theirstationary values   is   quickly damped out.   It turns  out that the   further temporal evolution of   the  v4(t)   is

    “slaved” by  the v~(t),since the fast variables  v4(t)  hastily   adapt to the   ruling variables   v~(t).Hence thev5(t)   can   be   expressed   in   terms of   v~(t),and   therefore  “adiabatically”   eliminated.  As a result thedynamics of the whole system can  be   expressed  solely by   equations   of  the  few  “order parameters”v~(t)which dominate the   whole   system.

    This   algorithm   not   only explains   the   arisal   of   a   quasi-self-contained dynamics   for   a   few   order

    parameters growing to  macroscopic size, but   also how this fact is connected with   —  in   physics frequentlywell-separated   — characteristic timescales separating   the   slow,   dominant   order parameters   from   themajority  of  fast, but   slaved   variables.

    The  slaving principle   can also be   transferred to   social systems,  at least in  i ts  general spirit, however,making   two   natural   reservations:   In   contrast to   physics,   social   science   has   no   fundamental sets of equations of motion   available   for the   variables   from   which   the   order   parameter  dynamics   can   bederived;   furthermore,   due to the   complexity   of   the   social   system,   we   must  expect an overlap of tirnescales,   preventing perhaps in most cases a  clear-cut   distinction between  slow  and fast, or unstable

    and stable   variables.  Due to the   lack   of   equations   of   motion   for fundamental variables our   starting

  • 8/9/2019 Physics and Social Science - The Approach of Synergetics Weidlich1991

    11/163

    W .   Weidlich,   Physics and  social  science  —  the   approach  of  synergetics   11

    point for   quantification   must  therefore be a different one.   We wi l l   see,  however,   that our  formalismimplicitly  takes  into   account   the   slaving principle, too.

    After having discussed some  generally applicable principles for the stratification  of  reality, let   us nowdiscuss some   differences between  physical  and  social systems.  Although we cannot   give  an  exhaustivedefinition of  “complexity”,  the  following   considerations   lead to the conclusion that  physical systems   stillexhibit   a   relatively   “well-ordered”   kind   of   complexity,   whereas   in   social   systems  we   find   a   fullydeveloped   “intertwined”  kind  of  complexity.

    In   physics   we  have relatively  few   hierarchically   ordered  levels,   ascending  only  a few   steps from themicroscopic to the  macroscopic   structures. Each  level   is   distinguished  by only  a few  stable,  qualitativecharacteristics.  The   levels are   well   separated,  and the interaction between them takes  place   verticallybetween adjacent   levels,   as   in the case of   particles   interacting   with   their   self-consistent   field.   Forexample,   taking the earlier   sequence:   (nuclei +electrons)   —  (molecules)   — (gas  or liquid   or   solid), weobserve   that   the   qualities   of the   individual levels   are   well   defined   and   well   separated.   Take,   forexample,   the   complex   level   of a   gas.   The   properties  of   this   level   are not   greatly   influenced   by   thedetailed structure of  molecules and are   influenced even less  by the structure of  the  nuclei composing themolecules:  Only the   specific heat of the  gas   is  somewhat   modified  due to certain  energetically  excitablestates   of  the   molecules.

    Therefore  it  appears that the  lower level provides the constituent  units for the next higher level   only.This means that  atoms  or  molecules are the constituent  units  of  the  gas, but the detailed  composition   of these   atoms   in terms   of   elementary   particles   is   no   longer   important  for the   properties  of the   gas.Statistical mechanics   and/or  solid state theory then shows  us the   (vertical) interaction between the  levelof the constituent   units  and the  level  of their  collective.

    The   characteristic timescales   on   which  the  motion  of the microvariables  and of the   macrovariablesoccurs, are   usually  well   separated   (as  presumed for the   slaving  principle),   so   that the faster variablesnormally adapt to   quasi-equilibrium   in  relation to the   momentary   values of the   slow   variables.

    The   social  system in many   respects exhibits  a higher  degree of   complexity. Firstly   there exist manyorganizational levels,  such   as the  family, the  school, the  firm, the  political party, the  church, the  “club”,the   association, the   university, the government etc.   These levels are more   densely spaced and are  also

    mutually   overlapping,   as   the same   individual   can   simultaneously  be the elementary unit in   severalorganizations,   playing  a  specific   role   in   each   of  them.   The   qualities and   attributes characterizing   eachlevel   are more diverse   than   in   physics.  Also   new   types   of   qualities   appear. For   example,   one   candistinguish between structural and   functional characteristics,  which  do not necessarily   coincide since thesame function  could  be exerted  by different structures and one structure  can  carry out several   functions.

    Since   many  overlapping organizational structures compete at the  macroscopic collective level, we  notonly have  “verti~al”interaction  between the  micro-  and macrolevel,  but  also “horizontal”  interorgani-zational interaction   on   the   macrolevel.

