Download - Click to edit Master title style - dspace.mit.edudspace.mit.edu/bitstream/handle/1721.1/45593/15... · Click to edit Master title style • • • • • 3 Click to edit Master

Transcript
Page 1: Click to edit Master title style - dspace.mit.edudspace.mit.edu/bitstream/handle/1721.1/45593/15... · Click to edit Master title style • • • • • 3 Click to edit Master

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

1

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

1

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

1

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

1

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

1

Climate Change and Methane Emissions: Using Integrated Analysis Tools to Advise Policy

Marcus C. Sarofim

Page 2: Click to edit Master title style - dspace.mit.edudspace.mit.edu/bitstream/handle/1721.1/45593/15... · Click to edit Master title style • • • • • 3 Click to edit Master

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

2

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

2

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

2

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

2

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

2

Overview

• Climate Change Background– The Science– The Politics

• The Role of Methane– Conventional Wisdom– Research results (political, economic, and

scientific)– Policy recommendation: decouple CO2 from

CH4 policy

Page 3: Click to edit Master title style - dspace.mit.edudspace.mit.edu/bitstream/handle/1721.1/45593/15... · Click to edit Master title style • • • • • 3 Click to edit Master

Click to edit Master title style

•••••

3

Click to edit Master title style

•••••

3

Click to edit Master title style

3

Click to edit Master title style

3

Click to edit Master title style

3

The Earth’s Radiative Balance

Emitted by Atmosphere

Absorbed byAtmosphere67

165

Incoming Solar Radiation

342 Wm-2

AtmosphericWindow

40

30

235342

OutgoingLongwaveRadiation235 Wm-2

Greenhouse Gases

324 BackRadiation

40350

390 SurfaceRadiation

Absorbed by Surface

324Evapo-

transpiration

ThermalsAbsorbed by Surface

168 24 78

30

Reflected Solar

107 Wm-2 107

Reflected byClouds, andAtmosphere

77

77

2478

Reflected by Surface

30

Radiation

Latent Heat

Figure by MIT OCW, based on Kiehl and Trenberth 1997.

Page 4: Click to edit Master title style - dspace.mit.edudspace.mit.edu/bitstream/handle/1721.1/45593/15... · Click to edit Master title style • • • • • 3 Click to edit Master

Radiative Forcing ComponentsRF Terms

Long-lived

greenhouse gases

Ozone Stratospheric

Land use Black carbonon snow

Tropospheric

Halocarbons

CO2

CH4

N2O

RF values (Wm-2) Spatial scale LOSU

High

High

Med

Low

Low

Low

LowGlobal

Global

Global

Global1.66 [1.49 to 1.83]

0.48 [0.43 to 0.53]0.16 [0.14 to 0.18]0.34 [0.31 to 0.37]

-0.05 [-0.15 to 0.05]0.35 [0.25 to 0.65]

0.07 [0.02 to 0.12]

-0.2 [-0.4 to 0.0]

-0.5 [-0.9 to -0.1]

-0.7 [-1.8 to -0.3]

0.01 [0.003 to 0.03]

0.12 [0.06 to 0.30]

0.1 [0.0 to 0.2]

Continental

Continentalto global

Continentalto global

Continentalto global

Local toContinental

Med- Low

Med- Low

Stratospheric waterVapour from CH4

Surface albedo

Direct effectTotal

Aerosol Cloud albedoeffect

Linear contrails

Solar irradiance

Total netanthropogenic

Nat

ural

Ant

hrop

ogen

ic

Radiative Forcing Wm-2-2 -1 0 1 2

{

{

1.6 [0.6 to 2.4]1.6 [0.6 to 2.4]

Figure by MIT OCW, based on IPCC.

Page 5: Click to edit Master title style - dspace.mit.edudspace.mit.edu/bitstream/handle/1721.1/45593/15... · Click to edit Master title style • • • • • 3 Click to edit Master

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

5

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

5

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

5

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

5

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

5

Politics

• UN Framework Convention on Climate Change– Stabilization of Greenhouse Gases at a level avoiding

dangerous anthropogenic interference– No binding commitment

• Kyoto Protocol– “Annex B” nations have commitments in 2008-2012– Multiple gases: CO2, CH4, N2O, HFCs, PFCs, SF6

• Cap and trade: using Global Warming Potentials

Page 6: Click to edit Master title style - dspace.mit.edudspace.mit.edu/bitstream/handle/1721.1/45593/15... · Click to edit Master title style • • • • • 3 Click to edit Master

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

6

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

6

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

6

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

6

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

6

Global Warming Potentials (GWPs)

∫∫=

dttCOa

dttxaxGWP

CO

x

)]([*

)]([*)(

22

EPPA, Kyoto, and US inventories all use IPCC 1996 100 year GWPs

IPCC TAR 20 year 100 year 500 year IPCC 1996 (100 year)

CO2 1 1 1 1

CH4 62 23 7 21

N2O 275 296 156 310

Page 7: Click to edit Master title style - dspace.mit.edudspace.mit.edu/bitstream/handle/1721.1/45593/15... · Click to edit Master title style • • • • • 3 Click to edit Master

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

7

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

7

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

7

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

7

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

7

Anthropogenic Emissions by GWP weight

GHG emissions, 2000Total: 10.3 GtC eq.

