Download - Chapter 22 - Diatomic Molecules - Grandinettiโ‚ฌยฆย ยท P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : ๐œ“ el ( โƒ—r,R AB ) to ๐œ“ el ( ๐œ†,๐œ‡,๐œ™,R

Transcript
Page 1: Chapter 22 - Diatomic Molecules - Grandinettiโ‚ฌยฆย ยท P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : ๐œ“ el ( โƒ—r,R AB ) to ๐œ“ el ( ๐œ†,๐œ‡,๐œ™,R

Chapter 22Diatomic Molecules

P. J. Grandinetti

Chem. 4300

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 2: Chapter 22 - Diatomic Molecules - Grandinettiโ‚ฌยฆย ยท P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : ๐œ“ el ( โƒ—r,R AB ) to ๐œ“ el ( ๐œ†,๐œ‡,๐œ™,R

The Hydrogen Molecular IonSimplest molecule to consider is H+

2 , with only 1 electron. Hamiltonian is

H+2= โˆ’ โ„2

2mp

(โˆ‡2

A + โˆ‡2B)

โŸโžโžโžโžโžโžโžโžโžโŸโžโžโžโžโžโžโžโžโžโŸ1

โˆ’ โ„2

2meโˆ‡2

e

โŸโžโŸโžโŸ2

โˆ’ZAq2

e4๐œ‹๐œ–0rA

โŸโžโŸโžโŸ3

โˆ’ZBq2

e4๐œ‹๐œ–0rB

โŸโžโŸโžโŸ4

+ZAZBq2

e4๐œ‹๐œ–0RABโŸโžโŸโžโŸ

5

1 is kinetic energy of nuclei2 is kinetic energy of eโˆ’

3 is Coulomb attraction between eโˆ’ and nucleus A4 is Coulomb attraction between eโˆ’ and nucleus B5 is Coulomb repulsion between nuclei A and B

Written in terms of atomic units

H+2= โˆ’1

2memp

(โˆ‡2

A + โˆ‡2B)โˆ’ 1

2โˆ‡2

e โˆ’ZArA

โˆ’ZBrB

+ZAZBRAB

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 3: Chapter 22 - Diatomic Molecules - Grandinettiโ‚ฌยฆย ยท P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : ๐œ“ el ( โƒ—r,R AB ) to ๐œ“ el ( ๐œ†,๐œ‡,๐œ™,R

Born-Oppenheimer (B-O) ApproximationSince nuclei are much heavier than eโˆ’ we separate motion into 2 timescales:

fast time scale of eโˆ’ motion and slow time scale of nuclear motion.Born-Oppenheimer approximation assumes nuclei are fixed in place and solve for eโˆ’ wave functionin potential of 2 fixed nuclei.We then change internuclear spacing and repeat process.Not allowing nuclei to move while solving for eโˆ’ wave function has 2 effects:

1 nuclear kinetic energy terms: 1 go away2 nuclearโ€“nuclear repulsion potential energy term 5 becomes constant and can be simply

added to energy eigenvalue.With this approximation wave equation for eโˆ’ (in atomic units) becomes[

โˆ’12โˆ‡2

e โˆ’ZArA

โˆ’ZBrB

]โŸโžโžโžโžโžโžโžโžโžโžโžโžโŸโžโžโžโžโžโžโžโžโžโžโžโžโŸ

el

๐œ“el(r,RAB) = E(RAB)๐œ“el(r,RAB).

Solving this wave equation gives eโˆ’ wave function, ๐œ“el(r,RAB), and its energy for given internucleardistance, RAB.P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 4: Chapter 22 - Diatomic Molecules - Grandinettiโ‚ฌยฆย ยท P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : ๐œ“ el ( โƒ—r,R AB ) to ๐œ“ el ( ๐œ†,๐œ‡,๐œ™,R

Born-Oppenheimer (B-O) ApproximationNext in B-O approximation we take total wave function as

๐œ“(r,RAB) โ‰ˆ ๐œ“el(r,RAB)๐œ“nuc(RAB)

