Download - Flow Visualization and Fundamental Phenomena of Sloshing ...

Transcript
Page 1: Flow Visualization and Fundamental Phenomena of Sloshing ...

Vol. 31, No. 2 (2011 2 pp. 1-8

* 2010 7 5 1) 113-8656

7-3-1, E- mail : [email protected]) 2)

1) 2)

Flow Visualization and Fundamental Phenomena of

Sloshing Using Computational Fluid Dynamics Masami SUZUKI and Yoshio SAKAI

ABSTRACT Based on the Navier-Stokes equation, a numerical method is presented to simulate sloshing phenomena in a rectangular tank which is oscillated horizontally. A computational code is composed of the finite volume method using curve-linear boundary fitted coordinates, and the solution is solved by SIMPLE algorithm. In the numerical simulations with small water depths, the progressive waves with the beet are observed, and the surface displacement shows nonlinear responses. Numerical results are in good agreement with experiments, so the applicability of this code is shown. It is attempted to make clear understand the flow inside the sloshing tank using computer graphics and computational fluid dynamics. The flows are drawn by the velocity vectors, the streamlines, the color contour of pressure, and the vorticity using OpenGL. The streamlines are drawn by both stream function and the line integral convolution (LIC) method. Keywords : Flow visualization, Sloshing, Computational Fluid Dynamics, Fluid Vibration, LIC

1) LNG2), 3)

Tuned Liquid Damper

4) 5)

6)

Faltinsen 7)

8) 11)

12)

1

Navier-Stokes

400 2000

- 1-

11-02-018_01本文.indd 111-02-018_01本文.indd 1 2011/02/15 13:24:022011/02/15 13:24:02

Page 2: Flow Visualization and Fundamental Phenomena of Sloshing ...

Navier-Stokes 0V (1)

2

22( ) p dgz

t dtV XV V V (2)

V pg X

( ) 0D zDt

(3)

p0

0 2 3 / 2(1 )xx

zx

p p (4)

D/Dtz x x

SMAC 13) SOLA 3)

MAC CIP 14)

SPH 5)

Irregular-Star 3) Level-Set 15) VOF2)

SIMPLE 16)

Launder-Sharma 17)

12)

L=1mh 0.05m 0.10m 0.15m

0.10mA=2.5mm X=A cos t

T1

h=0.05m 0.10m 0.15mn 2.86s 2.05s

1.70s

Nx Nz dx/L dzF/L dzB/Ldt/T T

Fig.1 Calculation grid and coordinate system.

Table 1. Number of grids and mesh sizes near boundary.

h/L 0.05 0.1 0.15

Nx Nz 213 46 85 46 85 46 dx/L 0.001 0.001 0.001

dzF/L 0.00125 0.002 0.002

dzB/L 0.0001 0.0001 0.0001

dt/T 0.002 0.002 0.0025

k

2 tanh ; 2 / ; 2 /n kg kh k L n (5)

=2L1 2 h/L=0.05

h/L=0.15

h/L=0.15

h/L=0.05

h/L=0.05 5

- 2-

11-02-018_01本文.indd 211-02-018_01本文.indd 2 2011/02/15 13:24:022011/02/15 13:24:02

Page 3: Flow Visualization and Fundamental Phenomena of Sloshing ...

4.4

h/L=0.10 h/L=0.15

4.4

4.6

h/L=0.05 h/L=0.10h/L=0.15 h/L=0.151,000

h/L=0.05150

h/L=0.10 h/L=0.15

5

5

Fig.2 Initial transient responses of wave elevation at left side wall.

Fig.3 Transient beet responses of wave elevation at left side wall.

