Mouth (oral cavity)
Tongue
Esophagus
Liver
Gallbladder
Anus
DuodenumJejunumIleum
Small intestine
Parotid glandSublingual glandSubmandibulargland
Salivaryglands
Pharynx
StomachPancreas(Spleen)
Transverse colonDescending colonAscending colonCecumSigmoid colonRectumVermiform appendixAnal canal
Largeintestine
Glands in submucosa
Submucosa
LumenMucosa-associatedlymphoid tissue
Duct of gland outsidealimentary canal
Gland in mucosa
NerveArteryVein
Lymphaticvessel Mesentery
Intrinsic nerve plexuses• Myenteric nerve plexus• Submucosal nerve plexus
Mucosa• Epithelium• Lamina propria• Muscularis mucosae
Muscularis externa
• Longitudinal muscle • Circular muscleSerosa• Epithelium• Connective tissue
Frommouth
(b) Segmentation: Nonadjacent segments of alimentary tract organs alternately contract and relax, moving the food forward then backward. Food mixing and slow food propulsion occurs.
(a) Peristalsis: Adjacent segments ofalimentary tract organs alternately contractand relax, which moves food along the tractdistally.
UvulaSoft palate Palatoglossal arch
Palatine tonsil
Hard palate
Oral cavity
Tongue
Lingual tonsilOropharynx
EpiglottisHyoid bone
Laryngopharynx
Esophagus
Trachea
Sagittal section of the oral cavity and pharynx
Crown
Neck
Root
EnamelDentinDentinal tubulesPulp cavity (containsblood vessels and nerves)Gingiva (gum)
Cementum
Root canalPeriodontalligament
Apical foramen
Bone
UvulaPalatine tonsil
Sublingual foldwith openings ofsublingual ducts
Tongue
Upper lip
Lower lip
VestibuleGingivae (gums)
Gingivae (gums)
Hard palate
Soft palate
Lingual frenulum
Opening ofsubmandibular duct
Palatine raphe
Inferior labialfrenulum
Posterior wallof oropharynx
Palatopharyngealarch
Superior labialfrenulum
Palatoglossal arch
Tongue
Trachea
Pharynx
Epiglottis
Glottis
Bolus of food
Epiglottis
Esophagus
Uvula
Bolus
Bolus
Relaxed muscles
Circular musclescontract
Bolus of food
Longitudinal musclescontract
Stomach
Relaxedmuscles
Gastroesophagealsphincter opens
Gastroesophagealsphincter closed
Upper esophageal sphincter iscontracted. During the buccal phase, thetongue presses against the hard palate,forcing the food bolus into the oropharynxwhere the involuntary phase begins.
Food is movedthrough the esophagusto the stomach byperistalsis.
The gastroesophagealsphincter opens, and foodenters the stomach.
The uvula and larynx rise to prevent foodfrom entering respiratory passageways. Thetongue blocks off the mouth. The upperesophageal sphincter relaxes, allowing foodto enter the esophagus.
The constrictor muscles of thepharynx contract, forcing foodinto the esophagus inferiorly. Theupper esophageal sphinctercontracts (closes) after entry.
1 2
4
3
5
Tongue
Trachea
Pharynx
Epiglottis
Glottis
Bolus of food
Upper esophageal sphincter is contracted. Duringthe buccal phase, the tongue presses against the hardpalate, forcing the food bolus into the oropharynxwhere the involuntary phase begins.
1
Epiglottis
Esophagus
Uvula
Bolus
The uvula and larynx rise to prevent food fromentering respiratory passageways. The tongue blocksoff the mouth. The upper esophageal sphincterrelaxes, allowing food to enter the esophagus.
2
Bolus
The constrictor muscles of the pharynx contract,forcing food into the esophagus inferiorly. The upperesophageal sphincter contracts (closes) after entry.
3
Relaxed muscles
Bolus of food
Stomach
Circular musclescontract
Longitudinal musclescontract
Gastroesophagealsphincter closed
Food is moved throughthe esophagus to thestomach by peristalsis.
4
Relaxedmuscles
Gastroesophagealsphincter opens
The gastroesophagealsphincter opens, and foodenters the stomach.
