Download - DESIGN OPTIMIZATION OF HIGH-LIFT CONFIGURATIONS USING …aero-comlab.stanford.edu/sanghok/reno2002-s.pdf · 2019-06-23 · Method by comparison with Gradients from Finite Difference

Transcript
Page 1: DESIGN OPTIMIZATION OF HIGH-LIFT CONFIGURATIONS USING …aero-comlab.stanford.edu/sanghok/reno2002-s.pdf · 2019-06-23 · Method by comparison with Gradients from Finite Difference

' $

DESIGN OPTIMIZATION OF HIGH-LIFT CONFIGURATIONSUSING A VISCOUS ADJOINT-BASED METHOD

Sangho Kim

Stanford University

Juan J. Alonso

Stanford University

Antony Jameson

Stanford University

40th AIAA Aerospace Sciences Meeting and Exhibit

Reno, NV

January, 2002

& %

Page 2: DESIGN OPTIMIZATION OF HIGH-LIFT CONFIGURATIONS USING …aero-comlab.stanford.edu/sanghok/reno2002-s.pdf · 2019-06-23 · Method by comparison with Gradients from Finite Difference

' $

Outline

• Introduction

• Objectives

• Description of Continuous Adjoint Method

• Viscous Aerodynamic Sensitivity Accuracy Study

• High-Lift System Design

• Conclusions and Future Work

& %

Page 3: DESIGN OPTIMIZATION OF HIGH-LIFT CONFIGURATIONS USING …aero-comlab.stanford.edu/sanghok/reno2002-s.pdf · 2019-06-23 · Method by comparison with Gradients from Finite Difference

' $

High–Lift System Configuration

�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

��������������������

��������������������

������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������

�����������������������������������������������������������������������������������������������������������������������

�����������������������������������������������������������������������������������������������������������������������

������������

��������������������������������������������������

��������������������������������������������������

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

���������������������������������������������������������������������������������������������������������

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������

������������������������������������������������������������

Secondary Flow

Viscous Shear Layer

Wake Line

Boundary Layer

SlatFlap

Main Airfoil

Angle of Attack

Lift Coefficient

Slats Extended

Slats Retracted

Flap angle 0 deg

Lift Coefficient

Angle of Attack

Increase Flap Angle

Flap angle 40 deg

& %

Page 4: DESIGN OPTIMIZATION OF HIGH-LIFT CONFIGURATIONS USING …aero-comlab.stanford.edu/sanghok/reno2002-s.pdf · 2019-06-23 · Method by comparison with Gradients from Finite Difference

' $

Introduction

• High-Lift System Configuration Design

– Wind tunnel testing

– CFD as an Analysis Tool

– Difficulties in Decision Making

• CFD as a Design Tool

– Automatic Design Procedure : CFD + Gradient Based Optimization

– Gradient Based Optimization

∗ Cost function to be Min/Maximized (Drag, L/D).

∗ Control function to be Optimized (Airfoil Shape).

∗ Design Variables (Mesh points, Sine Bump function)

∗ Constraint (Euler eq. NS eq)

∗ Gradients (Finite Difference, Complex, Adjoint)

∗ Optimization Algorithm (Steepest Descent)

– Control Theory Approach or Adjoint Method by Jameson 1988.

• Continuous Adjoint Design Method using the Navier-Stokes equations as a flow

model and the Gradient Accuracy study.

• Application to High-Lift System Design.

& %

Page 5: DESIGN OPTIMIZATION OF HIGH-LIFT CONFIGURATIONS USING …aero-comlab.stanford.edu/sanghok/reno2002-s.pdf · 2019-06-23 · Method by comparison with Gradients from Finite Difference

' $

Objectives

1. Viscous Aerodynamic Sensitivity Accuracy Study

• 2D Implementation of a Continuous Adjoint Design Method that uses the

Navier-Stokes equations as a flow model.

•Verification of the Accuracy and Efficiency of the present Continuous Adjoint

Method by comparison with Gradients from Finite Difference Method.

•Demonstration with Preliminary Examples.

2. High-Lift System Design

•Develop numerical optimization tools for design and development of high-lift system

configurations.

• Improve take-off and landing performance of high-lift systems using a Continuous

Adjoint Design Method.

– Cl, Cd, L/D and Clmax.