CO2

CH4

N2O

(emissions data from the MIT EPPA model)

Page 8: Click to edit Master title style - dspace.mit.edudspace.mit.edu/bitstream/handle/1721.1/45593/15... · Click to edit Master title style • • • • • 3 Click to edit Master

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

8

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

8

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

8

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

8

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

8

Methane: Arguments against GWP based Trading• Conventional Wisdom

– Capture “What” flexibility by trading among GHGs• Results of this study

– CO2 constraints have negative interactions with economic distortions

– Methane is undervalued for reasons of chemistry and timing

– Methane emission inventories are much less accurate than fossil CO2 emission inventories

– Methane constraints are politically more palatable to developing nations

Page 9: Click to edit Master title style - dspace.mit.edudspace.mit.edu/bitstream/handle/1721.1/45593/15... · Click to edit Master title style • • • • • 3 Click to edit Master

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

9

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

9

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

9

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

9

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

9

The MIT Integrated Global Systems Model

Page 10: Click to edit Master title style - dspace.mit.edudspace.mit.edu/bitstream/handle/1721.1/45593/15... · Click to edit Master title style • • • • • 3 Click to edit Master

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

10

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

10

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

10

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

10

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

10

Anthropogenic Methane SourcesBiological Sources:

Anaerobic decomposition

Fossil Sources

Total: 300 to 400 Tg/year (2 to 3 GtCeq)

Data Source: US EPA bottom-up inventoryExploded slices indicate methane capture potential

CO2 Sources:

Fossil Fuels: 7 GtC/yr (85% of energy in 2000 is from fossil fuels)

Cement: 0.3 GtC/yr

Land-Use Change: 0.5 – 2.7 GtC/year

Agriculture(rice, livestock)

GasCoal

Landfills

Manure

Oil

Other(Combustion,w astew ater)

Page 11: Click to edit Master title style - dspace.mit.edudspace.mit.edu/bitstream/handle/1721.1/45593/15... · Click to edit Master title style • • • • • 3 Click to edit Master

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

11

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

11

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

11

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

11

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

11

Global Marginal Abatement Curves (2010)

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800

CE Reduction (MMT) (single gas)

Mar

gina

l con

sum

ptio

n lo

ss (1

997$

/ton)

CH4

CO2

1) Many low cost methane abatement opportunities are available (Kyoto Protocol in 2010 even including the US would have required ~ 500 MMT carbon equivalent reduction)

2) Because of CO2 constraint interactions with tax distortions, GWP based inter-gas trading leads to non-optimal solutions

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800

Carbon Equivalent Reduction (MMT)

Car

bon

Equi

vale

nt P

rice

(199

7$/to

n)

CO2

CH4

Page 12: Click to edit Master title style - dspace.mit.edudspace.mit.edu/bitstream/handle/1721.1/45593/15... · Click to edit Master title style • • • • • 3 Click to edit Master

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

12

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

12

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

12

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

12

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

12

Non-CO2 gas reductions: Impacts on climate

CO2ONLY scenario: CO2emissions from 550 ppmscenario, all other gases as reference

US Climate Change Science Program Level 2 scenario: 550 ppm CO2stabilization, separate emissions paths for other Kyoto gases (CH4, N2O, HFCs, PFCs, SF6), meeting an overall radiative forcing target

0

0.5

1

1.5

2

2.5

3

3.5

4

2000 2020 2040 2060 2080 2100

Year

T C

hang

e Si

nce

2000

(°C

) Reference

CO2ONLY

OtherGases

550 ppm

Other Gases scenario: CO2emissions from reference, all other gases from 550 ppmscenario

Page 13: Click to edit Master title style - dspace.mit.edudspace.mit.edu/bitstream/handle/1721.1/45593/15... · Click to edit Master title style • • • • • 3 Click to edit Master

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

13

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

13

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

13

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

13

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

13

Climate Impacts of CH4 reductionResults in 2100 Constraining CH4

emissions to be constant at 2005 levels

A GWP equivalent scenario, constraining CO2 only

% reduction in T rise 14.9% 4.0%

Global ozone conc. (ppb) 36.8 40.1

CH4 lifetime (years) 9.0 10.8

• Methane reductions alone can reduce temperature rise by 15% overthe century

• 100 year Global Warming Potentials seriously undervalue CH4 for century scale temperature reduction– Chemistry: ozone and lifetime feedbacks

– Emission timing effects

Page 14: Click to edit Master title style - dspace.mit.edudspace.mit.edu/bitstream/handle/1721.1/45593/15... · Click to edit Master title style • • • • • 3 Click to edit Master

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

14

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

14

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

14

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

14

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

14

Methane ChemistryCH4

OH ·

CH3· + H2O

O2

CH3O2 · NO

O2

CH3OOH

OH ·

HO2 ·

OH ·

CH3O ·

HCHO

OH · or hv

CO + (H2, HO2 ·,H2O)

