Download - MOS Basics

Transcript
Page 1: MOS Basics

[Type text] [Type text] Dr. D. V. Kamath

MOS Basics

Characteristics BJT MOS

Current conduction

Bipolar

Unipolar

Noise MOSFETs are less noisy than BJTs. Hence, MOSFETs are more

suitable for signal processing applications

Source Type

Current Controlled Current Source

(CCCS)

Voltage Controlled Current

Source (VCCS)

Input Impedance

Low

High

Characteristic

parameter

ฮฒ (โ„Ž๐น๐ธ)

๐‘”๐‘š

Current

๐ผ๐‘ = ๐ผ๐‘  ๐‘’๐‘‰๐ต๐ธ ๐‘‰๐‘‡โ„

๐ผ๐‘‘๐‘  =ยต๐‘›๐ถ๐‘œ๐‘ฅ

2

๐‘Š

๐ฟ(๐‘‰๐‘”๐‘  โˆ’ ๐‘‰๐‘กโ„Ž)

2

Transconductance

๐‘”๐‘š = ๐ผ๐‘ ๐œ‚๐‘‰๐‘‡โ„

๐‘”๐‘š = โˆš2๐›ฝ๐ผ๐‘‘๐‘ 

Current driving

capability

High Low

Package density Low High

Bandwidth

MOSFETS have higher bandwidth compared to BJTs. It is relatively easy to control device geometries and scaling in MOS

devices when compared with BJT circuits.

***

Page 2: MOS Basics

[Type text] [Type text] Dr. D. V. Kamath

NMOS Device

LD (lateral diffusion) - Level 2 SPICE model parameter

DL (delta length) - BSIM model parameter ***

MOS parameters

Parameter Description Equation Unit

ยต๐‘› Surface mobility of carrier - cm2 Vsecโ„

๐‘Š ๐ฟโ„ Channel aspect ratio - -

๐ถ๐‘” Gate-to-channel capacitance ๐ถ๐‘” =

ษ›๐‘–๐‘›๐‘ ษ›๐‘œ๐‘Š๐ฟ

๐ท

pF

๐ถ๐‘œ๐‘ฅ Gate capacitance per unit area ๐ถ๐‘œ๐‘ฅ =๐ถ๐‘”

๐‘Š๐ฟ=

ษ›๐‘–๐‘›๐‘ ษ›๐‘œ

๐ท

๐‘๐น ยต๐‘š2โ„

๐พ๐‘› Process transconductance

parameter

๐พ๐‘› = ยต๐‘›๐ถ๐‘œ๐‘ฅ

= ยต๐‘›

ษ›๐‘–๐‘›๐‘ ษ›๐‘œ

๐ท

๐ด ๐‘‰2โ„

ฮฒ Beta ๐›ฝ๐‘› = ๐พ๐‘›

๐‘Š

๐ฟ

๐ด ๐‘‰2โ„

๐›ฅ๐‘‰ Overdrive potential ๐›ฅ๐‘‰ = ๐‘‰๐‘”๐‘  โˆ’ ๐‘‰๐‘กh

V

Page 3: MOS Basics

[Type text] [Type text] Dr. D. V. Kamath

Enhancement-type nMOS transistor in non-conducting condition

***

Enhancement-type nMOS transistor with ๐‘ฝ๐‘ฎ๐‘บ > ๐‘ฝ๐‘ป๐‘ฏ and ๐‘ฝ๐‘ซ๐‘บ = 0

***

Enhancement-type nMOS transistor with ๐‘ฝ๐‘ฎ๐‘บ > ๐‘ฝ๐‘ป๐‘ฏ and a small ๐‘ฝ๐‘ซ๐‘บ

***

Page 4: MOS Basics

[Type text] [Type text] Dr. D. V. Kamath

Increasing VDS

causes the channel to acquire a tapered shape

***

MOS drain characteristics

Drain characteristics of depletion type NMOS

Page 5: MOS Basics

[Type text] [Type text] Dr. D. V. Kamath

Drain characteristics of enhancement type NMOS ***

Ids versus Vds relationship

Charge induced below the thinox layer between drain and source is dependent on Vgs