    Even birth and  death processes of  whole organizations,   such   as the  birth or death of a political  party,must   be   taken   as  part   of   the   effects  of  such   interactions.   Under   critical   conditions,   i.e. revolutions,which   signify   the   phase   transitions of  society,   the whole  intra- and   interorganizational  dynamics  may

    change  dramatically,   so   that   simultaneously many   old   order parameters (i.e. governments, institutionsetc.)   may decay  and   new   ones  may be formed.   Usually the  dynamics   of   all the  macrovariables whichcharacterize the organizations take  place  on   around the   same timescale. Thus   a distinction  between fastand  slow variables,  allowing  the  elimination of fast  variables,   is  virtually impossible.   Hence, in  generalall   suborganizations  on  the   macrolevel show a fully dynamic   interaction  and thus it   becomes   difficult to

  • 8/9/2019 Physics and Social Science - The Approach of Synergetics Weidlich1991

    12/163

    12   W .   Weidlich,   Physics and   social science   —  t he   approach  of  synergetics

    separate off the  quasi-self-contained  subdynamics   of  certain   organizational   sublevels. Only  if  i t   can  beproved   that   the intra-organizational interaction   is   much   stronger   than the   inter-organizational   inter-action, then the organizational substructures  have a certain  stability which may justify their   treatment  as

    separate sectors of  society.A  further complication   arises due to the fact that the elementary  units  at the   microlevel  of   physical

    systems  are poorly   structured,   whereas   the   elements   of   society,   i.e. the   individuals,  are   themselvescomplex systems.  The   microsystems  (atoms,  molecules)  of  physics  have at   most only  a   few   excitabledegrees of freedom; in contrast, the  soc ial individual has a manifold  of  potential  modes of behaviour.   Itdepends   on   the state of  all organizational macrolevels in  which the  individual   simultaneously plays hisrole, which mode  of  his behaviour or action   is excited and hence surfaces,  and which on  the  other handremain latent and dormant.   Obviously the relative flexibility of the transitions between the  dormant and

    active  modes of   individual  behaviour,   in   sensitive   interaction   with   various   macrolevels,   will   furtherincrease   the degree of  complexity   of  the   social   system.

    This high complexity, the   causes of which have been  enumerated here to   some extent, may have ledsome social scientists   to the   conclusion  that a quantitative   treatment  of   social   systems   is   inadequate,perhaps   apart from   some minor investigations.   However,  in the next  section  we  will   give   argumentsfavouring   quantitative  mathematical modelling in   social  science.

    1.3.   Quantitative   modelling   in   social  science

    We have   already   argued that in  all  sciences,   and particularly  in   those   rich  of different  qualities,  acareful,   qualitative   analysis of the   system must  precede   quantitative modelling.   Now we  will  argue  thatthe gap between   qualitative  and quantitative thinking in the  social  sciences   is  not a principal one, butthat   there exists  a  considerable,   although  at times tacit overlap and even an  intense joining  of  both  linesof  thought.

    On the one hand the  analysis of a  — qualitatively arguing   — social scientist or of a statesman  will be

    excellent   if he   selects   at   most   a   few   dozen   relevant   macrovariables   of   the   social systems  underconsideration   and if he makes,   in   his qualitative   model,   an   assessment   of   the   interactions  of these

    variables. If he  also has information or intuition enabling him  to make estimates concerning the  order of magnitude   of   the   variables  and their mutual   influences   (that   means already  quantitative   estimates!),then he   can  come to   conclusions  about the   dynamic   behaviour of   the   system.   This dynamics   can  be

    interpreted in relation to   changes  of  variables and  changes in the strengths of their mutual   influences.

    (The   latter are again  estimates concerning  the evolution of   magnitudes  and of  degrees of interactions.)Thus qualitative   modelling   tacitly implies   estimates about the quantitative   amount   or magnitude,

    strength or intensity  of  the relevant  qualities.On the   other hand, the explanatory  potential  of  quantitative   (dynamic)  models would be  very much

    underestimated  if their value would only   be seen  i n   making  simple statements about the output  of  some

    quantities in  some process.   Instead,  the  most   important  questions answerable  by   a quantitative   modelare of a   qualitative nature!

    Let us now ask   some more  refined   qualitative   questions  about   system behaviour, which  can   only  beposed with  some   exactitude  if an adequate   quantitative   model   can  be developed.   Which   variables  aredominant and   which  are   negligible   under the   control   of   given exogenous  parameters and   in   a  givenendogeneous stage  of the   process? When   is  the process accelerating   and when  i s   it  saturating? Underwhich circumstances   do   the   effects   sustain   the  causes,  and when  do  they counteract the   causes?

  • 8/9/2019 Physics and Social Science - The Approach of Synergetics Weidlich1991

    13/163

    W .   Weidlich,   Physics and   social  science  —   the  approach   of  synergetics   13

    Other   questions  to be  answered   by   quantitative  models  are  of  an even more  qualitative nature andrefer to the   global   dynamic   behaviour  of the   system.   For   example:   Will   the   system exhibit   cyclicbehaviour or   stability?   Will   there   exist phase   transitions between different   dynamic modes,   at   thecritical values   of  certain exogenous parameters, for  instance transitions between stability, periodic (limitcycle) behaviour and chaotic  (strange attractor) behaviour? What  i s the uncertainty  of  a  given  path, thatmeans, the   variance of   deviations   from   the   given   system trajectory due to   fluctuations?