& %

Page 6: DESIGN OPTIMIZATION OF HIGH-LIFT CONFIGURATIONS USING …aero-comlab.stanford.edu/sanghok/reno2002-s.pdf · 2019-06-23 · Method by comparison with Gradients from Finite Difference

' $

Symbolic Description of Continuous Adjoint Method

Let I be the cost (or objective) function

I = I(w,F)

where

w = flow field variables

F = design variables

The first variation of the cost function is

δI =∂I

∂w

T

δw +∂I

∂FT

δFThe flow field equation and its first variation are

R(w,F) = 0

δR = 0 =

∂R

∂w

δw +

∂R

∂F δF

& %

Page 7: DESIGN OPTIMIZATION OF HIGH-LIFT CONFIGURATIONS USING …aero-comlab.stanford.edu/sanghok/reno2002-s.pdf · 2019-06-23 · Method by comparison with Gradients from Finite Difference

' $

Introducing a Lagrange Multiplier, ψ, and using the flow field equation as a

constraint

δI =∂I

∂w

T

δw +∂I

∂FT

δF − ψT

∂R

∂w

δw +

∂R

∂F δF

=

∂I

∂w

T

− ψT∂R

∂w

δw +

∂I

∂FT

− ψT∂R

∂F

δF

By choosing ψ such that it satisfies the adjoint equation∂R

∂w

T

ψ =∂I

∂w,

we have

δI =

∂I

∂FT

− ψT∂R

∂F

δF

= GTδFThis reduces the gradient(G) calculation for an arbitrarily large number of design

variables at a single design point to

One Flow Solution

+ One Adjoint Solution

& %

Page 8: DESIGN OPTIMIZATION OF HIGH-LIFT CONFIGURATIONS USING …aero-comlab.stanford.edu/sanghok/reno2002-s.pdf · 2019-06-23 · Method by comparison with Gradients from Finite Difference

' $

Navier–Stokes Inverse : Adjoint Gradient

0 5 10 15 20 25 30 35 40 45 50−1.5

−1

−0.5

0

0.5

1

1.5Comparison of Finite Difference and Adjoint Gradiensts on 512x64 Mesh

control parameter

grad

ient

Adjoint Finite Difference

1a: Finite Difference vs. Adjoint Gradient

0 5 10 15 20 25 30 35 40 45 50−1.5

−1

−0.5

0

0.5

1

1.5Continuous Adjoint Gradient for Different Flow Solver Convergence

control parameter

grad

ient

7(4) orders 6(3) orders 5(2) orders 4(1) orders 3(0) orders

1b: Continuous Adjoint on Flow

Convergence Levels

& %

Page 9: DESIGN OPTIMIZATION OF HIGH-LIFT CONFIGURATIONS USING …aero-comlab.stanford.edu/sanghok/reno2002-s.pdf · 2019-06-23 · Method by comparison with Gradients from Finite Difference

' $

Flowchart of the Design Process

Define Design Variables

Parameterize Configuration

Define Cost Function

Solve Flow Equation

Solve Adjoint Equations

Perturb Shape & Modify Grid

Evaluate Gradient

Adjoint

Perturb Shape & Modify Grid

Solve Flow Equations

Evaluate Gradient

Finite Difference

Optimization

New Shape

Optimum? No

Stop

Yes

Loop over Gradients

1 Loop

Loop over Gradients

0 �

20

40

60 �

80 �

100

120

Adjoint vs. Finite Difference

in Cost, N=100

Adjoint

Finite Difference

& %

Page 10: DESIGN OPTIMIZATION OF HIGH-LIFT CONFIGURATIONS USING …aero-comlab.stanford.edu/sanghok/reno2002-s.pdf · 2019-06-23 · Method by comparison with Gradients from Finite Difference

' $

Navier–Stokes Inverse : RAE2822 → NACA64A410

RAE2822 TO NACA64A410 MACH 0.750 ALPHA 0.000

CL 0.3196 CD 0.0029 CM -0.0952

GRID 513X65 NCYC 10 RES0.220E+00

0.1E

+01

0.8E

+00

0.4E

+00

-.2E

-15

-.4E

+00

-.8E

+00

-.1E

+01

-.2E

+01

-.2E

+01

Cp

+++++++++++++++++++++++++++++++++++++

++++++++++

++++++++

++++++

+++++

++++

+++++

+++++++++++

++++++

++

++

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+++++++++++++++++++++++++++++++++