Drain current Ids is

thus

dependent on both Vds and Vgs

Page 6: MOS Basics

[Type text] [Type text] Dr. D. V. Kamath

Electron transit time computation

Ids versus Vds relationship for MOS in non-saturation region

Voltage along the channel varies linearly with distance X from the source due to the IR

drop in the channel, the average value is Vds/2

Effective gate voltage is Vgs -

Vth

Page 7: MOS Basics

[Type text] [Type text] Dr. D. V. Kamath

Alternate expressions of Ids for MOS in non-saturation region

Page 8: MOS Basics

[Type text] [Type text] Dr. D. V. Kamath

Ids expression for MOS in saturation region

Substituting limiting condition Vds = Vgs โ€“Vth

in (1), we get Ids expression for saturation region

Drain current equations for NMOS

Region of operation Equation Condition

Cut-off

๐ผ๐‘‘๐‘ ๐‘› = 0

๐‘‰๐‘”๐‘ ๐‘› < ๐‘‰๐‘กโ„Ž๐‘›

Ohmic

๐ผ๐‘‘๐‘ ๐‘› =๐›ฝ๐‘›

2๐‘‰๐‘‘๐‘ {2(๐‘‰๐‘”๐‘ ๐‘› โˆ’ ๐‘‰๐‘กโ„Ž๐‘›) โˆ’ ๐‘‰๐‘‘๐‘ ๐‘›}

๐‘‰๐‘”๐‘ ๐‘› > ๐‘‰๐‘กโ„Ž๐‘›

๐‘‰๐‘‘๐‘ ๐‘› < ๐‘‰๐‘”๐‘ ๐‘› โˆ’ ๐‘‰๐‘กโ„Ž๐‘›

Saturation

๐ผ๐‘‘๐‘ ๐‘› =๐›ฝ๐‘›

2(๐‘‰๐‘”๐‘ ๐‘› โˆ’ ๐‘‰๐‘กโ„Ž๐‘›)

2

๐‘‰๐‘”๐‘ ๐‘› > ๐‘‰๐‘กโ„Ž๐‘›

๐‘‰๐‘‘๐‘ ๐‘› โ‰ฅ ๐‘‰๐‘”๐‘ ๐‘› โˆ’ ๐‘‰๐‘กโ„Ž๐‘›

Drain current equations for PMOS

Region of

operation

Equation Condition

Cut-off

๐ผ๐‘‘๐‘ ๐‘ = 0

๐‘‰๐‘ ๐‘”๐‘ < |๐‘‰๐‘กโ„Ž๐‘| or

|๐‘‰๐‘”๐‘ ๐‘| < |๐‘‰๐‘กโ„Ž๐‘|

Ohmic ๐ผ๐‘ ๐‘‘๐‘ =

๐›ฝ๐‘

2๐‘‰๐‘ ๐‘‘{2(๐‘‰๐‘ ๐‘”๐‘ โˆ’ |๐‘‰๐‘กโ„Ž๐‘|) โˆ’ ๐‘‰๐‘ ๐‘‘๐‘}

or

โˆ’๐ผ๐‘‘๐‘ ๐‘ = ๐ผ๐‘ ๐‘‘๐‘ =๐›ฝ๐‘

2๐‘‰๐‘‘๐‘ ๐‘{2(๐‘‰๐‘”๐‘ ๐‘ โˆ’ ๐‘‰๐‘กโ„Ž๐‘)

โˆ’ ๐‘‰๐‘‘๐‘ ๐‘}

|๐‘‰๐‘”๐‘ ๐‘| > |๐‘‰๐‘กโ„Ž๐‘|

|๐‘‰๐‘‘๐‘ ๐‘| < |๐‘‰๐‘”๐‘ ๐‘| โˆ’ |๐‘‰๐‘กโ„Ž๐‘|

Page 9: MOS Basics

[Type text] [Type text] Dr. D. V. Kamath

Saturation ๐ผ๐‘ ๐‘‘๐‘ =

๐›ฝ๐‘

2(๐‘‰๐‘ ๐‘”๐‘ โˆ’ |๐‘‰๐‘กโ„Ž๐‘|)