Next we assume that ๐œ“el(r,RAB) varies so slowly with RAB that

โˆ’12

memp

(โˆ‡2

A + โˆ‡2B)๐œ“el(r,RAB)๐œ“nuc(RAB) โ‰ˆ ๐œ“el(r,RAB)

[โˆ’1

2memp

(โˆ‡2

A + โˆ‡2B)๐œ“nuc(RAB)

]In other words we assume

(โˆ‡2

A + โˆ‡2B)๐œ“el(r,RAB) โ‰ˆ 0

Putting B-O wave function approximation

H+2๐œ“(r,RAB) = E๐œ“(r,RAB)

into full Schrรถdinger equation

H+2= โˆ’1

2memp

(โˆ‡2

A + โˆ‡2B)โˆ’ 1

2โˆ‡2

e โˆ’ZArA

โˆ’ZBrB

+ZAZBRAB

we obtain...P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 5: Chapter 22 - Diatomic Molecules - Grandinettiโ‚ฌยฆย ยท P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : ๐œ“ el ( โƒ—r,R AB ) to ๐œ“ el ( ๐œ†,๐œ‡,๐œ™,R

Born-Oppenheimer (B-O) Approximation

๐œ“el(r,RAB)[โˆ’1

2memp

(โˆ‡2

A + โˆ‡2B)]๐œ“nuc(RAB) +

[โˆ’1

2โˆ‡2

e โˆ’ZArA

โˆ’ZBrB

]โŸโžโžโžโžโžโžโžโžโžโžโžโžโŸโžโžโžโžโžโžโžโžโžโžโžโžโŸ

el

๐œ“el(r,RAB)๐œ“nuc(RAB)

+ZAZBRAB

๐œ“el(r,RAB)๐œ“nuc(RAB) = E๐œ“el(r,RAB)๐œ“nuc(RAB)

Making the replacement el๐œ“el(r,RAB) = E(RAB)๐œ“el(r,RAB) gives

๐œ“el(r,RAB)[โˆ’1

2memp

(โˆ‡2

A + โˆ‡2B)+ E(RAB) +

ZAZBRAB

]๐œ“nuc(RAB) = ๐œ“el(r,RAB)E๐œ“nuc(RAB)

Dividing both sides by ๐œ“el(r,RAB) gives...

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 6: Chapter 22 - Diatomic Molecules - Grandinettiโ‚ฌยฆย ยท P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : ๐œ“ el ( โƒ—r,R AB ) to ๐œ“ el ( ๐œ†,๐œ‡,๐œ™,R

Born-Oppenheimer ApproximationDividing both sides by ๐œ“el(r,RAB) and obtain wave equation for nuclei:[

โˆ’12

memp

(โˆ‡2

A + โˆ‡2B)

โŸโžโžโžโžโžโžโžโžโžโžโŸโžโžโžโžโžโžโžโžโžโžโŸnuclear kinetic energy

+ E(RAB) +ZAZBRAB

โŸโžโžโžโžโžโžโžโŸโžโžโžโžโžโžโžโŸnuclear effective potential

]๐œ“nuc(RAB) = E๐œ“nuc(RAB)

General strategy is to

fix nuclei in position and calculate ๐œ“el(r,RAB) and energy, E(RAB). Do this for all possible values ofRAB, and

use E(RAB) + ZAZBโˆ•RAB as effective nuclear potential energy (Ground state looks like Morsepotential) in nuclear wave equation to obtain ๐œ“nuc(RAB) and energies:

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 7: Chapter 22 - Diatomic Molecules - Grandinettiโ‚ฌยฆย ยท P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : ๐œ“ el ( โƒ—r,R AB ) to ๐œ“ el ( ๐œ†,๐œ‡,๐œ™,R

Solving one electron Schrรถdinger equation for the H2+ ion

With B-O approximation out of way letโ€™s look at solutions for ๐œ“el(r,RAB) of H+2 , given the

electronic Hamiltonian in atomic units[โˆ’1

2โˆ‡2

e โˆ’ZArA

โˆ’ZBrB

]โŸโžโžโžโžโžโžโžโžโžโžโžโžโŸโžโžโžโžโžโžโžโžโžโžโžโžโŸ

el

๐œ“el(r,RAB) = E(RAB)๐œ“el(r,RAB).