+++++++

+

+

+

+

+

+

+

+

++++++++++++++++++++++++++++++++

++++++++

++++++

++++++++++++++++++++++++++++++++++++++++++++++

++++++++++++++++++++

++++++++++++

+++++++++++++++++++++++++++++++++++++++++++++++++++++

2a: Initial, Perror = 0.0504RAE2822 TO NACA64A410 MACH 0.750 ALPHA 0.000

CL 0.5650 CD 0.0111 CM -0.1445

GRID 513X65 NCYC 10 RES0.129E+00

0.1E

+01

0.8E

+00

0.4E

+00

-.2E

-15

-.4E

+00

-.8E

+00

-.1E

+01

-.2E

+01

-.2E

+01

Cp

++++++++++++++++++++++++

+++++++++++++++++++++++++++++++++

++++++++

++++++++

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

++++++++++++++++

++++

+

+

+

+

+

+

+

+

+

+

+

+++++++++

++++++++++++++++++++++++++++++++++++++++++++++++++++

++++

++++

++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+

+

+

+

+

+

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

2b: 100 Design Iterations, Perror = 0.0029

& %

Page 11: DESIGN OPTIMIZATION OF HIGH-LIFT CONFIGURATIONS USING …aero-comlab.stanford.edu/sanghok/reno2002-s.pdf · 2019-06-23 · Method by comparison with Gradients from Finite Difference

' $

Navier–Stokes Cd Min. : RAE2822 at Fixed Cl = .84

RAE DRAG MACH 0.730 ALPHA 2.739

CL 0.8411 CD 0.0169 CM -0.0975

GRID 513X65 NCYC 400 RES0.624E-03

0.1E

+01

0.8E

+00

0.4E

+00

-.2E

-15

-.4E

+00

-.8E

+00

-.1E

+01

-.2E

+01

-.2E

+01

Cp

+++++++++++++++++++++++++++++++++++++++++

+++++++++++

++++++++

++++++

++++++

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+++++++++++++++++++++++++++++++

+++++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++++++++++++++++++++++++++

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+

+

+

+

+

+

++++

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

3a: Initial, CDt=0.0169

M = 0.73, α = 2.739, Cl = 0.8411

RAE DRAG MACH 0.730 ALPHA 2.949

CL 0.8406 CD 0.0097 CM -0.0824

GRID 513X65 NCYC 100 RES0.346E-02

0.1E

+01

0.8E

+00

0.4E

+00

-.2E

-15

-.4E

+00

-.8E

+00

-.1E

+01

-.2E

+01

-.2E

+01

Cp

+++++++++++++++++++++++++++++++++++

+++++++++++

++++++++

+++++++

++++++

++++++

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

++++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+

3b: 40 Design Iterations, Cd=0.0097

M = 0.73, α = 2.949, Cl = 0.8406

& %

Page 12: DESIGN OPTIMIZATION OF HIGH-LIFT CONFIGURATIONS USING …aero-comlab.stanford.edu/sanghok/reno2002-s.pdf · 2019-06-23 · Method by comparison with Gradients from Finite Difference

' $

Advantages of Viscous Adjoint Method Over Finite Differencing

• Computational Cost was Drastically Reduced.

• Required Level of Flow Solver Convergence is Lower than for Finite Differencing.

• Step Insensitive. (In Adjoint Method, Step is only used for Geometry Perturbation.)

• Required Level of Convergence of Adjoint is Minimal.

=⇒ More Efficient, More Robust Method for Sensitivity Analysis in Viscous Flows.

& %

Page 13: DESIGN OPTIMIZATION OF HIGH-LIFT CONFIGURATIONS USING …aero-comlab.stanford.edu/sanghok/reno2002-s.pdf · 2019-06-23 · Method by comparison with Gradients from Finite Difference

' $

High-Lift System Design : SYN103MB

• Design Variables

– Sine Bumps : Shape design for each element.