    With respect to  such  structural   insights,  quantitative mathematical   models have an  operational valuesuperior   to   that of  purely   qualitative  models and  explanations,   only  orientated  towards  the   given realsociety:   Once   set  up, a mathematical   model not  only attempts to describe the  given realized society,   butby   variation   of   its   system   parameters,   it   yields   insights   concerning   the behaviour   of   a   manifold   of 

    fictitious, unreal  societies  and thus   sharpens   the  view   on   the   structure  of the   given   society.Qualitative   concepts   are   indispensable prerequisites   for   setting   up   a   mathematical   quantitative

    model,   but,   on   the   other  hand,   quantitative models may contribute in   making   qualitative  concepts

    unique and  measurable   and   in   providing   insights into   a   manifold   of   qualitative   structures. Thereforeone may speak  of  a   “feedback  loop  between   qualitative   and  quantitative   thought”.

    In   relation to the value   of   quantitative  models   within   such  a   mutually   supporting   and   reinforcingfeedback loop,   it   is  not   necessary, and in  general   also not attainable,  that the models reach  exactitudein the literal  sense of  exact numerical values,  for a ll  variables and   system parameters  involved.   Instead,

    it   is  better that we introduce the   concept   of   “semi-quantitative   modelling”.Thus,   semi-quantitative  models should  be generic and  robust. That means, they   should describe the

    essentials  of   the   dynamic   interrelations between the variables  of  a   sector  of the   society, typical for aclass of phenomena   in   that sector.   Such models can   neglect minor and   incidental  items,  however,   evenat the expense of  exactitude concerning numerical detail,  if the   essentials are robust,   that  means if theyremain stable under  such   slight   neglect.

    Semi-quantitative   modelling  therefore  implies the  philosophy  of  keeping the model   as   transparent aspossible   by  selecting   a   small   (but  still   quasi-self-contained)   set   of   variables   of  high  explanatory  valueand   by   introducing  understandable   exogenous  parameters, instead  of   using an   inflated multi-variablemodel,  and thus   simultaneously losing  the   interpretative  reasoning.

    Having   the potential advantages of quantitative   methods   in   mind,   we   will   now   formulate   somegeneral  requirements for quantitative  modelling,  in relation to   social  science:

    1 .   The   models should   be  generic  and robust, and  simultaneously   parsimonious   in the number ofvariables  and parameters used,  so   that their   interpretative  transparency   is   still  preserved.

    2.   Since the  level structure   is   so fundamental, the  models should relate in some   transparent way  to atleast  the   main levels, namely to the level  of  individual  behaviour (i.e.  decision making) and to the  level

    of   collective  macrovariables   (i.e. the  global dynamics).3 .   Since  the elementary decision   making   can  only  enter into   the  theory via a probabilistic   description,

    the theoretical   framework   should allow for  formulations   including stochastics,  and,   on  the  other hand,by  neglecting fluctuations,   also   allow   for   a quasi-deterministic description.

    4.  Starting with certain “phenomenological” considerations, the models should have a “horizontally”

    and  “vertically” open structure. That  means   that “horizontally” the  model structure  should   in   principlebe   flexible enough to separate off  sectors  (for more  specialized treatments)  or,   conversely,   to  combineseveral   sectors   of   society   (for more   comprehensive   treatments).   “Vertically”   speaking, the modelsshould  be open to the   addition   of  deeper, theoretical   explanations   and   laws of   the   dynamics   of  anyparameters   entering   the   models   on   the   individual’s   level.

  • 8/9/2019 Physics and Social Science - The Approach of Synergetics Weidlich1991

    14/163

    14   W .   Weidlich,   Physics and   social   science  —   the  approach   of  synergetics

    5.   In   cases   where   empirical,   numerical data are   available,   the models   should   allow   regression

    analysis to   determine their parameters. By   solving their equations of motion, the models  then shouldgive   rise  to short-term and medium-term   forecasts.

    2.   Interaction   of   macrovariables   — semi-quantitative considerations

     2.1.   Th e   macroscopic   approach

    In this chapter  we  pursue a purely macroscopic approach  by directly setting  up   equations   of  motionfor the  dynamics of   macrovariables.  Such a  macroscopic approach  has,   up to now, mainly been appliedin  macroeconomics,  where plausible   model equations are   set up   for aggregate variables like   the global

    production, the   gross national product and for global  factors like  total   investment, total   capital  and thenumber   of   employed  workers  i n  a national  economy.

    However,   for   each macroscopic   theory   there   remains to be   solved   the nontrivial  (reductionistic)“aggregation problem” of how the   macrovariables, their   interactions  and dynamics   can  be defined andderived in terms  of  microvariables and their   interactions.   (This relation between  micro- and  macrolevel

    will  be   treated   in  detail in chapters   3  and 4.)Here  we   will  consider   the  interaction   of   macrovariables, in order to  give a  strongly  idealized, hence

    semi-quantitative explanation for the phenomenon,   that,  at the   level  of  the   group,  the organization orthe whole society, in social   systems certain   processes approach either a stationary state or a   quasi-cyclic

    motion.

    Our   procedure   will   be the   following:   Initially,   simple   “generic”   forms   of   interactions   betweenquantified   socio-economic macrovariables   are introduced,   including   in particular “cooperative” and“antagonistic”   interactions. Secondly,  a   dynamic model   is   set up   implying these   kinds   of   interactionsbetween  its  variables.   All   variants of  its  simplest version, namely the  two-variable  model,  can   be   solvedexplicitly.   According to the   choice  of  the interaction type, the   trajectories approach either   fixed pointsor a  quasi-cyclical  motion. The   latter  case  includes   trajectories spiralling towards  a fixed point  or  a limit

    cycle.Finally,   the   so   defined abstract   “metamodel”   is   then  applied  to the  dynamics   of  concrete   cases by

    appropriate   concrete   interpretations   of   the   variables   and their   dynamics.   One   could   say   that themetamodel represents the skeleton  of  the   system by  providing  the  underlying  dynamics, and the  flesh  of the   system   can  be seen   as   the concrete meaning and   substantial   interpretation of the   variables   andinteractions.  Two cases from different sectors of  society   will  be   directly discussed:   political   systems (theinteraction   between government and people) and   economic   long   term   cycles   (the   dynamics   of   theprosperity,  recession, depression   and   recovery phases).  More examples   can  be found  i n   ref. [6].

