Download - Petrolio e petrolchimica - s1ba7968ba6bd47cb.jimcontent.coms1ba7968ba6bd47cb.jimcontent.com/.../8852492193/name/petrolio.pdf4 La più accreditata è, però, la teoria dell'origine

Transcript

1

Petrolio e petrolchimica

sabato 21 agosto 2010

2

Le origini del petrolio

Le prime ipotesi sulle origini del petrolio risalgono al 1700: Alessandro Volta espresse l'opinione che il «gas delle paludi» o

metano, fosse prodotto dalla decomposizione di sostanze animali. Il metano venne poi studiato da Dalton.

sabato 21 agosto 2010

3

In questi ultimi anni sono state formulate varie teorie:•secondo Fischer e Tropsch, il petrolio si sarebbe formato da reazioni chimiche tra fra carbonio inorganico (carburi) e acqua ad altissime pressioni nella zona p ro fonda de l l a Te r ra ch iamata "mantello". •Il petrolio esiste nel mantello fin da epoche remotissime, ovvero fin dalla formazione del pianeta. Queste enormi quantità di idrocarburi sotterranei migrano lentamente alla superficie formando i pozzi dai quali oggi estraiamo petrolio e gas; •secondo un'altra teoria la radioattività terrestre avrebbe liberato idrogeno dall'acqua, con successive reazioni di addizione al carbonio.

sabato 21 agosto 2010

4

La più accreditata è, però, la teoria dell'origine organica del petrolio, per la quale la degradazione anaerobia di organismi morti avrebbe formato per primi gli idrocarburi superiori;

questi sarebbero stati poi elaborati da batteri aerobi e anaerobi. A convalida, si trovano nel petrolio grezzo sostanze organiche di struttura simile al colesterolo, sostanze otticamente attive e pigmenti del gruppo delle porfirine.

sabato 21 agosto 2010

5

I materiali organici da cui si è formato il petrolio sono costituiti da resti di organismi vegetali e animali (alghe, coralli, lamellibranchi, ecc.), che vivevano nel mare, allo sbocco dei fiumi o in prossimità della costa. Questo materiale sedimentava sul fondo e veniva ricoperto dai detriti portati dai fiumi: si formarono, così, rocce argillose, rese compatte dal peso degli strati che man mano

andavano accumulandosi.

sabato 21 agosto 2010

6

Queste rocce sedimentarie sono state battezzate «rocce madri» in quanto in esse si svolse il lento processo di trasformazione che ha dato origine al petrolio. Successivamente avvenne il fenomeno della «migrazione»: le rocce madri, pressate dagli

strati superiori, si comportarono come una spugna schiacciata, facendo sprizzar fuori il petrolio che andò a impregnare sabbie e rocce più porose, quindi più permeabili come argille sabbiose e calcari, ma non sottoposte a elevate forze di schiacciamento.

sabato 21 agosto 2010

7

Le rocce nelle quali si accumula il petrolio sono dette «rocce magazzino» o «rocce serbatoio» e rappresentano gli attuali giacimenti. Questi giacimenti, prettamente sottomarini, si ritrovano oggi in molte zone continentali: la loro attuale dislocazione è dovuta agli imponenti fenomeni che hanno modificato e modificano la struttura e la morfologia della crosta terrestre, trasportando ovunque le rocce magazzino e le rocce madri.

Il petrolio si ritrova, però, solo nelle rocce magazzino che non sono affiorate; dalle altre, affiorate nelle epoche passate, il pe t ro l io s i è d isperso in superficie e le rocce stesse si sono trasformate dando origine a tipiche rocce asfaltiche; in rari c a s i , s i è v e r i f i c a t a l a formazione di veri e propri laghi d'asfalto come quello, ancora esistente, di Trinidad.

sabato 21 agosto 2010

8

Il processo di sprofondamento può

anche continuare passando alla

catagenesi, continuando nella metagenesi e fino

ad arrivare al metamorfismo per

profondità superiori ai 6-7 Km e temperature di oltre

200°.