RAE AIRFOIL TO KORN MACH 0.730 ALPHA 2.790

CL 0.6465 CD 0.0415 CM -0.0884

GRID 513X65 NCYC 8 RES0.547E+01

0.1E

+01

0.8E

+00

0.4E

+00

-.2E

-15

-.4E

+00

-.8E

+00

-.1E

+01

-.2E

+01

-.2E

+01

Cp

++++++++++++++++++++++++++++++++++++++++++++++++++

+++++++++++++

+++++++++

+++++++++

+++++++

++++++

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

oooooooooooooooooooooooooooooooooooooooooooooooo

ooooooooooooo

oooooooooo

oooooooo

ooooooooo

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

– Rigging Variables : Gaps, Overlaps and Deflections

– Angle of Attack (α) : Clmax maximization

& %

Page 14: DESIGN OPTIMIZATION OF HIGH-LIFT CONFIGURATIONS USING …aero-comlab.stanford.edu/sanghok/reno2002-s.pdf · 2019-06-23 · Method by comparison with Gradients from Finite Difference

' $

• Grid Topology : Multi-block structured, Overall C- and O- mesh topologies.

Figure 4: Viscous Mesh for 30P30N Multielement Airfoil

• Mesh Perturbation

New grids are generated by shifting the grid points along the radial coordinate lines

depending on the shape boundary modification.

& %

Page 15: DESIGN OPTIMIZATION OF HIGH-LIFT CONFIGURATIONS USING …aero-comlab.stanford.edu/sanghok/reno2002-s.pdf · 2019-06-23 · Method by comparison with Gradients from Finite Difference

' $

FLO103-MB PV3 CLIENT Z COORDINATE @ 1.5000 MACH NUMBER from 0.0000 to 0.3825

& %

Page 16: DESIGN OPTIMIZATION OF HIGH-LIFT CONFIGURATIONS USING …aero-comlab.stanford.edu/sanghok/reno2002-s.pdf · 2019-06-23 · Method by comparison with Gradients from Finite Difference

' $

High-Lift System Design : SYN103MB (cont.)

• FLO103-MB Methodology

– Runge-Kutta Explicit Time Stepping

– Cell Centered Spatial Discretization

– Jameson-Schmidt-Turkel(JST) Scheme

– Local Time Stepping

– Implicit Residual Smoothing

– Multigridding

• Turbulence

– Spalart-Allmaras One Equation Model solved by ADI Scheme for Multi-Element

Airfoil Designs. ( Dr. Creigh McNeil )

• ADJ103-MB : The same methodology.

• MPI (Message Passing Interface) parallel solution methodology.

& %

Page 17: DESIGN OPTIMIZATION OF HIGH-LIFT CONFIGURATIONS USING …aero-comlab.stanford.edu/sanghok/reno2002-s.pdf · 2019-06-23 · Method by comparison with Gradients from Finite Difference

' $

FLO103-MB CONVERGENCE HISTORY (SA Model)

0 200 400 600 800 1000 1200 1400 1600 1800 2000−2

0

2

4

6

8

Cl

Cl Convergence History

0 200 400 600 800 1000 1200 1400 1600 1800 200010

−2

100

102

104

Multigrid Cycles

Res

idua

l

FLO103MB Convergence History

4a: Convergence history for the Spalart-Allmaras model

& %

Page 18: DESIGN OPTIMIZATION OF HIGH-LIFT CONFIGURATIONS USING …aero-comlab.stanford.edu/sanghok/reno2002-s.pdf · 2019-06-23 · Method by comparison with Gradients from Finite Difference

' $

Cp Comparison : M=0.2, α = 8◦, Re = 9× 106, 30P30N

30P30N TEST MACH 0.200 ALPHA 8.010

CL 3.1514 CD 0.0651 CM -1.3693

GRID 118784 NCYC 2000 RES 0.950E+00

2.0

00

1.0

00

0.0

00

-1.0

00

-2.0

00

-3.0

00

-4.0

00

-5.0

00

-6.0

00

-7.0

00

-8.0

00

Cp

+

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+++++++

+++

++

+++

++++

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+

+

+++++++++++++++++++++++++++++

+++++

++++

++++

++

++

+

+

++++++++++++++++++++++++++++++++++++++++++++++

+

+

++++

+

++

++

+

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

++++++++++++++++++++++++++++++++++++++++++++++

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

++

++

++

++

++

++

++

+

++++

+++++

+

++++++++++++++++++++++++++++++++++++++++++

+

+

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+

+

+++++++++++++++++++++++++++++++

+

oooooooooooooo

oo

oo

o

o

oooo

oo

ooooo

oooo

o

o

o

o

oo o o o o o o o o ooooooooo

ooooooooo

oooooooooo

o

o

o

oooooooo

ooooooo

oo

o

ooooooooo

ooo

oo

ooooooo

oooooo

o

o

o

o

oooooooooooooooo

oo

4b: Experimental and computational Cp : o - Exp. +,x - Comp.