- 3-

11-02-018_01本文.indd 311-02-018_01本文.indd 3 2011/02/15 13:24:022011/02/15 13:24:02

Page 4: Flow Visualization and Fundamental Phenomena of Sloshing ...

h/L=0.05

h/L=0.05 h/L=0.10 h/L=0.15

200,000 h/L=0.10h/L=0.15

h/L=0.15

/ 1=1.06h/L=0.05

/ 1=1.06 / 1=1.01 / 1=0.96/ 1=1.07 / 1=1.01

/ 1=0.97 / 1=0.94

/ 1=1.02

/ 1=0.98 1.02

3

/ 1=1.04

h/L=0.05

Table 2. Free natural vibration of asymmetric mode for linear water wave.

n2=kg tanh kh; k=2 / ; =2L/n; L=1m h/L 0.05 0.10 0.15

1(1/s) 2.191 3.061 3.679

T1(s) 2.867 2.052 1.707

( n/ 1)/n n-th

mode =2L/n

h/L=0.05 =0.10 =0.15

1 2L/1 1.000 1.000 1.000

3 2L/3 0.969 0.898 0.821

5 2L/5 0.917 0.776 0.668

7 2L/7 0.856 0.676 0.579

Fig.4 Resonant response: amplitude of wave elevation at left side wall for h/L=0.05.

Fig.5 Resonant response: amplitude of wave elevation at left side wall for h/L=0.10.

Fig.6 Resonant response: amplitude of wave elevation at left side wall for h/L=0.15.

- 4-

11-02-018_01本文.indd 411-02-018_01本文.indd 4 2011/02/15 13:24:032011/02/15 13:24:03

Page 5: Flow Visualization and Fundamental Phenomena of Sloshing ...

h/L=0.10 h/L=0.15

Fig.8 Higher-order resonant modes: wave elevation for h/L=0.05.

h/L=0.05 h/L=0.15

h/L=0.05h/L=0.10

h/L=0.05

h/L=0.15

Fig.9 Higher-order resonant modes: wave elevation for h/L=0.10.

Fig.10 Higher-order resonant modes: wave elevation for h/L=0.15.

h/L=0.10 / 1=1.03 / 1=1.06 h/L=0.15

(a) 1st mode, / 1=1.07

(b) 3rd mode, / 1=1.01

(c) 5th mode, / 1=0.97

(d) 7th mode, / 1=0.94

Fig.7 Higher-order resonant modes: wave elevation at left side wall for h/L=0.05.

- 5-

11-02-018_01本文.indd 511-02-018_01本文.indd 5 2011/02/15 13:24:032011/02/15 13:24:03

Page 6: Flow Visualization and Fundamental Phenomena of Sloshing ...

/ 1=1.02 3

400

h/L=0.10 / 1=1.03100 1000

4040

100 800 3%21400

0.0467 -0.0108

0.0475 -0.0113

100

h/L=0.05 / 1=1.07

20.5V

E p u gz dV (6)

PW EPW E

u f

Fig.11 Wave elevation, input power and liquid energy for

h/L=0.05, / 1=1.07.

Fig.12 Exciting velocity and force for h/L=0.05, / 1=1.07.

- 6-

11-02-018_01本文.indd 611-02-018_01本文.indd 6 2011/02/15 13:24:032011/02/15 13:24:03

Page 7: Flow Visualization and Fundamental Phenomena of Sloshing ...

LIC(Line Integral Convolution) 18) LIC

h/L=0.051

LIC

(a) 1st mode, / 1=1.07

(b) 3rd mode, / 1=1.01

(c) 5th mode, / 1=0.97

(d) 7th mode, / 1=0.94

Fig.13 Streamline expressed by LIC method for h/L=0.05.

(a) Streamline expressed by LIC method

(b) Streamline expressed by stream function of d /UL=0.0002, Pressure by expressed by color contour, and velocity vector.

(c) Streamline expressed by stream function of d /UL=0.0002 and vorticity expressed by color contour, and velocity vector.

Fig.14 Streamline expressed by LIC method for h/L=0.15, 1st mode, / 1=1.03

- 7-

11-02-018_01本文.indd 711-02-018_01本文.indd 7 2011/02/15 13:24:032011/02/15 13:24:03

Page 8: Flow Visualization and Fundamental Phenomena of Sloshing ...

p+ gz

U=L/T(p+ gz)/ U2 /UL rot v/(U/L)

h/L=0.05

LIC

21500095

í

- 8-

11-02-018_01本文.indd 811-02-018_01本文.indd 8 2011/02/15 13:24:042011/02/15 13:24:04