La trasformazione della sostanza organica in petrolio iniziano già a circa 1 Km di profondità e ad una temperatura di almeno

60 C° con il processo di diagenesi attraverso il quale i sedimenti diventano roccia e in questo caso roccia madre.

sabato 21 agosto 2010

9

Durante la diagenesi il sedimento e la materia organica, prevalentemente composta da lipidi, proteine e carboidrati

(con lignine e tannini per i vegetali), subiscono una compattazione a causa dalla pressione ed un aumento di temperatura che favorisce i batteri presenti nel terreno a

"fermentare" la sostanza organica producendo CO2 e CH4; quest'ultimo a volte può formare i famosi gas di palude, detto metano biogenico. Al termine della diagenesi la

sostanza organica in parte si è trasformata in Kerogene, geopolimero complesso progenitore del petrolio.

sabato 21 agosto 2010

10

Con l'incremento della temperatura e della profondità si passa alla fase di catagenesi dove il kerogene passa allo stato

amorfo in macromolecole formate principalmente da carbonio ed idrogeno, con una piccola percentuale di ossigeno, zolfo e

azoto. Aumenta ancora la temperatura e il kerogene continua a trasformarsi eliminando dalla macromolecola le molecole più

leggere, e relativamente ricche di O e H, assumendo una struttura via via più ordinata e stabile.

sabato 21 agosto 2010

11

Nella fase finale della catagenesi il kerogene completa

la sua maturazione (a circa 150°C e diversi Km di profondità

con pressioni di circa 1000 Atm. ). Qui avviene il processo

di cracking, causato dalla temperatura. Le macromolecole originali si rompono formando molecole di bitume (petrolio) e

di gas che, essendo molto meno dense della

macromolecola di partenza, migreranno verso l'alto e per accumularsi contro barriere

rocciose impermeabili (trappole).

sabato 21 agosto 2010

12

La produzione di petrolio avviene tra due temperature: una minima di circa 60° in cui inizia la fase di

diagenesi al cui termine si genera il kerogene, ed una massima tra i

100°-150° in cui il kerogene subisce il cracking. Queste due soglie termiche delimitano la finestra

dell'olio, ossia l'intervallo di profondità e temperatura in cui la roccia madre produce la massima

quantità di petrolio.

Alla soglia del metamorfismo (circa 5-6 Km di profondità e temp di circa 200°) il kerogene diventa un residuo carbonioso grafitico.

Non esiste possibilità alcuna di generare petrolio ma può formarsi ancora metano.

sabato 21 agosto 2010

13

Ricapitolando

sabato 21 agosto 2010

14

Qualche ripensamento?

Ottimi risultati sono stati ottenuti in Siberia, nel Vietnam, negli anni Sessanta e Settanta, e in una regione considerata per

quarantacinque anni come un bacino geologicamente sterile, il bacino del Dnieper-Donets, situato fra la Russia e l’Ucraina.

La vecchia teoria secondo la quale il petrolio sarebbe una rielaborazione degli idrocarburi inizialmente presenti nella formazione della Terra è stata utilizzata costantemente dai geofisici russi.

sabato 21 agosto 2010

15

sabato 21 agosto 2010

16

sabato 21 agosto 2010

17

La maggior parte degli olii è di tipo paraffinico-naftenico, generalmente di media densità e con poco zolfo, oppure di tipo aromatico-intermedio di solito densi e con tenore di zolfo spesso elevato. Gli oli naftenici sono molto rari.Con l'aumentare della profondità e della temperatura gli olii si alterano, diventando più leggeri, più paraffinici e meno ricchi di zolfo; viceversa, per olii più superficiali, il dilavamento per azione di acque meteoriche, accompagnato da azioni batteriche, rende gli olii più pesanti e viscosi, e più ricchi di aromatici e composti con azoto/zolfo/ossigeno.