& %

Page 19: DESIGN OPTIMIZATION OF HIGH-LIFT CONFIGURATIONS USING …aero-comlab.stanford.edu/sanghok/reno2002-s.pdf · 2019-06-23 · Method by comparison with Gradients from Finite Difference

' $

Stall Prediction : M = 0.2, Re = 9× 106

−5 0 5 10 15 20 25−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

angle of attack

Cl

plot Cl vs. alpha

Total

Main

Slat

Flap

−*− : Comp. o : Exp.

4c: Experimental and computational Cl vs. α

& %

Page 20: DESIGN OPTIMIZATION OF HIGH-LIFT CONFIGURATIONS USING …aero-comlab.stanford.edu/sanghok/reno2002-s.pdf · 2019-06-23 · Method by comparison with Gradients from Finite Difference

' $

Velocity Profiles : M = 0.2 α = 8◦ Re = 9× 106

4d: High-Lift Configuration

0 0.1 0.2 0.3 0.40

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

u/ainf

d/c

velocity profile at x=0.45

0 0.1 0.2 0.3 0.4 0.50

0.02

0.04

0.06

0.08

0.1

0.12

0.14

u/ainf

d/c

velocity profile at x=0.89

Comp 9MExp 9M

4e: Comparison of velocity profiles

& %

Page 21: DESIGN OPTIMIZATION OF HIGH-LIFT CONFIGURATIONS USING …aero-comlab.stanford.edu/sanghok/reno2002-s.pdf · 2019-06-23 · Method by comparison with Gradients from Finite Difference

' $

High–Lift System Design Philosophy

• Neccessary in take-off and landing conditions

– Minimize runway length and Maximize payload.

• Typical Configurations

− High Maximum Lift Coefficient− High L/D (Climb)

��������������������

��������������������������������������������������������������������������������������������������������������������

��������������������������������������������������������������������������������������������������������������������

����������������������������

����������������������������

���������������������

���������������������

�����������������������������������������������������������������

�����������������������������������������������������������������

���������������

���������������

Take−Off Configuration Landing Configuration

− High Maximum Lift Coefficient− Less Strict Requirements on L/D

• Approaches

– Take–off : Maximize Cl while maintaining high L/D.

∗ Fix Cd and Maximize Cl (shape and α)

∗ Fix Cl and Minimize Cd (shape and α)

– Landing : Maximize Cl without worrying about Cd or L/D.

∗ Clmax maximization.

& %

Page 22: DESIGN OPTIMIZATION OF HIGH-LIFT CONFIGURATIONS USING …aero-comlab.stanford.edu/sanghok/reno2002-s.pdf · 2019-06-23 · Method by comparison with Gradients from Finite Difference

' $

Multi-Element Cl Max. : 30P30N with Fixed Cd=0.065

30P30N TEST MACH 0.200 ALPHA 16.020

CL 4.0414 CD 0.0650 CM -1.4089

GRID 204800 NCYC 5000 RES 0.285E-02

2.0

00 0

.000

-2.

000

-4.

000

-6.

000

-8.

000

-10.

000

-12.

000

-14.

000

-16.

000

-18.

000

Cp

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

++

++++++++++++++

++++++++++++++++++++++++++++++++++++++++++++++++++

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

++++++++++++++++++++++++++++++++++++++++++

++++++++++++++++++++++

+++++++++++++++++++++++++++++++++++++++++++

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

5a: Initial, Cl=4.0412

M = 0.2, α = 16.02◦, Re = 9× 106,

Cd = 0.0650

30P30N TEST MACH 0.200 ALPHA 15.127

CL 4.1227 CD 0.0661 CM -1.4610

GRID 204800 NCYC 5000 RES 0.185E-01

2.0

00 0

.000

-2.

000

-4.

000

-6.

000

-8.

000

-10.

000

-12.

000

-14.

000

-16.

000

-18.

000

Cp

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

++++++++++++++++++++++++++++++++++++++++++

++++++++++++++++++++++

+++++++++++++++++++++++++++++++++++++++++++

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+++++++++++++++++++++++++++++++++++

+++++++++++++++++++++++++++

++

++++++++++++++

+

+

++++++++++++++++++++++++++++++++++++++++++++++++

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

5b: 10 Design Iteration, Cl=4.1227

M = 0.2, α = 15.127◦, Re = 9× 106,

Cd = 0.0661

& %

Page 23: DESIGN OPTIMIZATION OF HIGH-LIFT CONFIGURATIONS USING …aero-comlab.stanford.edu/sanghok/reno2002-s.pdf · 2019-06-23 · Method by comparison with Gradients from Finite Difference

' $

RAE2822 Clmax Maximization.

