Download - ece-research.unm.eduece-research.unm.edu/hayat/ece340_12/hw5_12_sol.pdfTitle Microsoft Word - hw5_12_sol.docx

Transcript

1   ECE  340  Homework  #5  Solutions  

 

ECE 340: PROBABILISTIC METHODS IN ENGINEERING

SOLUTIONS TO HOMEWORK #5

3.35

a) By the definition of conditional probability,

P({X=k}|{X >0}) = !( !!!}∩{!!! )! !!!

=   ! !!!  ! !!!

= ! !!!!"/!"

 

=  

8161516

=815, π‘˜ = 1

7161516

= 7/15, π‘˜ = 2

 

Note: we used the fact that {X=k} βŠ‚ {X>0} for k=1, 2.

b) P({X=k} | {Nm = 1}) = !( !!!}∩{  !!!! )! !!!!

= !( !!!}∩{  !!!! )!/!

=  

14

12 + 1

212

1/2=34, π‘˜ = 1

14

12

12

=14 , π‘˜ = 2

 

3.44 a) S={1,2,3,4,5} A={ΞΆ > 3}. Llet us assume that all outcomes are equally likely. Now,

P{IA=0} = P{Ac}=P{1,2,3}=3/5; P{IA=1} = = P{A}=P{4,5}= 2/5; E[IA] = 0 x 3/5 + 1 x 2/5 = 2/5.

b) S=[0,1] A={0.3 < ΞΆ < 0.7} Again let us assume that we have uniform outcomes; that is, if E is an event, the P(A)=length(E). P{IA=0} = P{Ac}=0.3+0.3 = 0.6 P{IA=1} = P{A} = 0.4 E[IA] = 0 x 0.6 + 1 x 0.4 = 0.4

2   ECE  340  Homework  #5  Solutions  

 

c) S={ΞΆ = (x,y): 0 < x < 1, 0 < y < 1} and A = { ΞΆ = (x,y): 0.25 < x+y < 1.25}

IA(ΞΆ )= 0 when the pair (x,y) is not in the indicated area. IB(ΞΆ )= 0 when the pair (x,y) is in the indicated area. The probabilities can be calculated by computing the areas

P{IA=0} = !.!"!

!+ !!!.!" !

!= !

!"= 0.3125

P{IA=1} = 1- P{IA=0} = 1 βˆ’ !

!"= !!

!"= 0.6875

E[IA] = 0 x 0.3125 + 1 x 0.6875 = 0.6875

d) S=(-∞ , ∞ ) and A={΢ >a} P{IA=1} = P(A) P{IA=0} = P(Ac)=1-P(A) E[IA] = 1 x P(A) = P(A)

3.45 A and B are events from a random experiment with sample space S. a) Show that, IS = 1

From the definition of the indicator function we have that,

𝐼!(𝜁) =  0 𝑖𝑓  πœ  π‘›π‘œπ‘‘  π‘–𝑛  π‘†1 𝑖𝑓  πœ  π‘–𝑛  π‘†

However, by the definition of sample space, all the points ΢ have to be in S, so IS=1 for any ΢∈Ω. Likewise, we show that, IØ = 0

1  

1  

0.25  

0.25  x  

y  

A  0.25  

0.25  

3   ECE  340  Homework  #5  Solutions  

 

From the definition of the indicator function we have that,

𝐼Ø(𝜁) =  0 𝑖𝑓  πœ  π‘›π‘œπ‘‘  π‘–𝑛  Γ˜1 𝑖𝑓  πœ  π‘–𝑛  Γ˜

but by the definition of the null event Ø, contains no outcomes and hence never occurs, so IØ=0 for any ΢∈Ω.

b) IA∩B = IA IB β€’ π‘°π‘¨βˆ©π‘© 𝜻 = 𝟎 if  πœ   βˆ‰  π΄  π‘Žπ‘›π‘‘  πœ   βˆ‰  π΅, which corresponds to IA=0 and IB=0; hence, IA IB =0

or if  πœ  πœ–  π΄  π‘Žπ‘›π‘‘  πœ   βˆ‰  π΅, which corresponds to IA=1 and IB=0; hence, IA IB =0 or if  πœ βˆ‰ 𝐴  π‘Žπ‘›π‘‘  πœ   βˆ‰  π΅, which corresponds to IA=0 and IB=1; hence, IA IB =0.

