Download - Mike Weaver

Transcript
Page 1: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 1/35

Fatigue Estimation of Welds with FEA:Modeling, Criteria, Approaches, and Issues

• Introduction• Weld Fatigue and Physical Influencing Factors

• Methods of Analysis and Prediction and

Application of FEA

• FEA Tool Development Specific to Weld Fatigue

• Concluding Remarks

WEAVER E GINEERINGSeattle, Washington. http://www.weavereng.com

Presentation to SAE Fatigue Committee, Mike Weaver, October 2003, Cedar Rapids, Iowa

Page 2: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 2/35

 Factors in Weld Fatigue Life Prediction

LIFEFABRICATION

VARIANCE

DESIGN

LIMIT STATE

TRUE

LIMIT STATE

ANALYSIS

UNCERTAINTY

Page 3: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 3/35

Weld Fatigue and Physical Influencing Factors• Material State Variations: Mill Heat,

Electrode, Moisture

• Material Damage Due to Welding -

Hydrogen Cracking, Hot Short Cracking,

Lamellar Tearing, Other Base Metal Damage

• Fit-up and Joint Preparation.

• Process and Position

• Operator and Machine Variations

• Starts and Stops

• Sequence, Restraint, and Residual StressState

• Heat Affected Zone - Grain Structure, Local

Brittle Areas, Strength Mismatch

Impoverishment, Overaging, etc

• As Welded Profile - Local Stress

Concentrations• Flaw Density and nature.

• Load History and Environmental

Uncertainties -

Multi-axial Loading, Non-Proportional

Loading

Improvements:

- Mechanical: Burr Grinding, Machining, Peening

- Thermal: PWHT, TIG Dressing, Selective Spotand Line Heating.

- NDT: Improves distribution by truncating tail.

Page 4: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 4/35

 Methods of Analysis and Prediction

Per IIW Guidelines, Four

Categories:• Nominal Stress Method - Classical

Analysis

• Geometric (Structural, Hot-Spot)Stress Method

• Effective Notch Stress

• Fracture Mechanics … Fitness for 

Purpose

Page 5: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 5/35

 Methods of Analysis: Nominal Stress Method 

• P/A … Mc/I• Structural Load Path Variations in Criteria

• Weld Notch Effect in Criteria

• Joint Performances Tabulated and Classified invarious Codes, Design Guides, etc.

Page 6: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 6/35

 Methods of Analysis: Geometric Stress

• A.K.A. Structural Stress Method, HotSpot Stress

• Structural Load Path Determined by

Analysis or Physical Measurement

• Weld Notch Effect in Criteria• Joint Performances Classified based on

Weld Notch Geometry and Weld Quality.

Page 7: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 7/35

 Methods of Analysis: Effective Notch Stress

• Geometry of Weld Modeled to 1 mm Resolution

• Sharp Features Rounded with 1 mm radius to allow for fatigue notchsensitivity.

• One S-N curve. The Most Refined Stress Based Approach.

Page 8: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 8/35

 Methods of Analysis: Fracture Mechanics• da/dN material evaluations with∆K and R 

determined by Analysis.

• Detailed and Simplified Methods

• Tabulated (Simplified) Equivalent Stress

Categories for S-N Evaluation

• Fitness for Purpose Evaluations, As Fabricated

Quality Level, Joint Design

Page 9: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 9/35

 Application of FEA to Prediction Methods

• Nominal Stress: Beam Element Models

• Geometric Stress, Shell and Continuum Models

• Effective Notch Stress - Continuum Models or Shell Models with SCF

• Fracture Mechanics: Continuum Models with Flaws Modeled or FEA

Combined with Classical Fracture Mechanics

Page 10: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 10/35

 FEA Evaluation of Geometric Stress:

Continuum Models

• Examples of Hot Spot -

Plane Strain Evaluationof Condition (1 of )

Page 11: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 11/35

 FEA Evaluation of Geometric Stress:

Continuum Models

• Examples of Hot Spot -Plane Strain Evaluation

of Condition (2 of 3)

Page 12: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 12/35

 FEA Evaluation of Geometric Stress:Continuum Models

• Examples of Hot Spot -Plane Strain Evaluation

of Condition (3 of 3)

Page 13: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 13/35

 FEA Evaluation of Geometric Stress:

Shell Element Models

• A fair amount of Literature and Current Work on the Subject:

 Neimi, Radaj, Hobbacher - IIW

Page 14: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 14/35

 FEA Evaluation of Geometric Stress:

Shell Element Models

Page 15: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 15/35

 FEA Evaluation of Geometric Stress:Shell Element Models: Issues

• Nodal Stress Averaging

WELD

FREEEDGE

Correct TerminatedPart Element Selection

The Offending Elementfor Incorrect TerminatedPart Element Selection

Page 16: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 16/35

 FEA Evaluation of Geometric Stress:Shell Element Models: Issues

• Shell Element Cross Section Singularity(1 of 2)