    2.2.   An  abstract  metamodel   describing stability  and  cyclicity

    Let   us   now specify the  possibilities  of  elementary  influences between  macrovariables. In  doing so  wewill  at   first  completely disregard the concrete   nature of the   macrovariable considered.   W e   only assumethat the  variables  are   quantifiable by  whatever method and also assume real,  continuous positive values.These values   are a measure   of   the  amount/degree/amplitude/intensity   of the   quality  behind themacrovariable.

  • 8/9/2019 Physics and Social Science - The Approach of Synergetics Weidlich1991

    15/163

    W .   Weidlich,   Physics and   social   science  —   the  approach   of  synergetics   15

    Being reduced to their quantitative measures only, the   influence of one variable,   say x,  upon   anothervariable,   say  y,  can  only   be   expressed   in   quantitative terms,   disregarding   its   concrete   meaning.   Onlyfew  possibilities   of  such   a   quantitative influence are  feasible,   and   will now  be   discussed:

    (a)   The   variable x   can  support   (enhance)   the   amplitude   of  y,   or(b) the variable x  can   suppress   (diminish)   the   amplitude  of  y.

    If  y coincides  with x  itself,  we have in case (a)  a   self-supportive x variable  enhancing   its  own amplitude,and in  case (b) a   self-suppressive x  variable  saturating   its  own amplitude.

    Of course the degree of support or   suppression  of the passive   variable  y by the   active variable x willdepend on   the   amplitude  of both   variables.   In particular, the   active  variable x may  — depending on~itsown  amplitude   — switch from  support to  suppression  of the   passive   variable   y,  or vice  versa.

    Let us now introduce   two   kinds of  active x  variables with   specific  support/suppression behaviour inrelation to their   passive   partner  variable y:  The   (active)   variable x   is   denoted as   cooperative  with   the

    (passive) variable  y, if   it  supports  y for large x, but   suppresses  y for  small x. (Hence the   cooperativevariable x   tends to   assimilate   the   magnitude   of  y in   relation to   its   own  magnitude.)

    On   the  other hand, the   (active)  variable x   is   denoted as   antagonistic to the  (passive) variable  y, if   itsuppresses y for large x,   but  supports  y for small  x .   (Hence the  antagonistic   variable x tends to   opposethe   magnitude   of  y in   relation to   its  own magnitude.)

    This   type   of   cooperative   —  or   alternatively   antagonistic   — interaction   of one   (active)   variable with

    another   (passive) variable seems  to   occur   frequently   in   social systems.   Therefore we   will   use   thisinteraction   type   (appropriately idealized)   as   a  design   element   in   building  a   “generic   metamodel   of dynamic   interaction”.   W e   will   restrict   the   model   to   two   variables,   although  generalizations   are   easilypossible.   And of course,   each   variable   can  play the   active   as   well   as the   passive   role.

    Furthermore,   assuming that both  variables x and y are self-saturating, the   simplest type of equationsof motion, capable of   including   interactions   of   the   cooperative   or   antagonistic   type and   of   self-saturation   seem  to be  generalized   logistic   equations  of the   form

    dx/dT=x[a(y)s—x],   0

  • 8/9/2019 Physics and Social Science - The Approach of Synergetics Weidlich1991

    16/163

    16   W .   Weidlich,   Physics and   social   science  —   the approach   of  synergetics

    these micro-equations   (in  this sense the  aggregation problem  can  here be seen  as   solved):  Let us think of   two   groups of   individuals i =   1,2,.   . . ,  N  and  j =   1,2,.   . .   ,M,   whose   individual   activities   can  becharacterized by   the   variables   x.(t),   i  =   1 ,   . . . , N  and  y.(t), j  =   1 ,   . . . , M,  respectively.   Furthermore,let

     x(t)  =   c~x1(t),   (2.5)

     y(t) =  ~   d1y1(t)   (2.6)

    be   collective variables  formed  with   the   x1(t)  and y1(t),  where   c,  and   d .   are  coefficients   describing therelative weight  of  x1(t)  and y.(t)   in   x(t) and y(t),   respectively.