Problem is no longer spherically symmetric. So, what coordinate system should we use?

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 8: Chapter 22 - Diatomic Molecules - Grandinettiโ‚ฌยฆย ยท P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : ๐œ“ el ( โƒ—r,R AB ) to ๐œ“ el ( ๐œ†,๐œ‡,๐œ™,R

Spheroidal Coordinates : ๐œ“el(r,RAB) to ๐œ“el(๐œ†, ๐œ‡, ๐œ™,RAB)

We can derive exact solution for ๐œ“el(r,RAB) using spheroidal coordinates,where ๐œ† = (rA + rB)โˆ•R, ๐œ‡ = (rA โˆ’ rB)โˆ•R, and R is internuclear distance.Lines of constant ๐œ† are ellipses which share foci rA and rB.Lines of constant ๐œ‡ are hyperbolas with rA and rB as foci.Ellipses and hyperbolas form orthogonal system of curves.

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 9: Chapter 22 - Diatomic Molecules - Grandinettiโ‚ฌยฆย ยท P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : ๐œ“ el ( โƒ—r,R AB ) to ๐œ“ el ( ๐œ†,๐œ‡,๐œ™,R

Spheroidal Coordinates : ๐œ“el(r,RAB) to ๐œ“el(๐œ†, ๐œ‡, ๐œ™,RAB)

Variable ๐œ† varies over range 1 โ‰ค ๐œ† โ‰ค โˆž, and plays role analogous to r in usual polar coordinatesystem.Variable ๐œ‡ varies over range โˆ’1 โ‰ค ๐œ‡ โ‰ค 1.As ๐œ‡ changes point (๐œ†, ๐œ‡) moves around origin, so ๐œ‡ plays role similar to quantity cos ๐œƒ in polarcoordinates.

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 10: Chapter 22 - Diatomic Molecules - Grandinettiโ‚ฌยฆย ยท P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : ๐œ“ el ( โƒ—r,R AB ) to ๐œ“ el ( ๐œ†,๐œ‡,๐œ™,R

Spheroidal Coordinates : ๐œ“el(r,RAB) to ๐œ“el(๐œ†, ๐œ‡, ๐œ™,RAB)

Three dimensional prolate ellipsoidal coordinates are obtained by rotating figure around z axis.Ellipses generate set of confocal ellipsoidsHyperbolas generate family of hyperboloids with 2 sheets.Surface of constant ๐œ™ are half-planes though x axis.

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 11: Chapter 22 - Diatomic Molecules - Grandinettiโ‚ฌยฆย ยท P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : ๐œ“ el ( โƒ—r,R AB ) to ๐œ“ el ( ๐œ†,๐œ‡,๐œ™,R

Two sheet hyperboloid

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 12: Chapter 22 - Diatomic Molecules - Grandinettiโ‚ฌยฆย ยท P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : ๐œ“ el ( โƒ—r,R AB ) to ๐œ“ el ( ๐œ†,๐œ‡,๐œ™,R

Spheroidal Coordinates : ๐œ“el(r,RAB) to ๐œ“el(๐œ†, ๐œ‡, ๐œ™,RAB)

Prolate ellipsoidal coordinates in 3D space are obtained by rotating figure around z axis.Ellipses generate set of confocal ellipsoidsHyperbolas generate family of hyperboloids with 2 sheets.Surface of constant ๐œ™ are half-planes though x axis.

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 13: Chapter 22 - Diatomic Molecules - Grandinettiโ‚ฌยฆย ยท P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : ๐œ“ el ( โƒ—r,R AB ) to ๐œ“ el ( ๐œ†,๐œ‡,๐œ™,R

Spheroidal Coordinates : ๐œ“el(r,RAB) to ๐œ“el(๐œ†, ๐œ‡, ๐œ™,RAB)

Spheroidal Coordinates allows us to separate wave function into product

๐œ“(๐œ†, ๐œ‡, ๐œ™) = L(๐œ†)M(๐œ‡)ฮฆ(๐œ™)

Substituting ๐œ“(๐œ†, ๐œ‡, ๐œ™) into electronic wave equation gives 3 ODEs.Weโ€™ll do no derivations, just look at results ...