β€’ π‘°π‘¨βˆ©π‘© 𝜻 = 𝟏 if  πœ  πœ–  π΄  π‘Žπ‘›π‘‘  πœ  πœ–  π΅, which is corresponds to IA=1 and IB=1; hence, IA IB =1. To show that, IAUB = IA + IB - IA∩B notice that β€’ 𝑰𝑨𝑼𝑩 𝜻 = 𝟎 only if    πœ   βˆ‰  π΄  π‘Žπ‘›π‘‘  πœ   βˆ‰  π΅, which is corresponds to IA=0 and IB=0, and IA

+ IB - IAUB = 0 β€’ 𝑰𝑨𝑼𝑩 𝜻 = 𝟏 if  πœ  πœ–  π΄  π‘Žπ‘›π‘‘  πœ  πœ–  π΅, which in this case makes to IA=1 and IB=1 and IAUB=1,

and IA + IB - IAUB = 1 or if  πœ  πœ–  π΄  π‘Žπ‘›π‘‘  πœ   βˆ‰  π΅, which corresponds to IA=1 and IB=0 and IAUB=0, so IA + IB - IAUB = 1 or if  πœ βˆ‰ 𝐴  π‘Žπ‘›π‘‘  πœ   βˆ‰  π΅, which is equivalent to IA=0 and IB=1 and IAUB=0, so IA + IB - IAUB = 1

c) The expected values are

E[IS]= 0pI(0) + 1pI(1) = pI(1) = 1 E[IØ]= pI(1) = 0 E[IA∩B]= pI(1) = P(A ∩ B) E[IAUB]= pI(1) = P(A U B) = P(A) + P(B) – P(A ∩ B)

4   ECE  340  Homework  #5  Solutions  

 

3.48 The pmf of a binomial random variable is given as

𝒑𝑿 π’Œ = 𝑷 𝑿 = π’Œ =π’π’Œπ’‘π’Œ(𝟏 βˆ’ 𝒑)𝒏!π’Œ,      π’Œ = 𝟎,𝟏,… ,𝒏

The pmfs of various values of n and p are given in the following figures for  n  =  4  and  p  =  0.1  

 

for  n  =  5  and  p  =  0.1  

 

 

for  n  =  4  and  p  =  0.5  

 

 

 

 

 

0  

0.2  

0.4  

0.6  

0.8  

0   1   2   3   4   5  

Series1  

0  

0.2  

0.4  

0.6  

0.8  

0   1   2   3   4   5   6  

Series1  

0  

0.1  

0.2  

0.3  

0.4  

0   1   2   3   4   5  

Series1  

5   ECE  340  Homework  #5  Solutions  

 

for  n  =  5  and  p  =  0.5  

 

for  n  =  4  and  p  =  0.9  

 

 

for  n  =  5  and  p  =  0.9  

 

3.49 a) Let IK denote the outcome of the kth Brenoulli trial. The probability that the single

event occurred in the kth trial is

𝑃 𝐼! = 1} {𝑋 = 1 =𝑃 𝐼! = 1  } ∩ {  πΌ! = 0  π‘“π‘œπ‘Ÿ  π‘Žπ‘™π‘™  π‘— β‰  π‘˜

𝑃 𝑋 = 1

=𝑃 0, 0,… ,1, 0, . .0

𝑃 𝑋 = 1

0  0.1  0.2  0.3  0.4  

0   1   2   3   4   5   6  

Series1  

0  

0.2  

0.4  

0.6  

0.8  

0   1   2   3   4   5  

Series1  

0  

0.2  

0.4  

0.6  

0.8  

0   1   2   3   4   5   6  

Series1  

6   ECE  340  Homework  #5  Solutions  

 

=𝑝 1 βˆ’ 𝑝 !!!

𝑛1 𝑝 1 βˆ’ 𝑝 !!!