    Assuming   now   that x,(t)   and y.(t)   satisfy  micro-equations  of the   kind

    (d/dT)x1 =   x,F(x,  y),   (2.7)

    (dIdT)y1 =  y1.G(x,   y),   (2.8)

    one   easily   obtains, after   multiplying (2.7) with   c,   and   (2.8) with   d   and   making   sums,   the   exactmacro-equations,

    (d/dT)x =   xF(x,  y),   (2.9)

    (dldr)y =   yG(x, y).   (2.10)

    Obviously,   (2.1),   (2.2)   and  (2.3), (2.4)  are  special cases of  (2.9),   (2.10) making the  following  choices:

    F ( x ,   y)=a(y)s—x,   G ( x ,   y)=b(x)s—y,   (2.11)

    or

    F(x,y)=a(y)c(y—x)s—x, G(x,y)=b(x)c(y—x)s—y.   (2.12)

    One should   note,  however,   that the  form   of  the   assumed  micro-equations   (2.7),   (2.8)   is  a very specialone:   Each   individual variable   x,,   y1 interacts   with each   other   individual variable   Xk,   y1,   only   via   thecollective variables x and y in the   functions F(x, y) and G(x,   y)!   In  practically all   other cases, obtainingexact  macro-equations   from   the   set   of  micro-equations   is  not   possible, although   the  macro-equationsstill  may make   sense,  but   only   as   an  approximate  description of the   collective dynamics.

    Now   we   must   specify   the   influence functions   a( y),   b(x) and the   twist   function   c(  y — x).   We  havechosen idealized   forms,   namely   step   functions,  for   a(y) and  b(x),   showing either a   cooperative   or  an

    antagonistic   influence   of  y  on  x,   or vice   versa   of  x   on  y.  Also   c(  y — x)   is  chosen   as  a step function.Thus, the   influence   of  y on  x   in   (2.1)   is   cooperative,   if 

    a(y)=a

  • 8/9/2019 Physics and Social Science - The Approach of Synergetics Weidlich1991

    17/163

    W .   Weidlich,   Physics and   social  science  — the approach  of  synergetics   17

    and i s   antagonistic,   if 

    a(y)=a~>0,   for0

  • 8/9/2019 Physics and Social Science - The Approach of Synergetics Weidlich1991

    18/163

    18   W .   Weidlich,   Physics and   social   science   —  t he   approach of  synergetics

    case  - y   the   influence of x   on   y   is   cooperative   [see (2.15)],

    the   influence of   y   on  x   is   antagonistic   [see   (2.14)];

    case ~ the   influence   of  x  on y   is   antagonistic   [see  (2.16)1the   influence   of  y on  x   is   cooperative   [see  (2.13)].   (2.20)

    In   each   of  the four variants of the  model,   a,   1 3 ,   - y ,   ~,   each of the four quadrants I, II,   III, IV of  thevariable space assumes one of the  types a, b, c, d .   The   following allocations are easily made,  taking into

    account the   definitions (2.20)   of  the   model  variants,   (2.18)   of  the   quadrants, and   (2.19)  of the   types.

    Thus:

    casea   I~(a), II~(b),   III2(c),   IV~(d);

    case13   I~(c), II~(d), III~(a), IV~(b);

    (2.21)case   - y   I (d)   ,   II   (c)   ,   II I   (b)   ,   IV~(a)

    case ~ I (b)   ,   II   (a)   ,   III (d)   ,   IV~(c)

    Figures   2.la   to  2.Th   illustrate   the  quadrant structure   of  the   cases   a to   ~l.Now   we  will  discuss the  solutions  of   the  model variants. The simple   choice  of   the   influence functions

    has the advantage that the   coupled   equations of  motion  (2.1), (2.2) [and also  (2.3), (2.4)] can   be  solvedexactly   in   each   quadrant.   This   is   the   first  step to   obtaining   the   full   trajectory   within   the   space   of variables.   In   each of the  quadrant   types  a, b, c, d both   equations   of   motion   (2.1),   (2.2)  have certainconstant growth  rates and can  be solved  explicitly.  By eliminating the time  one also  obtains the   explicit

    form   of  the   flux   lines.The   results  are summarized   in  eqs.  (2.22), (2.23),  (2.24) through  (2.31), (2.32),  (2.33) for quadrants

    of  type a, b, c, d,   respectively.

    Quadrants   of  type   a .Equations  of   motion:

    dx/dr=x(a~s—x),   dy/dr—y(b~s—y).   (2.22)

    Solutions:

     x0a~sexp(a~sr)   y0b~sexp(b~sr)

    x(r)=    ,   y(r)=   .   (2.23)x0exp(a÷sr)+(a~s—x0)   y0exp(b~s’r)+(b÷s—y0)

    Flux   lines:

    [y/(b+s   —   y)]a+   — [y0/(b~s   — y0)]’~   2  24

    [x/(a+s    — x)]b+    —   [x0/(a~s   — x0)]~   (   .   )

  • 8/9/2019 Physics and Social Science - The Approach of Synergetics Weidlich1991

    19/163

    W .   Weidlich,   Physics and   social  science  —  the   approach of  synergetics   19

    Y    (a)   Y   ( 1 3 )

    a(y)=a~>0   a(y)=a~>O   a(y)=ci.Ob(x)=b.O   b(x)=b~>0   b(x)=b_O a(y)=a~>Ob(x)=b_O b(x)=b~>O b(x)=bO a(y)=aO   b(x)=b...

  • 8/9/2019 Physics and Social Science - The Approach of Synergetics Weidlich1991

    20/163

    20   W .   Weidlich,   Physics and   social  science  —   the approach   of  synergetics

    Flux   lines:

    [y/(~b~s   +  y)j~[x/(a~s — x)]~=  [y 0/(~b~s + y)]a+[/(as   —x0)J~.   (2.27)

    Quadrants   of  type  c.