sabato 21 agosto 2010

18

Composizione petroliparaffinici naftenici aromatici provenienza

Greggi paraffinici

60-70 20-25 10 Nord AmericaMedio Oriente

Greggi naftenici

10-12 70 10 Russia

Greggi paraffino-naftenici

45-50 30-35 15-18 Medio Oriente

Greggi aromatico-naftenici

15-20 35-45 25-50 Nord America

sabato 21 agosto 2010

19

Commercialmente, la proprietà utilizzata per descrivere il greggio è la densità, tradizionalmente espressa con il grado API. Si definiscono olii pesanti quelli con °API minori di 25, ossia con peso specifico

maggiore di 0,9; gli olii leggeri hanno densità attorno ai 40° api, ossia peso specifico 0,83. Un altro parametro che ha molta importanza nella valorizzazione del greggio è il contenuto di zolfo, che può variare tra

lo 0,1 e valori oltre il 5% peso. La maggior parte dei greggi lavorati sul mercato ha composizione compresa in una forchetta più ristretta.

500.000 barili/giorno

sabato 21 agosto 2010

20

Recupero primario Nella maggior parte dei casi, i pozzi petroliferi

vengono trivellati con il metodo "a rotazione" (rotary) brevettato in Gran

Bretagna nel 1844 da R. Beart. L'elemento più appariscente di un impianto di

perforazione è l'alta struttura a traliccio detta torre di trivellazione, o derrick, che a circa tre metri dal suolo sostiene una piattaforma sulla

quale sono montati la "tavola rotante" e il relativo apparato motore. Entro un foro a

sezione quadrata della tavola rotante (orizzontale) scorrono verticalmente,

ricevendo da questa un moto rotatorio, le aste tubolari (pure a sezione quadrata) della

batteria di perforazione, che vengono avvitate una sull'altra man mano che penetrano nel

terreno.

sabato 21 agosto 2010

21

La prima asta, che provvede alla perforazione del terreno, è dotata di

una testa tagliente (denominata "scalpello"), generalmente costituita da tre ruote dentate coniche ad assi

concorrenti, con i denti di acciaio temprato o di altro materiale adatto a frantumare la roccia. All'interno della batteria di perforazione, che penetra

nel terreno spinta dal suo stesso peso, viene pompato fango molto

fluido: questo, raggiunto lo scalpello, ritorna in superficie (portando con sé i detriti del terreno scavato) passando nell'intercapedine situata fra le aste della batteria e le pareti del foro (il diametro dello scalpello infatti è maggiore di quello delle aste).

sabato 21 agosto 2010

22

Il petrolio grezzo contenuto nelle trappole sotterranee è solitamente sotto pressione e salirebbe

fino alla superficie se non fosse bloccato da uno strato di roccia impermeabile; così, quando la trivella penetra in questi bacini petroliferi "pressurizzati", il

petrolio fluisce immediatamente nella zona di bassa pressione costituita dal foro di trivellazione, che è in comunicazione con la superficie terrestre. Il pozzo, via via che si riempie di liquido, esercita a sua volta una contropressione sul bacino petrolifero: in teoria

l'afflusso di nuovo liquido nel pozzo dovrebbe dunque cessare molto presto. In pratica,

intervengono altri elementi a sostenere il flusso: fra questi, l'elevata quantità di gas contenuto in

soluzione nel petrolio greggio, che si libera durante l'afflusso nel pozzo di trivellazione, causando una

spinta del liquido verso l'alto, o la pressione dell'acqua freatica, che pure si traduce in una spinta

del petrolio verso la superficie.

sabato 21 agosto 2010

23

A mano a mano che si estrae greggio dal giacimento, la pressione all'interno del bacino e la

percentuale di gas disciolto nel liquido diminuiscono, e dunque la quantità di petrolio che sale in superficie si riduce; a questo punto, per continuare l'estrazione