2

or

โˆ’๐ผ๐‘‘๐‘ ๐‘ = ๐ผ๐‘ ๐‘‘๐‘ =๐›ฝ๐‘

2(๐‘‰๐‘”๐‘ ๐‘ โˆ’ ๐‘‰๐‘กโ„Ž๐‘)

2

|๐‘‰๐‘”๐‘ ๐‘| > |๐‘‰๐‘กโ„Ž๐‘|

|๐‘‰๐‘‘๐‘ ๐‘| > |๐‘‰๐‘”๐‘ ๐‘| โˆ’ |๐‘‰๐‘กโ„Ž๐‘|

***

Deep Ohmic region

Region of

operation

Description Equation

Deep ohmic

๐ผ๐‘‘๐‘  = ๐›ฝ(๐‘‰๐‘”๐‘  โˆ’ ๐‘‰๐‘กโ„Ž)๐‘‰๐‘‘๐‘ 

๐‘…๐‘œ๐‘› =1

๐›ฝ(๐‘‰๐‘”๐‘ โˆ’๐‘‰๐‘กโ„Ž)

๐‘‰๐‘”๐‘  > ๐‘‰๐‘กโ„Ž

๐‘‰๐ท๐‘† โ‰ช 2(๐‘‰๐บ๐‘† โˆ’ ๐‘‰๐‘‡๐ป)

***

MOS transconductance

๐‘”๐‘š =๐œ•๐ผ๐ท

๐œ•๐‘‰๐บ๐‘†|๐‘‰๐‘‘๐‘ ,๐‘๐‘œ๐‘›๐‘ ๐‘ก

๐ผ๐‘‘๐‘  =๐›ฝ

2(๐‘‰๐‘”๐‘  โˆ’ ๐‘‰๐‘กโ„Ž)

2 ๐‘“๐‘œ๐‘Ÿ ๐‘€๐‘‚๐‘† ๐‘–๐‘› ๐‘ ๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘›

๐‘”๐‘š = ๐›ฝ(๐‘‰๐‘”๐‘  โˆ’ ๐‘‰๐‘กโ„Ž)

๐‘”๐‘š = โˆš2๐›ฝ๐ผ๐‘‘๐‘ 

***

Page 10: MOS Basics

[Type text] [Type text] Dr. D. V. Kamath

Basic MOS small-signal model (at low frequencies)

๐‘–๐‘‘ = ๐‘”๐‘š๐‘ฃ๐‘”๐‘ 

MOS device is basically characterized by transconductance ๐‘”๐‘š

MOS device is modeled by VCCS

MOS output conductance ๐’ˆ๐’…๐’”

The output conductance ๐‘”๐‘‘๐‘  is expressed as

gds =ฮดIds

ฮดVds= ฮป๐ผ๐‘‘๐‘ 

ฮป ฮฑ 1

L and Ids ฮฑ

1

L

gds ฮฑ 1

L2

The output conductance ๐‘”๐‘‘๐‘  is strongly dependent on the channel length

MOS transistor figure of merit ๐Ž๐‘ถ

The parameter ๐œ”๐‘‚ is used as a measure of frequency response or switching speed ฯ‰O = 1 ฯ„sdโ„

ฯ‰O =gm

Cg=

ยตnCoxWL

(Vgs โˆ’ Vth)

CoxWL=

ยตn(Vgs โˆ’ Vth)

L2=

1

ฯ„sd

A fast switching speed requires that ๐‘”๐‘š be as high as possible

The switching speed depends on effective gate voltage and on carrier mobility and inversely as

the square of channel length

***

vm

v

G D

ids

v g

- -

gs

+

S

+

dsgs