0 2 4 6 8 10 12 14 16 180.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

angle of attack(α), degrees

Cl

Clmax

Maximization for RAE2822 Airfoil (Approah I)

O

A

B C

α at Clmax

: 11.1 %,Cl

max : 14 % improved.

Cl = 2π α (radian)

& %

Page 24: DESIGN OPTIMIZATION OF HIGH-LIFT CONFIGURATIONS USING …aero-comlab.stanford.edu/sanghok/reno2002-s.pdf · 2019-06-23 · Method by comparison with Gradients from Finite Difference

' $

RAE2822 Clmax Maximization.

RAE2822 TEST MACH 0.200 ALPHA 14.633

CL 1.6430 CD 0.0359 CM -0.4346

GRID 32768 NCYC 1000 RES 0.150E-02

2.0

00 0

.000

-2.

000

-4.

000

-6.

000

-8.

000

-10.

000

-12.

000

-14.

000

-16.

000

-18.

000

Cp

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+

+

+

+

+

+

+

+

+

+

+

+

+

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

5c: Initial, Cl=1.6430

M = 0.2, α = 14.633◦, Re = 6.5M ,

Cd = 0.0359

RAE2822 TEST MACH 0.200 ALPHA 14.633

CL 1.8270 CD 0.0326 CM -0.4901

GRID 32768 NCYC 1000 RES 0.168E-03

2.0

00 0

.000

-2.

000

-4.

000

-6.

000

-8.

000

-10.

000

-12.

000

-14.

000

-16.

000

-18.

000

Cp

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+

+

+

+

+

+

+

+

+

+++++

+

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

5d: 31 Design Iterations, Cl = 1.8270

M = 0.2, α = 14.633◦, Re = 9× 106,

Cd = 0.0326.

& %

Page 25: DESIGN OPTIMIZATION OF HIGH-LIFT CONFIGURATIONS USING …aero-comlab.stanford.edu/sanghok/reno2002-s.pdf · 2019-06-23 · Method by comparison with Gradients from Finite Difference

' $

RAE2822 Clmax Maximization Using α and Bump.

0 2 4 6 8 10 12 14 16 180.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

angle of attack(α), degrees

Cl

Clmax

Maximization for RAE2822 Airfoil (Approach II)

α at Clmax

: 6.8 %,Cl

max : 13.3 % improved.

Cl = 2πα(radian)

Approach II Design Curve

Approach I Design Curve

O

A

B C

D

E

& %

Page 26: DESIGN OPTIMIZATION OF HIGH-LIFT CONFIGURATIONS USING …aero-comlab.stanford.edu/sanghok/reno2002-s.pdf · 2019-06-23 · Method by comparison with Gradients from Finite Difference

' $

30P30N Clmax Maximization.

19 20 21 22 23 24 25 264.2

4.25

4.3

4.35

4.4

4.45

4.5

4.55Maximum Cl Maximization for 30P30N

angle of attack(α), degrees

Cl

Design Curve

Baseline Cl vs. α Curve

α at Clmax

: 501 Cl counts,α

clmax : 0.1o increased.

S

Edesigned

Ebaseline

& %

Page 27: DESIGN OPTIMIZATION OF HIGH-LIFT CONFIGURATIONS USING …aero-comlab.stanford.edu/sanghok/reno2002-s.pdf · 2019-06-23 · Method by comparison with Gradients from Finite Difference

' $

Conclusions and Future Work

• Making use of the Large Computational Savings provided by the Adjoint

Method, a Numerical Optimization Procedure for Designs of

High-Dimensional Design Space has been developed.

• High-Lift System Configuration Design Examples have been performed in order

to validate the Sensitivity Calculation Procedure using our Continuous Viscous

Adjoint Method.

• Further Study of Adjoint Solver and Adjoint Boundary Conditions.

• Enhancement of Design Methods by Survey of Optimization Algorithm and Design

Parameterization.

• Extension to More Realistic Problems inculding 3D Design Problems and Multi

Point Designs

& %