=1𝑛

Thus, the single event is equally likely to have occurred in any of the n trials. b) The probability that the two successes occurred in trials j and k is

𝑃( 𝐼! = 1, 𝐼! = 1   𝑋 = 2}) =𝑃({𝐼! = 1, 𝐼! = 1} ∩ {  πΌ! = 0  π‘“π‘œπ‘Ÿ  π‘Žπ‘™π‘™  π‘š β‰  𝑗, π‘˜})

𝑃{𝑋 = 2}    

=𝑝! 1 βˆ’ 𝑝 !!!

𝑛2 𝑝! 1 βˆ’ 𝑝 !!!  

=1𝑛2

c) If X=k, then the locations of the successes are randomly selected from the π‘›π‘˜

possible permutations of possible locations. The concept of completely at random can be interpreted as the concept of β€˜uniformly distributed’ as can be seen from parts a) and b).

3.52 p=0.01 N=number of error-free characters until the first error.

a) P({N=k})=(1-p)kp k=0,1,2,… b) 𝐸[𝑁] = π‘˜ 1 βˆ’ 𝑝 !𝑝 = 1 βˆ’ 𝑝 𝑝 π‘˜ 1 βˆ’ 𝑝 !!!!

!!!!  !!!

                                                 = 1 βˆ’ 𝑝 𝑝1

1 βˆ’ 1 βˆ’ 𝑝! =

1 βˆ’ 𝑝𝑝

         π‘π‘¦  πΈπ‘ž. (3.14)

c) 0.99 = 𝑃 𝑁 > π‘˜! = 1 βˆ’ 𝑝 !𝑝 = 𝑝 1 βˆ’ 𝑝 !!!! 1 βˆ’ 𝑝 !!

!!!!!!!!

                     = 1 βˆ’ 𝑝 !""!        β‡’      π‘ = 1 βˆ’ 0.99!

!""! = 1.004π‘₯10!!

3.56 Let’s denote the random variable X as the cost of repair of the audio player in one year period, and denote c as the charge for the one year warranty. The pmf of r.v. X can be found as

𝑃 𝑋 = π‘₯ = !"(!/!")

!!"

!!" (1 βˆ’ !

!")!"!

!!"   for π‘₯ = 0, 20, 40, 60,… , 240.

Thus,

𝑃 𝑋 = 0 =12020

112

!!"(1 βˆ’

112)!"!

!!" = 0.351995628014137

𝑃 𝑋 = 20 = 0.383995230560877

7   ECE  340  Homework  #5  Solutions  

 

𝑃 𝑋 = 40 = 0.191997615280438 𝑃 𝑋 = 60 = 0.058181095539527 𝑃 𝑋 = 80 = 0.011900678633085 𝑃 𝑋 = 100 = 0.001731007801176 𝑃 𝑋 = 120 = 0.000183591736488 𝑃 𝑋 = 140 = 0.000014305849596 𝑃 𝑋 = 160 = 0.000000812832363 𝑃 𝑋 = 180 = 0.000000032841712 𝑃 𝑋 = 200 = 0.000000000895683 𝑃 𝑋 = 220 = 0.000000000014805 𝑃 𝑋 = 240 = 0.000000000000112

If now we want the probability of losing money on a player is 1% or less, we want 𝑃[𝑋 > 𝑐] ≀ 0.01. And the question now is β€˜what value should the c take such that the previous inequality is satisfied?’ Note that P[X>c] is monotonically decreasing as c increases and P[X>60] = 0.013830430605021 > 0.01; and P[X>c] = 0.013830430605021 > 0.01 for any c in the interval of (60,80); P[X>80] = 0.001929751971936 <= 0.01; P[X>c] <= P[X>80] = 0.001929751971936 <= 0.01 for any c >= 80. So the manufacturer should charge at least 80 dollars to make sure the probability of losing money on a player is 1% or less (excluding the initial cost of $50.).