    Equations   of  motion:

    d x / d T   = x(—~ajs — x),   dy/dT  = y(—~bjs — y).   (2.28)

    Solutions:

     —   x0(ajs   —   y0~bjs

    x(T)—  —x0+(~as+x0)exp(~a~sr)’   y(r)_   —y0+(~bs+y0)exp(~b~sT)~   (2.29)

    Flux   lines:

    [y/(~b~s   +   y~Q-  — [y0!(~b~s+  y0)]Ia~~[b     —   .   (   .   )

    [x/(~a~s + x ) 1   -   [x~/(~a   s +xe)]

    Quadrants   of  type   d .

    Equations of  motion:

    d x / d r   = x(—~a.js — x),   dy/dT  =  y ( b + s   — y).   (2.31)

    Solutions:

     x0~ajs   y0b~sexp(b~sr)x(T)=    ,   y(T)=    .   (2.32)

    —x0+(~as+x0)exp(~ajsr)   y0exp(b÷sr)+(b~s—y0)

    Flux lines:

    [y/(b~s — y)1~   [x/(~a~s+ x)]b+   = [y0/(b~s — y0)~Ia][~0/(~~s + ~   (2.33)

    In   all  equations   (2.22)  to (2.33), the  x 0   and   y0   are   initial values for   x(T) and y(T)  at   T = 0 .   In   the  fluxline equations   (x0,   y0) can be   considered   as  any predetermined point   on   the   flux   line.

    The   second  step in  finding the   full   trajectories in   the  variable space   is  the formulation of  matching

    conditions for the   flux   lines  at the inner boundaries of adjacent quadrants.As an   example   for   matching the   flux   lines  between different quadrants,   let   us   discuss the   model

    variant a and the matching at the boundary between quadrants I and II, that  means at points (x12,   y12),where x 1 2   = x~and y~

  • 8/9/2019 Physics and Social Science - The Approach of Synergetics Weidlich1991

    21/163

    W.   Weidlich,   Physics and   social   science  —   the   approach  of  synergetics   21

    [yI(b~s   — y)]a+    — [y12/(b~s  —y2)}a÷    2 3

    [x/(a÷s_x)]b+    —   [xsI(a+s_xs)Ib+    (   4)

    and the   flux line in  quadrant II,  which   is  to be matched at (x~,y12)   obeys,   according to  eq.   (2.27), theequation

    [yI(~bjs    +  y)]a+[    I(as   —   = [y12!(~bjs   + y   )Ia+[xI(as    —x~)]~.   (2.35)

    In   this   way   all   the  matching conditions between the quadrants I, II,   III and  I V ,   can  be   set up   for   allvariants a,   1 3 ,   y ,   ~ of   the   model.

    This   somewhat  cumbersome  but  straightforward  analysis of  a ll   matching conditions  (see ref. [6])nowleads   to the   following   results,   which   seem to be   generic.   The   analysis also   seems usable   for   lessidealized forms  of  cooperative   or  antagonistic interactions.

    1 .  The   cases   a and   1 3   with  a  symmetric  relationship between the   variables x and y, and  with bothvariables being   cooperative  or both being   antagonistic, leads to   stability.   In these cases the   flux  lines of 

    each   quadrant cross  either one   or   the   other boundary to   an  adjacent quadrant.   The two   types  of   flux

    lines   in   each   quadrant are separated   by   separatrices which   end at the   center of the  quadrant system,namely  at point   (x~,y~).

    In case a,  with  both variables being cooperative,   the  flux lines end in one of two stable  fixed points,

    either in point (0, 0)  or in point  (a~s;b~s),where both   variables simultaneously reach their saturationlevel.   In   case 1 3 ,  with both  variables being antagonistic, the  flux   lines  also  end in one of  two stable  fixed

    points, either   in   point (0,   b÷s),where x   is  zero and y has reached   its   saturation   level,  or in point(a÷s,0), where y   is   zero and x has  reached   its  saturation   level.

    The   cases   a and  1 3   are   illustrated in   figs.  2.2 and  2.3.2.   The   cases   - y   and ~ with   an  asymmetric  relationship   between   the   variables  x and y, that   is  one

    variable   being   cooperative   and the   other   antagonistic,  lead to   cyclicity.   In   these   cases   the   flux   lines

      __   ~

     /   ///    -.   ///“A\\\    \I    J 17    _-‘~   ~—.-.-_    /  I  /   ,“   Z  \\\   \ 

    I    ~   .~   .,~   —.----—-.-—-.-——   I    I  f   ,   ~   \‘\   ‘ ‘ 

    ~Er~—~I    J    7    ~   \~   ~

    li//V    V\\\\\    \

     ////‘7~7’   \~\  \ III,,,-    ~   ~    ~   ~    \ 0 ~

    0   z   $   0   S x   x 

    Fig. 2 . 2 .   Case a.   Flux lines   and separatrices, if both   variables x   and y   Fig. 2.3. Case 1 3 .  Flux lines   and  separatrices,   ifboth variables x   and y

    are   cooperative. Parameters: x~= y~= z; s   2z; a~= b,   = 1;   a_   =   are  antagonistic. Parameters: x~= y~= 1~s  = 2z; a~= b~= 1;   a_   =

    b   =—1.   = — 1.