è necessario ricorrere all'azione di una pompa aspirante.

sabato 21 agosto 2010

24

Recupero secondario Quando il flusso di petrolio è diventato esiguo, tanto che pomparlo in

superficie sarebbe troppo costoso (il che accade, generalmente, quando si è estratto circa il 25% della riserva del bacino), si fa ricorso

a tecniche diverse, dette di recupero secondario. Attualmente i sistemi di recupero secondario più usati sono: l'iniezione di acqua e

l'iniezione di gas o di vapore. 1) Per coltivare un giacimento petrolifero di grandi dimensioni, è

possibile trivellare numerosi pozzi a distanze comprese tra i 60 e i 600 m, in relazione al tipo di trappola nella situazione specifica.

Pompando acqua all'interno di alcuni dei pozzi, si riesce a mantenere a un livello pressoché costante (oppure ad aumentare) la pressione interna del bacino. In questo modo si incrementa la percentuale di

recupero del petrolio greggio, sfruttando anche il fatto che l'acqua lo sposta fisicamente, facilitandone il recupero. In alcuni bacini molto

uniformi e caratterizzati da un basso contenuto di argilla, l'iniezione di acqua può aumentare considerevolmente l'efficienza del pozzo.

sabato 21 agosto 2010

25

1) Iniezione di acqua Per coltivare un giacimento petrolifero di grandi dimensioni, è possibile trivellare

numerosi pozzi a distanze comprese tra i 60 e i 600 m, in relazione al tipo di trappola nella

situazione specifica. Pompando acqua all'interno di alcuni dei pozzi, si riesce a

mantenere a un livello pressoché costante (oppure ad aumentare) la pressione interna del bacino. In questo modo si incrementa la percentuale di recupero del petrolio greggio, sfruttando anche il fatto che l'acqua lo sposta

fisicamente, facilitandone il recupero. In alcuni bacini molto uniformi e caratterizzati da un basso contenuto di argilla, l'iniezione

di acqua può inoltre aumentare considerevolmente l'efficienza del pozzo.

sabato 21 agosto 2010

26

2) Attraverso un foro obliquo rispetto alla direzione del foro di estrazione si inietta gas o vapore alla maggiore profondità possibile, in modo che questo spinga il

petrolio verso l'alto e inoltre, miscelandosi a esso, ne diminuisca parzialmente la

densità. L'iniezione di vapore è impiegata soprattutto nei giacimenti che contengono tipi di greggio molto densi e viscosi, che

fuoriescono lentamente (Bitume). Il vapore non solo fornisce energia necessaria a spostare il petrolio ma, innalzando la

temperatura del bacino, ne riduce in modo significativo la viscosità, permettendo una

fuoriuscita più rapida.

sabato 21 agosto 2010

27

Trivellazioni in mare aperto Gli impianti di trivellazione in mare aperto (off shore) sono installati su

speciali piattaforme, capaci di resistere alla forza delle onde e del vento, sia galleggianti, sia poggiate su piloni piantati nel fondale

marino, a profondità di diverse centinaia di metri. Come negli impianti di trivellazione tradizionali, il derrick serve sostanzialmente a sostenere

e far ruotare la batteria di perforazione, alla cui estremità è fissata la trivella stessa. Alcuni pozzi petroliferi trivellati da piattaforme di questo

tipo raggiungono profondità di oltre 6500 m sotto la superficie

sabato 21 agosto 2010

28

Sabbie bituminose (Tar sands)

Nel mondo esistono importanti giacimenti di oli cosiddetti “non convenzionali”, vale a dire greggi extra-pesanti e bitumi che potrebbero costituire riserve energetiche addizionali ai greggi che siamo abituati a conoscere. In quest’ultima categoria rientrano anche le sabbie bituminose, meglio conosciute con il termine di tar sands. Le sabbie bituminose sono depositi di olio greggio notevolmente più viscoso rispetto ad altri oli (extra-heavy oil, <10-12°API) . Dal punto di vista geologico, la gran parte degli oli pesanti deriva da oli maturi che, dopo essere stati espulsi dalla roccia madre, sono migrati in strati rocciosi permeabili dove possono aver subito una serie di processi degradativi, quali attacco di microrganismi, evaporazione o dilavamento delle frazioni leggere, che hanno concentrato la componente più pesante dell’olio.