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 14: Chapter 22 - Diatomic Molecules - Grandinettiโ‚ฌยฆย ยท P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : ๐œ“ el ( โƒ—r,R AB ) to ๐œ“ el ( ๐œ†,๐œ‡,๐œ™,R

Solutions to ฮฆ(๐œ™)Solutions to ฮฆ(๐œ™) which are eigenfunctions of Lz,

ฮฆ(๐œ™) = 1โˆš2๐œ‹

eim๐œ™

Each value of |m| leads to different energy. States associated with ยฑm are degenerate.We refer to states by their m value:

m = 0 ๐œŽ state,m = ยฑ1 ๐œ‹ state,m = ยฑ2 ๐›ฟ state,

โŽซโŽชโŽฌโŽชโŽญthese follow same lettersequence as ๐“ usingGreek letters instead.

States are also labeled by their inversion symmetry.

when ๐œ“u(r) = โˆ’๐œ“u(โˆ’r), odd symmetry,when ๐œ“g(r) = ๐œ“g(โˆ’r), even symmetry,

Use subscript u for odd wave functions (ungerade)Use subscript g for even wave functions (gerade).Wave functions labeled as ๐œŽg, ๐œŽu, ๐œ‹g, ๐œ‹u, ๐›ฟg, ๐›ฟu, and so on.

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 15: Chapter 22 - Diatomic Molecules - Grandinettiโ‚ฌยฆย ยท P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : ๐œ“ el ( โƒ—r,R AB ) to ๐œ“ el ( ๐œ†,๐œ‡,๐œ™,R

Lowest energy levels of H+2 as function of internuclear R

with internuclear repulsive energy.

Minimum in 1๐œŽg energy is Re โ‰ˆ 2a0, corresponding toequilibrium length of 1๐œŽg ground state of H+

2 .

As R โ†’ โˆž energy of 1๐œŽg state approaches โˆ’0.5Eh.As expected, this is energy of electron in 1s state ofH-atom infinitely separated from isolated proton.Difference between this energy and energy at equilibriumbond length is binding energy,E1๐œŽg

(Re) โˆ’ E1๐œŽg(โˆž) = 0.1Eh.

Both equilibrium distance and binding energy from thisexact solution are in excellent agreement withexperimentally determined values of 2.00a0 and 0.102Eh,respectively.

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 16: Chapter 22 - Diatomic Molecules - Grandinettiโ‚ฌยฆย ยท P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : ๐œ“ el ( โƒ—r,R AB ) to ๐œ“ el ( ๐œ†,๐œ‡,๐œ™,R

Lowest energy levels of H+2 as function of internuclear R

without internuclear repulsive energy.

As R โ†’ 0, i.e., both protons at origin form He nucleus, wefind energy of โˆ’2Eh. This is ground state energy of singleelectron bound to He nucleus.

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 17: Chapter 22 - Diatomic Molecules - Grandinettiโ‚ฌยฆย ยท P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : ๐œ“ el ( โƒ—r,R AB ) to ๐œ“ el ( ๐œ†,๐œ‡,๐œ™,R

Exact solutions for 1๐œŽg and 1๐œŽu of H+2 as a function of R

(A)

(D)

(E)

(F)

(B) (C)

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 18: Chapter 22 - Diatomic Molecules - Grandinettiโ‚ฌยฆย ยท P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : ๐œ“ el ( โƒ—r,R AB ) to ๐œ“ el ( ๐œ†,๐œ‡,๐œ™,R

Shape of H+2 wave functions

When R = 0 solution becomes identical to He+ wave function.

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 19: Chapter 22 - Diatomic Molecules - Grandinettiโ‚ฌยฆย ยท P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : ๐œ“ el ( โƒ—r,R AB ) to ๐œ“ el ( ๐œ†,๐œ‡,๐œ™,R

Shape of H+2 wave functions

When R = 8a0 observe 2 sharp peaks at ยฑ4a0 where nucleiare located.

When R โ†’ โˆž two peaks correspond to 1s orbital centeredon each nucleus.

In case of H+2 only one of these 1s orbitals is occupied.

Difference between 1๐œŽg and 1๐œŽu is in how two 1s orbitalsare combined.