  • 8/9/2019 Physics and Social Science - The Approach of Synergetics Weidlich1991

    22/163

    22   W .   Weidlich,   Physics and   social  science  —   the approach   of  synergetics

    y   x

    Fig. 2.4. Case ~ywith   cooperative  x ,   antagonistic  y ,   and  contracting twist   function.  The   flux   lines   spiral into the stable   focus  (z, z). Parameters:

    c1   = 0.5;  c 2   = 1.0; a~= b~= 2;   a   =  b   =   — 1;   z  =  1 ;   s   50 .

    (a)   (b)

     y   z

    Fig.   2.5.   Case ~ywith   cooperative x,  antagonistic y,  and amplifying twist function.   The flux lines spiral  outward   from the  unstable  focus   (z, z) and

    approach   a limit   cycle.   Parameters:  c 1   = 2;   c2   = 1; a~= b~= 1;   a_   = b_   = — 1 ;  z   = 1;   s   = 50 .

    within   a  quadrant connect  both inner boundaries  of  that quadrant.   Hence the   trajectories sequentiallytraverse the   quadrants,  which   is  only   possible  if they encircle  the centre   (x5, y~)of  the quadrants. No

    separatrices exist  in these   cases.The   twist   function c( y  — x)  can  now either be  chosen   such that contraction  of  the variables prevails

    and the trajectory   spirals   into the stable   focus   (x~, y~),or   such   that   amplification  of the   variablesprevails.  In the   latter case,   the  focus   (x5, y~)is  unstable and the trajectory   must spiral towards a   finitelimit cycle,  due to the saturation terms   in  the equation   of  motion.

    Figures  2.4 and  2.5a,b illustrate   cases   - y   with  either  contracting or   amplifying   twist  function.

  • 8/9/2019 Physics and Social Science - The Approach of Synergetics Weidlich1991

    23/163

    W .   Weidlich,   Physics and   social  science  —   the  approach   of  synergetics   23

    2.3.   Selected   examples of  model interpretation

    Proceeding  as   indicated   in  section   2.1  we will now give different interpretations of the  model, leadingto a  semi-quantitative understanding  of the   social  dynamics.

    At   first   we   apply   the model to the relation between   people   and their   government,   to obtain an,admittedly   vague,  understanding   of   possible   dynamic modes.

    We   begin   by   identifying   the variables x and y.   Thus   let  x represent the degree of   influence anddemocratic participation   of   the   people,   and   let   y represent the degree  of  power and authority of the

    government.   (Both variables can   in   principle  be   quantified   by forming   weighted  means over  values of appropriately   chosen   indicators.)

    Next,   the   interaction   between the   variables   must   be   specified.   It   is   obvious,   that the kind   of interaction must be   assessed from   the  historical   experience  of governments and   people.   However,   the

    model  can   only   show  certain   dynamic  consequences   of  the presumed   interactions.   An   important casefound in the  analysis of attitudes  within   political  systems seems  to be that of “cooperative” people (x)

    and a “cooperative” government  (y).  This means,   in  the sense of the abstract  definition of  cooperationas  given above,   that the   following concrete interactions  can  be seen:

     Influ en ce   of x o n y:  If the people are   influential  (large  x),  they   tend to   affirm   the   activities  of   the

    government; however, if the  people  have little or  no  possibility  of  participation   (small  x), they tend toobstruct  the measures   of  the   government.

     Influ en ce  of  y on  x: If the government has power (large y), then  i t   is  efficient   in  supporting the peopleand their participation;  if,  however, the government   is   afraid to   lose   its authority   (decreasing y),   it  triesto suppress the   influence of the   people.

    Evidently this  kind of interaction  can  be  identified  with   case   a of the metamodel.  Accordingly, weexpect   that  such   a   political   system   will   eventually   evolve   into   one   of   two possible   states   of   stability:

    either   the state of “cooperative   democracy”   (where  x   is   large and  y   is   large),  where the peoplerespect   and  cooperate with  the government, and the government supports and  acts for the people,

    or  the state  of   “frustrated   democracy”   (where x  is   small and y is   small), where the people obstructgovernment policy and the government in   its   turn represses   the participation  of   the   people.

    It depends   on   the   momentary  state (x, y)  of the   system   as to  which of the   two  stable states  will bereached.   The   trajectories  ending   in   “cooperative democracy”   are   separated   from   those   ending in“frustrated   democracy”   by   a   critical  separatrix   in the   system space.

    The   question   now   arises   whether a   momentary   state   of   the   system   could   be prevented   fromapproaching the  end state  of “frustrated   democracy”   by   changing some parameters of the   system.   Thisis  indeed possible   by   changing the  switching points x~and y~of the  variables x and y: If the  people beginto   support   the  government,   even while having small  influence (lowering of  x,), and if the governmentdoes not   become   repressive,  even after   having to renounce some power   (lowering of y,), the quadrantsand separatrices in the system space are   shifted.  A  system point originally doomed to end in “frustrateddemocracy”   may   now,  under   new   system   parameters,   evolve   towards the   other stationary   state   of 

    “cooperative  democracy”.

    It  is   tempting   to  interpret the  present   endeavours   in the   Soviet  Union   as  an attempt to  shift   theswitching point   in   the   interaction   between government and people, so that the government switchesfrom   repression   to the   sharing   of  power,  and the attitude of the people   switches from   obstruction   tocooperation.   By  this shift  of the separatrices the   system  point may now   (hopefully)   lie  in the  basin ofattraction of the  fixed  point “cooperative   democracy”   instead  of  being   in  the  basin   of  attraction of theendpoint of the “frustrated democracy”.

