Download - GaAs band gap engineering by colloidal PbS quantum dots · 2017-02-01 · GaAs band gap engineering by colloidal PbS quantum dots Bruno Ullrich Instituto de Ciencias Físicas, Universidad

Transcript
Page 1: GaAs band gap engineering by colloidal PbS quantum dots · 2017-02-01 · GaAs band gap engineering by colloidal PbS quantum dots Bruno Ullrich Instituto de Ciencias Físicas, Universidad

GaAs band gap engineering by

colloidal PbS quantum dots

Bruno Ullrich

Instituto de Ciencias Físicas,

Universidad Nacional Autónoma de

México, Cuernavaca, Morelos C.P.

62210, Mexico

Page 2: GaAs band gap engineering by colloidal PbS quantum dots · 2017-02-01 · GaAs band gap engineering by colloidal PbS quantum dots Bruno Ullrich Instituto de Ciencias Físicas, Universidad

Acknowledgements

• Joanna Wang (WPAFB)

• Akhilesh Singh (UNAM)

• Puspendu Barik (UNAM)

• DGAPA-UNAM PAPIIT project

TB100213-RR170213 (PI Bruno

Ullrich)

Page 3: GaAs band gap engineering by colloidal PbS quantum dots · 2017-02-01 · GaAs band gap engineering by colloidal PbS quantum dots Bruno Ullrich Instituto de Ciencias Físicas, Universidad

Motivation

• Work in 2009 showed that PbS

quantum dots (QDs) notably alter the

emission of GaAs

• Tailored photonic applications?

• Ullrich et al., J. Appl. Phys. 108,

013525 (2010)

Page 4: GaAs band gap engineering by colloidal PbS quantum dots · 2017-02-01 · GaAs band gap engineering by colloidal PbS quantum dots Bruno Ullrich Instituto de Ciencias Físicas, Universidad

Presentation’s outline

Essentially, two points will be covered:

a) Optical properties of colloidal PbS

QDs on GaAs

b) Absorption edge engineering of

GaAs with PbS QDs

Page 5: GaAs band gap engineering by colloidal PbS quantum dots · 2017-02-01 · GaAs band gap engineering by colloidal PbS quantum dots Bruno Ullrich Instituto de Ciencias Físicas, Universidad

Sample preparation

Oleic acid capped PbS QDs are

dispersed on GaAs either by a

supercritical CO2 method*) or by

spin coating.

*)Wang et al., Mat. Chem. Phys.

141, 195 (2013).

Page 6: GaAs band gap engineering by colloidal PbS quantum dots · 2017-02-01 · GaAs band gap engineering by colloidal PbS quantum dots Bruno Ullrich Instituto de Ciencias Físicas, Universidad

Why PbS, why GaAs?

• PbS possesses a large Bohr radius

(∼20 nm). Emission covers the

attractive range for optical fibers

• GaAs is “fast” and meanwhile a main

player in optoelectronics

Page 7: GaAs band gap engineering by colloidal PbS quantum dots · 2017-02-01 · GaAs band gap engineering by colloidal PbS quantum dots Bruno Ullrich Instituto de Ciencias Físicas, Universidad

SEM image of a typical sample

20 nm

Particle size:

2.0±0.4 nm

Page 8: GaAs band gap engineering by colloidal PbS quantum dots · 2017-02-01 · GaAs band gap engineering by colloidal PbS quantum dots Bruno Ullrich Instituto de Ciencias Físicas, Universidad

We are dealing with a size-hybrid

• Sample can be considered – to a

certain extend – as free standing

(regularly arranged) energy

confinement potentials with

similarities to superlattices.

• Indeed, electronic states of the QDs

are coupled via tunneling.

Page 9: GaAs band gap engineering by colloidal PbS quantum dots · 2017-02-01 · GaAs band gap engineering by colloidal PbS quantum dots Bruno Ullrich Instituto de Ciencias Físicas, Universidad

Photoluminescence

0

50

100

150

200

250

0.9 1.0 1.1 1.2 1.3 1.4

PL

in

ten

sity

(a

rb. u

nit

s)

Energy (eV)

120 W/cm2

90 W/cm2

72 W/cm2

60 W/cm2

48 W/cm2

30 W/cm2

18 W/cm2

12 W/cm2

6 W/cm2

5 K

Page 10: GaAs band gap engineering by colloidal PbS quantum dots · 2017-02-01 · GaAs band gap engineering by colloidal PbS quantum dots Bruno Ullrich Instituto de Ciencias Físicas, Universidad