5
Cardia
Esophagus
Pyloric sphincter(valve) at pylorus
Pyloriccanal
Pyloricantrum
Rugae ofmucosa
Body
Lumen
Serosa
Fundus
Lessercurvature
Greatercurvature
Muscularis externa • Longitudinal layer • Circular layer • Oblique layer
Duodenum
Liver
Lesser omentumGallbladder
StomachDuodenum
Transverse colon
Small intestine
Cecum
Urinary bladder
Figure 23.25c
(c)
Interlobular veins(to hepatic vein) Central vein
Sinusoids
Portal triad
Plates ofhepatocytes
Portal vein
Fenestratedlining (endothelial cells) of sinusoids
Bile duct (receivesbile from bile canaliculi)
Bile duct
Portal arteriolePortal venuleHepatic
macrophagesin sinusoid walls
Bile canaliculi
Jejunum
Mucosawith folds
Cystic duct
DuodenumHepatopancreaticampulla and sphincter
Gallbladder
Right and lefthepatic ducts of liver
Bile duct and sphincter
Main pancreatic ductand sphincter
PancreasTail of pancreas
Head of pancreas
Common hepatic duct
Major duodenalpapilla
Accessory pancreatic duct
Left colic(splenic) flexure
Transversemesocolon
Epiploicappendages
Descendingcolon
Teniae coli
Sigmoidcolon
Cut edge ofmesentery
External anal sphincter
Rectum
Anal canal
Right colic(hepatic) flexure
Transversecolon
Superiormesentericartery
Haustrum
Ascendingcolon
IIeum
IIeocecal valve
Vermiform appendix
Cecum
Glucose
Phase 1SugarActivationGlucose is activated by phosphorylationand converted to fructose-1, 6-bisphosphate
Fructose-1,6-bisphosphate
2 ADP
Carbon atom
Phosphate
GlycolysisElectron trans-port chain and oxidativephosphorylation
Krebscycle
Fructose-1,6-bisphosphate
Dihydroxyacetonephosphate
Glyceraldehyde3-phosphate
Phase 2SugarCleavageFructose-1, 6-bisphosphate is cleaved into two 3-carbon fragments
Carbon atom
Phosphate
Glycolysis Electron trans-port chain and oxidativephosphorylation
Krebscycle
To Krebscycle
(aerobicpathway)
2
2
4 ADP
2 Lactic acid
2 Pyruvic acid
Dihydroxyacetonephosphate
Glyceraldehyde3-phosphate
Phase 3Sugar oxidationand formationof ATPThe 3-carbon frag-ments are oxidized (by removal of hydrogen) and 4 ATP molecules are formed
Carbon atomPhosphate
2 NAD+
2 NAD+
NADH+H+
NADH+H+
Glycolysis Electron trans-port chain and oxidativephosphorylation
Krebscycle
Krebs cycle
NAD+
NAD+
GDP +
NAD+
FAD
NAD+
NADH+H+
Cytosol
Mitochondrion(matrix)
NADH+H+
FADH2
NADH+H+
Citric acid
(initial reactant)
Isocitric acid
Oxaloacetic acid
(pickup molecule)
Malic acid
Succinic acidSuccinyl-CoA
GTP
ADP
Carbon atom
Inorganic phosphate
Coenzyme A
Acetyl CoA
Pyruvic acid from glycolysis
Transitionalphase
Fumaric acid
NADH+H+
CO2
CO2
CO2
-Ketoglutaric acid
Electron trans-port chain and oxidativephosphorylation
Glycolysis Krebscycle
Via oxidativephosphorylationVia substrate-level
phosphorylation
MitochondrionMitochondrialcristaeCytosol
KrebscycleGlucose
Glycolysis
Pyruvicacid
Electron transportchain and oxidativephosphorylation
Chemical energy (high-energy electrons)
1 During glycolysis, each glucose molecule is broken down into two molecules of pyruvic acid in the cytosol.
2 The pyruvic acid then enters the mitochondrial matrix, where the Krebs cycle decomposes it to CO2. During glycolysis and the Krebs cycle, small amounts of ATP are formed by substrate-level phosphorylation.
3 Energy-rich electrons picked up bycoenzymes are transferred to the elec-tron transport chain, built into the cristae membrane. The electron transport chain carries out oxidative phosphorylation, which accounts for most of the ATP generated by cellular respiration.
Chemical energy
Krebscycle
Glycerol Fatty acids
Coenzyme A
Lipase
Oxidationin the mito-chondria
Cleavageenzymesnips off2C fragments
Glycolysis
Glyceraldehydephosphate
(a glycolysis intermediate)
Pyruvic acid
Lipids
Acetyl CoA
FAD
H2O
NAD+
NADH + H+
FADH2
ElectrontransportCholesterol
Stored fatsin adipose
tissue
Dietary fats
Glycerol
GlycolysisGlucose
Glyceraldehydephosphate
Pyruvic acid
Acetyl CoA
CO2 + H2O+
Steroids
Bile salts
Fatty acids
Ketonebodies
Triglycerides(neutral fats)
Certainaminoacids
Ketogenesis (in liver)
Catabolic reactions
Anabolic reactions
Lipogenesis
Krebscycle
Proteins
Proteins Carbohydrates Fats
Excretedin urine
Glycogen
Glucose
Glucose-6-phosphate
Glyceraldehyde phosphate
Pyruvic acid
Acetyl CoA
Amino acids
Keto acids
Triglycerides (neutral fats)
Lactic acid
Ketonebodies
Glycerol and fatty acids
NH3
Krebscycle
Urea
Food PyramidFood Pyramid
Top Related