Normalization factors aside, in R โ†’ โˆž limit we find (in atomic units)

1๐œŽg = eโˆ’rA + eโˆ’rB , and 1๐œŽu = โˆ’eโˆ’rA + eโˆ’rB .

Results suggest approximate approach to describe bonding wave functions as a linear combinationof atomic orbitals (LCAO) on each nucleus.LCAO approach more useful than exact solutionโ€”which only works for H+

2 .

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 20: Chapter 22 - Diatomic Molecules - Grandinettiโ‚ฌยฆย ยท P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : ๐œ“ el ( โƒ—r,R AB ) to ๐œ“ el ( ๐œ†,๐œ‡,๐œ™,R

Linear Combination of Atomic Orbitals (LCAO)

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 21: Chapter 22 - Diatomic Molecules - Grandinettiโ‚ฌยฆย ยท P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : ๐œ“ el ( โƒ—r,R AB ) to ๐œ“ el ( ๐œ†,๐œ‡,๐œ™,R

Linear Combination of Atomic Orbitals (LCAO)Use variational theorem with LCAO as trial H+

2 wave function

๐œ“guess(r,RAB) = cA๐œ™1sA+ cB๐œ™1sB

๐œ™1sAand ๐œ™1sB

are atomic orbitals associated with eโˆ’ in 1s orbital on nuclei A and B, respectively.There are 2 adjustable parameters, cA and cB, in ๐œ“guess.

โŸจโŸฉ = โˆซ ๐œ“โˆ—guess๐œ“guessd๐œ โ‰ฅ E0

E0 is true ground state energy. Canโ€™t assume trial wave function is normalized so need to minimizeenergy for

E =โˆซV ๐œ“

โˆ—guess๐œ“guessd๐œ

โˆซV ๐œ“โˆ—guess๐œ“guessd๐œ

โ‰ฅ E0

Even though atomic orbitals are normalized, LCAO wave function is not. Substituting ๐œ“guess(r,RAB) weobtain

E =c2

A โˆซV๐œ™โˆ—

1sA๐œ™1sA

d๐œ + c2B โˆซV

๐œ™โˆ—1sB

๐œ™1sBd๐œ + 2cAcB โˆซV

๐œ™โˆ—1sA

๐œ™1sBd๐œ

c2A + c2

B + 2cAcB โˆซV๐œ™โˆ—

1sA๐œ™1sB

d๐œโ‰ฅ E0

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 22: Chapter 22 - Diatomic Molecules - Grandinettiโ‚ฌยฆย ยท P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : ๐œ“ el ( โƒ—r,R AB ) to ๐œ“ el ( ๐œ†,๐œ‡,๐œ™,R

Linear Combination of Atomic Orbitals (LCAO)To simplify equations define

HAB โ‰ก โˆซV๐œ™โˆ—

1sA๐œ™1sB

d๐œ, and SAB โ‰ก โˆซV๐œ™โˆ—

1sA๐œ™1sB

d๐œ

SAB is called overlap integral. These definitions allow us to write

E =c2

AHAA + c2BHBB + 2cAcBHAB

c2A + c2

B + 2cAcBSABโ‰ฅ E0

Next, find values of cA and cB where E is at minimum by taking derivative of E wrt cA and cB andsetting equal to zero,

๐œ•E๐œ•cA

= 0, and ๐œ•E๐œ•cB

= 0

To make this easier letโ€™s move the denominator to the left(c2

A + c2B + 2cAcBSAB

)E = c2

AHAA + c2BHBB + 2cAcBHAB

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 23: Chapter 22 - Diatomic Molecules - Grandinettiโ‚ฌยฆย ยท P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : ๐œ“ el ( โƒ—r,R AB ) to ๐œ“ el ( ๐œ†,๐œ‡,๐œ™,R