The average cost (of repair) per player is 𝐸 𝑋 = π‘₯! 𝑃 𝑋 = π‘₯ = 20 dollars. This expectation can be calculated by the following matlab code:

for x = 0:20:240 cost((x+20)/20) = x*(nchoosek(12,x/20))*((1/12)^(x/20))*((11/12)^(12-(x/20))); end >> sum(cost) ans = 19.999999999999996 >>

3.59 (Please also see Example 3.30 on page 122)

a) We know that the average is 6000 requests per minute, which is equivalent to 0.1 requests per millisecond, which corresponds to having Ξ± = Ξ»t = 0.1t in the Poisson distribution (where t is in milliseconds). The probability of having no requests in a 100-ms period is

P{N=0} = (!")!

!!𝑒!!" = 𝑒!!" = 𝑒!!.!βˆ—!"" = 𝑒!!" = 45.399 βˆ— 10!!

8   ECE  340  Homework  #5  Solutions  

 

b) The probability that there are between 5 and 10 requests in a 100-ms period

𝑃{5 ≀    π‘ ≀    10}  =πœ†π‘‘ !

π‘˜!𝑒!!" =

!"

!!!

0.1Γ—100 !

π‘˜!𝑒!!.!Γ—!"" =

!"

!!!

0.5538

3.62 Solution: The Poisson r.v. has the following pmf:

𝑃 𝑁 = π‘˜ = 𝑝! π‘˜ =  π›Ό!

π‘˜!𝑒!! ,          π‘“π‘œπ‘Ÿ  π‘˜ = 0, 1, 2,….

𝑝!𝑝!!!

=

𝛼!π‘˜! 𝑒

!!

𝛼!!!π‘˜ βˆ’ 1 ! 𝑒

!!=π›Όπ‘˜

𝐼𝑓  π›Ό < 1    π‘‘β„Žπ‘’π‘›    π‘!𝑝!!!

=π›Όπ‘˜< 1    π‘“π‘œπ‘Ÿ  π‘˜ β‰₯ 1

∴ 𝑝!  π‘‘π‘’π‘π‘Ÿπ‘’π‘Žπ‘ π‘’π‘   π‘Žπ‘   π‘˜  π‘–π‘›π‘π‘Ÿπ‘’π‘Žπ‘ π‘’π‘   π‘“π‘Ÿπ‘œπ‘š  0

∴ 𝑝!  π‘Žπ‘‘π‘‘π‘Žπ‘–π‘›π‘   π‘–𝑑𝑠  π‘šπ‘Žπ‘₯π‘–π‘šπ‘’π‘š  π‘Žπ‘‘  π‘˜ = 0

𝐼𝑓  π›Ό > 1  π‘‘β„Žπ‘’π‘› (Note that we denote by [x] the largest integer that is smaller than or equal

to x.)

If  0 ≀ π‘˜ ≀ 𝛼 < 𝛼, π‘‘β„Žπ‘’π‘›   !!!!!!

= !!> 1

Hence, pk increases from k=0 to k=[Ξ±]

If   𝛼 ≀ 𝛼 ≀ π‘˜, !!!!!!

= !!< 1

and pk decreases as k increases beyond [Ξ±]

∴ 𝑝!  π‘Žπ‘‘π‘‘π‘Žπ‘–π‘›π‘   π‘–𝑑𝑠  π‘šπ‘Žπ‘₯π‘–π‘šπ‘’π‘š  π‘Žπ‘‘  π‘˜!"# = [𝛼]

𝐼𝑓  π›Ό = 𝛼  π‘‘β„Žπ‘’π‘›  π‘“π‘œπ‘Ÿ  π‘˜ = [𝛼]

𝑝!𝑝!!!

= 1, and  hence, 𝑝!!"# =  π‘!!"#!!

3.68 Solution:

𝐸[𝑋] = π‘˜π‘ƒ!

!!!

𝑋 = π‘˜ = π‘˜1𝐿

!

!!!

=1𝐿

π‘˜!

!!!

=𝐿(𝐿 + 1)2𝐿

=𝐿 + 12

𝜎!! = 𝐸[𝑋!] βˆ’ 𝐸[𝑋]! = π‘˜!1𝐿

!

!!!

βˆ’πΏ + 12

!=𝐿 𝐿 + 1 2𝐿 + 1

6πΏβˆ’

𝐿 + 1 !

4=𝐿! βˆ’ 112