OH ·, O2

CO2 + HO2·

Deposition

NO2

NO2

NO2 + hv -> NO + OO + O2 -> O3

HO2· + NO -> NO2 + OH·

Net: CH4 + 8O2 + hv ->

CO2 + 4O3 + 2H2O

Page 15: Click to edit Master title style - dspace.mit.edudspace.mit.edu/bitstream/handle/1721.1/45593/15... · Click to edit Master title style • • • • • 3 Click to edit Master

Methane Inventories: Bottom upEQUATION 10.19

ENTERIC FERMENTATION EMISSIONS FROM A LIVESTOCK CATEGORY

Emissions = EF(T)N(T)

106 ]]Where:

CH4 Rice = annual methane emissions from rice cultivation, Gg CH4 yr-1

EFijk = a daily emission factor for i, j, and k conditions, Kg CH4 ha-1 day-1

Aijk = annual harvested area of rice for i, j, and k conditions, ha yr-1

i, j, and k = represent different ecosystems, water regimes, type and amount of organic amendments, and other conditions under which CH4 emissions from rice may vary

tijk = cultivation period of rice for i, j, and k conditions, day

Where:

Emissions = methane emissions from Enteric Fermentation, Gg CH4 yr-1

EF(T) = emission factor for the defined livestock population, Kg CH4 head-1 yr-1

N(T) = the number of head of livestock species/category T in the country

T = species/category of livestock

EQUATION 5.1CH4 EMISSIONS FROM RICE CULTIVATION

CH4 Rice = (EFi.j.k ti.j.k Ai.j.k 10-6) i.j.k∑

Image by MIT OCW.

Page 16: Click to edit Master title style - dspace.mit.edudspace.mit.edu/bitstream/handle/1721.1/45593/15... · Click to edit Master title style • • • • • 3 Click to edit Master

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

16

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

16

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

16

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

16

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

16

Methane Inventories: Inverse Modeling

• 92 Methane monitoring sites• Observed winds• Chemistry model• Estimates of OH sink

Page 17: Click to edit Master title style - dspace.mit.edudspace.mit.edu/bitstream/handle/1721.1/45593/15... · Click to edit Master title style • • • • • 3 Click to edit Master

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

17

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

17

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

17

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

17

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

17

Methane InventoriesInverse

Modeling Results

Bottom-up methodologies

EPA (2006)

30

22

156

75

3

287

Anthro.CH4emissions in 2000 Chen & Prinn

(2006)EDGAR 32FT2000

Rice 112 39

Biomass burning

48 22

Animals + waste

185 147

Energy 48 94

Other 37 19

Total 430 321

IPCC Guidelines for GHG inventories are based on bottom-up approaches.

But if bottom-up inventories are inaccurate, their use in trading regimes is questionable

Contrast: Fossil CO2

Similar Problems: N2O, land use change CO2

Therefore: until methodology is improved, regulatory methods other than economic instruments (tax, cap & trade) should be used for methane control.

Page 18: Click to edit Master title style - dspace.mit.edudspace.mit.edu/bitstream/handle/1721.1/45593/15... · Click to edit Master title style • • • • • 3 Click to edit Master

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

18

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

18

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

18

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

18

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

18

Political Analysis• Kyoto Protocol

– All Gases: CO2, N2O, industrial gases by 100 year GWPs– Limited Nations: EU, Japan, NZ, Canada, Russia

• ~20% of global CH4 emissions• CDM extension to non-Annex B

• Methane to Markets Initiative– Methane only– Non-Kyoto participants: US, China, India, Brazil, Mexico, and

Australia• M2M nations emit ~60% of global CH4

– Drawbacks• “Voluntary”, “non-binding”: depends on “public-private partnerships”• Target is only 50 MMT Carbon equivalent reduction

• Evidence of OECD historical CH4 reductions

Page 19: Click to edit Master title style - dspace.mit.edudspace.mit.edu/bitstream/handle/1721.1/45593/15... · Click to edit Master title style • • • • • 3 Click to edit Master

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

19

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

19

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

19

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

19

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

19

Different Strategies?• Methane

– Short lifetime– Cheap abatement– Most emissions are hard to quantify– Recommend

• Command and Control instruments like best practices• Near term implementation

• Carbon Dioxide– Long lifetime– Long term zero emission target– Capital intensive– Fossil emissions are well quantified– Recommend

• Near term price signals• Long term research initiatives

Page 20: Click to edit Master title style - dspace.mit.edudspace.mit.edu/bitstream/handle/1721.1/45593/15... · Click to edit Master title style • • • • • 3 Click to edit Master

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

20

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

20

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

20

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

20

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

20

Cautions

• Possible delay of CO2 abatement• Potential increased policy complexity• Loss of “what” flexibility

Page 21: Click to edit Master title style - dspace.mit.edudspace.mit.edu/bitstream/handle/1721.1/45593/15... · Click to edit Master title style • • • • • 3 Click to edit Master

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

21

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

21

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

21

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

21

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

21

Conclusions

• Policy Advice– Uncouple methane policy and CO2 policy– Implement methane policies immediately

• Using a mix of policy instruments– Use a different strategy for CO2

• Methodology– Importance of integrated approach: science,

economics, and policy evaluated together