Linear Combination of Atomic Orbitals (LCAO)Taking the derivative of both sides

๐œ•๐œ•cA

(c2

A + c2B + 2cAcBSAB

)E = ๐œ•

๐œ•cA

(c2

AHAA + c2BHBB + 2cAcBHAB

)gives

(2cA + 2cBSAB)E +(c2

A + c2B + 2cAcBSAB

) ๐œ•E๐œ•cA

= 2cAHAA + 2cBHAB

Doing same with ๐œ•โˆ•๐œ•cB gives

(2cB + 2cASAB)E +(c2

A + c2B + 2cAcBSAB

) ๐œ•E๐œ•cB

= 2cBHBB + 2cAHAB

Setting ๐œ•Eโˆ•๐œ•cA = ๐œ•Eโˆ•๐œ•cB = 0 leads to two simultaneous equations

cA(HAA โˆ’ E) + cB(HAB โˆ’ ESAB) = 0

cA(HAB โˆ’ ESAB) + cB(HBB โˆ’ E) = 0

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 24: Chapter 22 - Diatomic Molecules - Grandinettiโ‚ฌยฆย ยท P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : ๐œ“ el ( โƒ—r,R AB ) to ๐œ“ el ( ๐œ†,๐œ‡,๐œ™,R

Linear Combination of Atomic Orbitals (LCAO)Writing these in matrix form givesโŽ›โŽœโŽœโŽ

HAA โˆ’ E HAB โˆ’ ESAB

HAB โˆ’ ESAB HBB โˆ’ E

โŽžโŽŸโŽŸโŽ โŽ›โŽœโŽœโŽ

cA

cB

โŽžโŽŸโŽŸโŽ  = 0

Matrix diagonalization problem can be solved with determinant,|||||||HAA โˆ’ E HAB โˆ’ ESAB

HAB โˆ’ ESAB HBB โˆ’ E

||||||| = 0

In homonuclear example make it little easier since HAA = HBB = ๐›ผ.Also set HAB = ๐›ฝ and S = SAB|||||||

๐›ผ โˆ’ E ๐›ฝ โˆ’ ES

๐›ฝ โˆ’ ES ๐›ผ โˆ’ E

||||||| = 0, which gives (๐›ผ โˆ’ E)2 โˆ’ (๐›ฝ โˆ’ ES)2 = 0

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 25: Chapter 22 - Diatomic Molecules - Grandinettiโ‚ฌยฆย ยท P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : ๐œ“ el ( โƒ—r,R AB ) to ๐œ“ el ( ๐œ†,๐œ‡,๐œ™,R

Linear Combination of Atomic Orbitals (LCAO)

(๐›ผ โˆ’ E)2 โˆ’ (๐›ฝ โˆ’ ES)2 = 0

which leads to๐›ผ โˆ’ E = ยฑ(๐›ฝ โˆ’ ES) = ยฑ๐›ฝ โˆ“ ES

and we find 2 solutions for E:E+ =

๐›ผ + ๐›ฝ1 + S

and Eโˆ’ =๐›ผ โˆ’ ๐›ฝ1 โˆ’ S

Putting solution for E+ back into simultaneous Eqs one can show that cA = cB.Put solution for Eโˆ’ into 2 simultaneous equations and obtain cA = โˆ’cB.Thus, 2 solutions for wave function are

๐œ“๐œŽg= c

(๐œ™1sA

+ ๐œ™1sB

), and ๐œ“๐œŽu

= c(๐œ™1sA

โˆ’ ๐œ™1sB

)Normalizing these two wave functions gives

๐œ“๐œŽg= 1โˆš

2 + 2S

(๐œ™1sA

+ ๐œ™1sB

)and ๐œ“๐œŽu

= 1โˆš2 โˆ’ 2S

(๐œ™1sA

โˆ’ ๐œ™1sB

)P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 26: Chapter 22 - Diatomic Molecules - Grandinettiโ‚ฌยฆย ยท P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : ๐œ“ el ( โƒ—r,R AB ) to ๐œ“ el ( ๐œ†,๐œ‡,๐œ™,R

Linear Combination of Atomic Orbitals (LCAO)

Bring two 1s orbitals together in phase for ๐œ“๐œŽgand out of phase for ๐œ“๐œŽu

(A) (B)

Above is comparison of Exact (solid lines) and LCAO (dashed lines) wave functions ๐œ“๐œŽgand

๐œ“๐œŽufor H+

2 with R = 2 for (A) bonding and (B) anti-bonding states.