sabato 21 agosto 2010

29

Una caratteristica comune alla gran parte dei greggi pesanti è la loro presenza in bacini fluviali relativamente superficiali (basti ricordare il bacino dell’Orinoco in Venezuela e l’Athabasca in Canada). Per quanto riguarda le caratteristiche chimiche, oltre all’alta densità, i greggi pesanti sono in genere caratterizzati da significative quantità di zolfo (fino al 6-8% peso), metalli (diverse centinaia di ppm di nichel e vanadio che, nel caso degli heavy oil venezuelani, possono raggiungere i valori record di 700-800 ppm) e soprattutto asfalteni, tanto che spesso essi costituiscono una vera e propria componente dell’olio potendo raggiungere livelli di concentrazione del 35% peso.

sabato 21 agosto 2010

30

Tipiche consistenze dei giacimenti (in barili di petrolio)

Iraq Est Baghdad (campo petrolifero) 11 miliardi

Kirkuk (giacimento) 16 miliardi

Majnoon (campo petrolifero) 11-20 miliardi

Rumaila (campo petrolifero) 20 miliardi

West Qurna (campo petrolifero) 11-15 miliardi

Venezuela Bolivar Coastal (campo petrolifero) ca. 30 miliardi

Boscán (campo petrolifero), Venezuela 1.6 miliardi

Orinoco (sabbie bituminose) 1.7 migliaia di miliardi

Canada Athabasca (sabbie bituminose) 1.7 migliaia di miliardi

sabato 21 agosto 2010

31

sabato 21 agosto 2010

32

sabato 21 agosto 2010

33

sabato 21 agosto 2010

34

sabato 21 agosto 2010

35

sabato 21 agosto 2010

36

sabato 21 agosto 2010

37

PretrattamentiIl petrolio, all’atto dell’estrazione contiene •acqua•detriti•sostanze organiche inquinanti contenti N,O,S•tracce di metalliSubito dopo l’estrazione viene fatto decantare per allontanare i primi due. Rimangono però ancora goccioline di acqua in sospensione contenenti sali.

sabato 21 agosto 2010

38

Se superano i 600 ppm deve essere trattato perché altrimenti i sali (Ca2+, Mg2+,SO4

2-, Cl-) danno luogo a incrostazioni o corrosioni alle parte metalliche degli impianti. E’ necessario allora dissalare, lavando

il petrolio con soluzioni acquose di modificatori della tensione superficiale (alcoli superiori o solfonati) per consentire la coalescenza

delle goccioline d’acqua.

sabato 21 agosto 2010

39

Topping

E’ la distillazione frazionata a pressione

atmosferica che si attua sul petrolio.

sabato 21 agosto 2010

40

Nella colonna si immette il greggio preriscaldato dalle

frazioni uscenti e riscaldato a 360 °C in un forno a tubi (pipe still);

sabato 21 agosto 2010

41

Il greggio caldo entra nella colonna a 1/5 dell’altezza

(zona del flash) sotto forma di miscela liquido/vapore a 1,4 atm e a circa 300°C.

Nella parte superiore della colonna si ha la rettifica

mentre in quella inferiore si ha l’esaurimento.

Dal basso della colonna, dove non è presente un ribollitore,

si invia vapore che pur provocando un certo

passaggio di idrocarburi altobollenti nella zona di rettifica, provoca il totale

esaurimento degli idrocarburi bassobollenti presenti nel

residuo.

sabato 21 agosto 2010

42

Tutte le frazioni vengono strippate in controcorrente con del vapore per

allontanare la parte più volatile che è stata trascinata.