Experimental setup

Page 11: GaAs band gap engineering by colloidal PbS quantum dots · 2017-02-01 · GaAs band gap engineering by colloidal PbS quantum dots Bruno Ullrich Instituto de Ciencias Físicas, Universidad

Photo-doping

1.155

1.160

1.165

1.170

1.175

1.180

0 20 40 60 80 100 120 140

EP

L (

eV)

Iex

(W/cm2)

Page 12: GaAs band gap engineering by colloidal PbS quantum dots · 2017-02-01 · GaAs band gap engineering by colloidal PbS quantum dots Bruno Ullrich Instituto de Ciencias Físicas, Universidad

Burstein-Moss effect

• Doping by excited charge carriers

increases the QD band gap

• Generation of at least one electron-hole

pair per QD

• Reversible band gap alteration

proportional to Iex2/3

• Ullrich et al., J. Appl. Phys. 115, 233503

(2014)

Page 13: GaAs band gap engineering by colloidal PbS quantum dots · 2017-02-01 · GaAs band gap engineering by colloidal PbS quantum dots Bruno Ullrich Instituto de Ciencias Físicas, Universidad

Transmittance

0

1

2

3

4

1.0 1.1 1.2 1.3 1.4 1.5 1.6

Tra

nsm

itta

nce

(n

orm

ali

zed

)

Energy (eV)

300 K

200 K

100 K

10 K

GaAsPbS/GaAs

Page 14: GaAs band gap engineering by colloidal PbS quantum dots · 2017-02-01 · GaAs band gap engineering by colloidal PbS quantum dots Bruno Ullrich Instituto de Ciencias Físicas, Universidad

Absorption edge manipulation

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.0 1.1 1.2 1.3 1.4 1.5 1.6

TR

(n

orm

ali

zed

)

Energy (eV)

10 KRT

Eg

PbS/GaAs

GaAs

Page 15: GaAs band gap engineering by colloidal PbS quantum dots · 2017-02-01 · GaAs band gap engineering by colloidal PbS quantum dots Bruno Ullrich Instituto de Ciencias Físicas, Universidad

Slope of the edge

-1.10

-1.00

-0.90

-0.80

-0.70

-0.60

-0.50

-0.40

-0.30

0 50 100 150 200 250 300 350

Norm

ali

zed

slo

pe

(1/e

V)

Temperature (K)

GaAs

PbS/GaAs

Page 16: GaAs band gap engineering by colloidal PbS quantum dots · 2017-02-01 · GaAs band gap engineering by colloidal PbS quantum dots Bruno Ullrich Instituto de Ciencias Físicas, Universidad

Band gap shift

-80

-70

-60

-50

-40

-30

-20

-10

0

1.35 1.36 1.37 1.38 1.39 1.40 1.41 1.42

dT

R/d

E (

1/e

v)

Energy (eV)

2.0 nm QDs

(CO2)

3.0 nm QDs

(Spin-coating)

SI-GaAs

PbS/GaAs

RT

Page 17: GaAs band gap engineering by colloidal PbS quantum dots · 2017-02-01 · GaAs band gap engineering by colloidal PbS quantum dots Bruno Ullrich Instituto de Ciencias Físicas, Universidad

?Reasons?• Charge transfer (Urbach tail alteration)

• Superposition of absorption spectra

• Interfacial impurities

• Vibronic mode manipulation

• Influence of preparation method and doping of the substrate (currently ongoing studies)

• Change of reflectance

Page 18: GaAs band gap engineering by colloidal PbS quantum dots · 2017-02-01 · GaAs band gap engineering by colloidal PbS quantum dots Bruno Ullrich Instituto de Ciencias Físicas, Universidad

Conclusion and future

• QDs alter the optical properties of the host

• Concentration on the emission properties for

technological applications (emission from the

interface?)

• Possible influence of the QD size on the

optical properties of the host

• Formation of opto-electronically active

junctions

Page 19: GaAs band gap engineering by colloidal PbS quantum dots · 2017-02-01 · GaAs band gap engineering by colloidal PbS quantum dots Bruno Ullrich Instituto de Ciencias Físicas, Universidad

Thank you!

[email protected]