Page 17: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 17/35

 FEA Evaluation of Geometric Stress:

Shell Element Models: Issues

• Shell Element Cross

Section Singularity

(1 of 2)

Page 18: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 18/35

 FEA Evaluation of Effective Notch Stress:Continuum Models

• Plane Strain for SCF

• Solid

• Resolution to 1 mm radius of sharp features

Page 19: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 19/35

 FEA Evaluation of Effective Notch Stress:SCF 

• Plane Strain Determination of SCF-Shell Element Models

-Classical Calculations

-Determination of Improvement.

71911

2923

..

.=

 

  

 ≥

OldLife

NewLife

Page 20: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 20/35

 FEA Evaluation of Effective Notch Stress:

SCF 

Tensile Load, Toe Bending Load, Toe.

Tensile Load, Root. Bending Load, Root.

K TENSION K BENDING

TOE 1.59 1.36

ROOT 2.45 -2.16

6 mm Sheet Metal Formed and Welded Hollow FrameModeled with Shell Elements

Applied Nominal Axial Load: 1 MPa

Weld at Break in Profile

******** END COMMENT BLOCK *********/

@INPUT{K1_1_Membrane

K1_2_MembraneK1_1_BendingK1_2_Bending

}

Str_Mem = (Sjj_1 + Sjj_2)/2Str_Bend = Sjj_1 - Str_Mem

Notch_Str_M1 = Str_Mem*K1_1_MembraneNotch_Str_M2 = Str_Mem*K1_2_Membrane

Notch_Str_B1 = Str_Bend*K1_1_BendingNotch_Str_B2 = Str_Bend*K1_2_Bending

Notch_Str_1 = Notch_Str_M1 + Notch_Str_B1Notch_Str_2 = Notch_Str_M2 + Notch_Str_B2

@IF(Notch_Str_1 >= Notch_Str_2){Notch_Str_Max = Notch_Str_1

}@ELSE{Notch_Str_Max = Notch_Str_2

}

@STORE{

Notch_Str_Max{description = "Worst Case Transverse Notch Stress, Sides 1 and 2"plotsummarize max unsigned

}

Notch_Str_1{description = "Transverse Notch Stress, Side 1"summarize max unsigned

}

Notch_Str_2{description = "Transverse Notch Stress, Side 2"summarize max unsigned

}

Notch_Str_M1{ "Transverse Notch Stress, Side 1, Membrane Load" }

Notch_Str_M2{ "Transverse Notch Stress, Side 2, Membrane Load" }

Notch_Str_B1{ "Transverse Notch Stress, Side 1, Bending Load" }

Notch_Str_B2{ "Transverse Notch Stress, Side 2, Bending Load" }

Str_Mem{ “Transverse Structural (Geometric) Membrane Stress" }

Str_Bend{ "Transverse Structural (Geometric) Bending Stress" }}

0

0.5

1

1.5

2

2.5

3

3.5

4

0.00 0.50 1.00 1.50 2.00

Notch_Str_Max, Worst Case Transverse Notch Stress, Sides 1 and 2

-2

-1

0

1

2

3

4

0.00 0.50 1.00 1.50 2.00

Notch_Str_1, Transverse Notch Stress, Side 1

Notch_Str_2, Transverse Notch Stress, Side 2

Page 21: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 21/35

 FEA Evaluation of Effective Notch Stress:Solid Elements

• Example with Radiused, Ground Special Quality Weld on Heavy

Weldment - Not too many degrees of freedom required here because

of the smooth geometry.

Page 22: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 22/35

 FEA Evaluation Solid Models

• Lack of Fusion Must Be Modeled. Done here in CAD.Would be a nice FEA Meshing Tool.

Page 23: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 23/35

 FEA Evaluation: Plane Strain Stress Intensity

Page 24: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 24/35

 FEA Tool Development Specific to Weld  Fatigue

• Production Analysis• Computations

• Automation and Data Management

• FEA Systems Interface

• Flexibility and User Input Ease

Page 25: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 25/35

 FEA Tools: Production Analysis

Page 26: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 26/35

 FEA Tools: FEWeld 

• Mathematics• Data Management

• Data Input

• Results Presentation

Page 27: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 27/35

 FEA Tools: FEWeld Shell Element Mechanics

Resolution of Weld Loads, Node 340:

t b.3

8in Base Material Thickness

σ t.19560 psi Normal Stress at Top of Joint

σ b.7884 psi Normal Stress at Bottom of Joint

τ zx_avg.390.2 psi Average Shear Stress in Joint

τ yz_av

.2530 psi .1210 psi

2

τ avg τ zx_avg2

τ yz_avg2

=τ avg 1910 psi

Joint Normal Load:

P .σ t σ b

2t b =P 5146

lbf 

in

Joint Bending Load:

M .σ t σ b

2

t b2

6=M 136.8

.inlbf 

in

Joint Shear Load:

V .τ avg t b =V 716.4lbf 

in

tb

σ

σt

b

Page 28: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 28/35

 FEA Tools: FEWeld Computations******** END COMMENT BLOCK *********/

@INPUT{K1_1_MembraneK1_2_MembraneK1_1_BendingK1_2_Bending

}

Str_Mem = (Sjj_1 + Sjj_2)/2

Str_Bend = Sjj_1 - Str_MemNotch_Str_M1 = Str_Mem*K1_1_MembraneNotch_Str_M2 = Str_Mem*K1_2_Membrane

Notch_Str_B1 = Str_Bend*K1_1_BendingNotch_Str_B2 = Str_Bend*K1_2_Bending

Notch_Str_1 = Notch_Str_M1 + Notch_Str_B1Notch_Str_2 = Notch_Str_M2 + Notch_Str_B2

@IF(Notch_Str_1 >= Notch_Str_2){Notch_Str_Max = Notch_Str_1

}@ELSE{Notch_Str_Max = Notch_Str_2

}@STORE{

Notch_Str_Max{description = "Worst Case Transverse Notch Stress, Sides 1 and 2"plotsummarize max unsigned

}

Notch_Str_1{description = "Transverse Notch Stress, Side 1"summarize max unsigned

}

Notch_Str_2{

description = "Transverse Notch Stress, Side 2"summarize max unsigned

}

Notch_Str_M1{ "Transverse Notch Stress, Side 1, Membrane Load" }

Notch_Str_M2{ "Transverse Notch Stress, Side 2, Membrane Load" }

Notch_Str_B1{ "Transverse Notch Stress, Side 1, Bending Load" }

Notch_Str_B2{ "Transverse Notch Stress, Side 2, Bending Load" }

Str_Mem{ “Transverse Structural (Geometric) Membrane Stress" }

Str_Bend{ "Transverse Structural (Geometric) Bending Stress" }}

Page 29: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 29/35

 FEA Tools: FEWeld Data Management 

Page 30: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 30/35

 FEA Tools: FEWeld Overview

Page 31: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 31/35

 FEA Tools: FEWeld FEA Interaction

FEWeld GUI Interaction with Cosmos

(Same for Ansys)

Page 32: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 32/35

Page 33: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 33/35

 FEA Tools: FEWeld Generalized Data Layout (Future)

Page 34: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 34/35

 FEA Tools: FEWeld Future Scripting 

MATERIAL E70_ELECTRODE{Fut 485 MPa

}

MATERIAL ASTM_A572GR50{Fut 485 MPaFy 345 MPa

}

LOAD_GROUP EXT_LOADS{ 01 02 03 04 }LOAD_GROUP FAT_LOADS{ 11 - 30 }LOAD_GROUP ALL{ EXTREME FATIGUE 05 - 09 }

WELD_TEMPLATE DOUBLE_SIDED_PREP{CALCULATION EXTREME_THROAT_SHEAR {

MATERIAL E70_ELECTRODEFORMULATION DPF-FVPARAMETERS{

E = 4 mmSa = Fut * .3

}LOADING{ EXT_LOADS }

}

CALCULATION FATIGUE_DAMAGE {

MATERIAL ASTM_A572GR50FORMULATION SoderbergPARAMETERS{

(mean, alt) = mean_alt( FATIGUE )C_Xverse 100 MPaDesign_Life 100e6

}}

}

WELD_SET CONFIG_00{DESCRIPTION "Original Configuration"FEA_MODEL_UNITS{ F=lb, L=in, T=s }WELD 01{

DESCRIPTION "Weld between parts 150Cand 148C"

ELEM COMPONENT BRACE_150CNODE LINE LIST{ 42 43 62 62 }

TEMPLATE DOUBLE_SIDED_PREP}WELD 02{

DESC "Weld between boom and yoke"ELEM AREA LIST{ 7 14 21 28 35 42 49

56 63 70 77 84 91 98 }

NODE LINE COMPONENT YOKE_JOINT

TEMPLATE DOUBLE_SIDED_PREP}

}

WELD_SET CONFIG_01{COPY SET CONFIG_00DESC "Modified Boom wall to 0.625"

}

Page 35: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 35/35

Fatigue Estimation of Welds with FEA:Modeling, Criteria, Approaches, and Issues

THANK YOU

WEAVER E GINEERINGSeattle, Washington. http://www.weavereng.com

Presentation to SAE Fatigue Committee, Mike Weaver, October 2003, Cedar Rapids, Iowa