Attenzione agli scambi di calore

sabato 21 agosto 2010

43

I prodotti che si separano, a partire dalla testa, sono:-gas; da esso, compresso e raffreddato, condensano propano e butano (GPL) mentre metano ed etano rimangono allo stato gassoso.

sabato 21 agosto 2010

44

-oli leggeri (benzine); provengono dalla zona a100-200 °C-kerosene; dalla zona a 210-250 °C-gasolio; dalla zona a 260-320 °C-gasolio pesante; oltre i 320 °C

sabato 21 agosto 2010

45

I residui (oli pesanti) passano alla lavorazione successiva. Non sarebbe produttivo infatti alzare la temperatura per separare altre frazioni perché altrimenti inizierebbero le reazioni di cracking comportanti rotture incontrollate delle molecole, non esclusa la formazione di carbone

sabato 21 agosto 2010

46

Il residuo del topping passa al vacuum: è la

distillazione degli idrocarburi pesanti

(quelli che hanno p.eb.>360 °C) fatta a pressione ridotta; si

ottiene un frazionamento a

temperatura più bassa evitando quindi il

cracking.

sabato 21 agosto 2010

47

Si separano, a partire dalla testa:

Olii lubrificanti

nafta

Crea il vuoto

Forno a tubi<400°C

sabato 21 agosto 2010

48

Ogni frazione, di entrambe le lavorazioni, passa ad uno stripping con vapore per separare i componenti più leggeri che vengono immessi nuovamente nella colonna principale mentre le code sono le frazioni desiderate e prima di essere immagazzinate preriscaldano l’alimentazione della colonna

principale. Tutte le frazioni ottenute devono subire:

1)stabilizzazione, che consiste in un degasolinaggio che di norma è già effettuato nelle citate colonne di stripping2)trattamenti chimici con H2SO4 o con NaOH e aria

per allontanare i composti dello zolfo

sabato 21 agosto 2010

49

Più recente è la idrodesolforazione catalitica in cui si utilizza idrogeno impiegando come catalizzatori CoO e MoO3 supportati su Al2O3. Inoltre la temperatura è regolata in modo da minimizzare il cracking, mentre la pressione viene mantenuta a livelli sufficientemente alti da favorire il processo, ma compatibili quanto al costo. Nella reazione si convertono tioli, solfuri e tiofeni in idrocarburi e H2S

(da cui si ricupera S con il processo Claus).

Vengono anche eliminati composti azotati ed ossigenati, che se ne vanno sotto forma di H2O e NH3, deleteri sia per la stabilità della frazione sia perché veleni per i catalizzatori delle lavorazioni successive.

sabato 21 agosto 2010

50

Ogni frazione, di entrambe le lavorazioni, passa ad uno stripping con vapore per separare i componenti più leggeri che vengono immessi nuovamente nella colonna principale mentre le code sono le frazioni desiderate e prima di essere immagazzinate preriscaldano l’alimentazione della colonna

principale. Tutte le frazioni ottenute devono subire:

stabilizzazione, che consiste in un degasolinaggio che di norma è già effettuato nelle citate colonne di stripping

idrodesolforazione catalitica in cui si utilizza idrogeno impiegando come catalizzatori CoO e MoO3 supportati su

Al2O3. Inoltre la temperatura è regolata in modo da minimizzare il cracking, mentre la pressione viene mantenuta a

livelli sufficientemente alti da favorire il processo, ma compatibili quanto al costo. Nella reazione si convertono tioli,

solfuri e tiofeni in idrocarburi e H2S (da cui si ricupera S con il processo Claus). Vengono anche eliminati composti azotati

ed ossigenati, che se ne vanno sotto forma di H2O e NH3, deleteri sia per la stabilità della frazione sia perché veleni per i

catalizzatori delle lavorazioni successive.

sabato 21 agosto 2010