  • 8/9/2019 Physics and Social Science - The Approach of Synergetics Weidlich1991

    24/163

    24   W .   Weidlich.   Physics and   social science  —   the   approach of   .cynergetics

    Secondly, we apply  this metamodel to the   cyclic  nature of the  long-term economic evolution.   Manyeconomists  consider the existence of  economic long-term   cycles  as  being very probable or even provedand   as   lasting   for a period of about   50   to   60  years. They agree to   discerning   phases   of   recovery,prosperity, recession,  and   depression   during  one period.  Several formal  models of   these   cycles   exist,differing   in their   assumptions   about   driving   forces   and relevant   variables,   but   having   partiallyoverlapping interpretations.   If  such models  are reduced to the core  of  their assumptions,   they consist of certain interactive  schemes  between   macrovariables.

    We can   show   that a  plausible,  rudimentary   model of the   economic long-term   cycle  can  be  given   interms of   two   interacting variables,   one of  the   cooperative  and the   other of the   antagonistic   type.   Themodel   sees   the explanation of   long-term   cycles   as   the competition between   young, innovative   andmature   or   aging   industries.  In this   sense   the following   variables are   introduced:

    x   =volume   of   innovative   young   industries, y = volume  of mature and   aging   industries.

    It turns out that x  acts   as a  cooperative  variable, and y as  an   antagonistic one. The four quadrants I, II,III,   and IV in the   space   of   the   variables,   then  correspond to the   phases   of prosperity,   recession,depression, and  recovery, respectively.   Furthermore,   by this choice of  variables  and their   interaction,the model   corresponds to case  - y of the metamodel,  exhibiting  cyclical  dynamics whose phases  can  nowbe interpreted.

    Phase  I (prosperity).  The prospering,   mature   industry   (volume y)   is   also   supported  by  prospering,innovative   industries   (volume   x).   But  y  begins   to suppress   further   innovations   and developments,because their   main  profit  comes   from   well-accepted   mass   products.

    Phase II (recession).   While  the suppression  of   innovative   developments  (volume  x)   is  still continuing,the   lack  of   innovative   drive   begins   to   cause   the deterioration of the   aging   industries   (volume y)  andleads  to   recession.

    Phase III (depression).  The   aging industries (volume y)  become obsolete and  slide  into   crisis and thusdepression. However,   their   loss   of   repressive power leads to a  revival  of  the strength of the  innovativeindustries (volume x).

    Phase  IV  (recovery).   Since   the   crisis   of  the obsolete   industries   (y) has facilitated the rise   of  strong

    innovative  industries (x), the latter now   also  promote the  recovery   of  the mature  industries.We   conclude   this chapter   by   applying,   somewhat jestingly,   the metamodel to a   quasi-cyclic

    phenomenon   from   every-day   life, well   known to the keen observer: the   restaurant   cycle.  Thus,gourmets living in a  city  will have   detected the opening  of  a  new  restaurant;   its   reputation increases  dueto a  high   quality  of food, until   some  time later the   reputation  declines,  so that the   restaurant  mustclose,  perhaps to be   reopened   afterwards   by a   new   owner.

    We  shall now   explain  this strange  phenomenon in terms  of   two   interacting variables.   Let x be thequality  of  food  (perunit   of  price)  and let  ybe the number  of  guests in the restaurant.   It can  be  seen thatx interacts as  a  cooperative, but  y as an   antagonistic variable. If that  can   be  confirmed, then one expectsa  cyclic  fate of the   restaurant, according to case - y of the metamodel,  whose  phases in quadrants  IV , I, IIand III   can  be   interpreted   as   follows:

    Phase   IV   (opening).  The   small  number   of   guests   (y)   in   the   newly opened   restaurant   dictates   theimprovement   of  the   quality   of   food   (x).   This leads   to   an   increase  in the number of  guests.

    Phase   I  (prosperity).   Due to the   positive   reputation of the food   (x)   the number of   guests   (y)

    increases.   However,   this   begins   to have a   negative   effect   on   the   quality  of food,   since   the ownerbecomes  negligent   as  he  wants   to   derive  more  profit.

    Phase   II  (decline).   Since   the number   of   guests  y i s   still  large,   the   owner  can   afford   to permit the

  • 8/9/2019 Physics and Social Science - The Approach of Synergetics Weidlich1991

    25/163

    W .   Weidlich,   Physics and   social science   —  t he   approach   of  synergetics   25

    quality   of    food   to   deteriorate further;   however,   the majority of   guests become aware   of   thisdeterioration and their number   begins  to decrease.

    Phase Ill (crisis).   The   restaurant now has a bad reputation with  a continued decrease in  the number

    of  guests   (y).  Even   an   improvement in the   quality   of   food   (x)  may now come too late. Perhaps therestaurant  must  be   closed and be reopened   by  a  new   owner,   beginning   again   with   phase   IV .

    Professors  having the duty to organize after-sessions for colloquia are   advised to  select restaurants at

    the end   of   phase   IV   only, when   the   food   is   excellent  and the  dining   room   still   relatively   empty,  butnever at the end   of  phase   II, when the food is  miserable,  and the  dining room still  relatively  crowded!

    3.   The   framework  of  microbehaviour  and macrostructures

    In   the   preceding   se