Simple LCAO approximation is not bad, and is good starting point for refining LCAO method.

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 27: Chapter 22 - Diatomic Molecules - Grandinettiโ‚ฌยฆย ยท P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : ๐œ“ el ( โƒ—r,R AB ) to ๐œ“ el ( ๐œ†,๐œ‡,๐œ™,R

LCAO : Overlap Integral STo finish derivation need to evaluate overlap integral S and energies. Starting with S we find

S = โˆซV๐œ™โˆ—

1sA๐œ™1sB

d๐œ = eโˆ’RAB

(1 + RAB +

R2AB3

)

0 1 2 3 40.0

0.2

0.4

0.6

0.8

1.0

As expected, overlap integral goes to zero in limit that R โ†’ โˆž.With decreasing R overlap integral increases and reaches value of 1 at R = 0.

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 28: Chapter 22 - Diatomic Molecules - Grandinettiโ‚ฌยฆย ยท P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : ๐œ“ el ( โƒ—r,R AB ) to ๐œ“ el ( ๐œ†,๐œ‡,๐œ™,R

LCAO : Coulomb Integral๐›ผ integral is called Coulomb Integral

๐›ผ = โˆซV๐œ™โˆ—

1sA๐œ™1sA

d๐œ

To evaluate ๐›ผ start with electronic Hamiltonian in atomic units = โˆ’1

2โˆ‡2

e โˆ’1rA

โˆ’ 1rB

+ 1RAB

which can be written = A โˆ’ 1rB

+ 1RAB

or = B โˆ’ 1rA

+ 1RAB

A or B are Hamiltonians for eโˆ’ in H-atom alone. Thus,

๐›ผ = โˆซV๐œ™โˆ—

1sA

[A โˆ’ 1

rB+ 1

RAB

]๐œ™1sA

d๐œ = โˆซV๐œ™โˆ—

1sAA๐œ™1sA

d๐œ โˆ’ โˆซV๐œ™โˆ—

1sA

1rB๐œ™1sA

d๐œ + 1RAB

which gives ๐›ผ = E1s +2E1sRAB

[1 โˆ’ eโˆ’2RAB(1 + RAB)

]+ 1

RABCoulomb Integral contains energy of eโˆ’ in 1s orbital of H-atom, attractive energy of nucleus Bfor eโˆ’, and repulsive force of nuclei B with A.

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 29: Chapter 22 - Diatomic Molecules - Grandinettiโ‚ฌยฆย ยท P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : ๐œ“ el ( โƒ—r,R AB ) to ๐œ“ el ( ๐œ†,๐œ‡,๐œ™,R

LCAO : Coulomb Integral

10 2 3 4-1

0

1

2

3

4

๐›ผ decreases monotonically (i.e., no minimum) from โˆž at RAB = 0 to โˆ’1โˆ•2 at RAB = โˆž. In other words,๐›ผ, which is leading term in

E+ =๐›ผ + ๐›ฝ1 + S

and Eโˆ’ =๐›ผ โˆ’ ๐›ฝ1 โˆ’ S

does not give any stability to H+2 over 2 infinitely separated nuclei (recall H atom has energy of โˆ’Ehโˆ•2).

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 30: Chapter 22 - Diatomic Molecules - Grandinettiโ‚ฌยฆย ยท P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : ๐œ“ el ( โƒ—r,R AB ) to ๐œ“ el ( ๐œ†,๐œ‡,๐œ™,R

LCAO : Exchange Integral

Finally, examine ๐›ฝ integral, also called the resonance or Exchange Integral

๐›ฝ = โˆซV๐œ™โˆ—

1sA๐œ™1sB

d๐œ

which becomes

๐›ฝ = โˆซV๐œ™โˆ—

1sA

[B โˆ’ 1

rA+ 1

RAB

]๐œ™1sB

d๐œ = โˆซV๐œ™โˆ—

1sAB๐œ™1sB

d๐œโˆ’โˆซV๐œ™โˆ—

1sA

1rA๐œ™1sB

d๐œ+โˆซV๐œ™โˆ—

1sA

1RAB

๐œ™1sBd๐œ

to obtain๐›ฝ = E1sS + 2E1seโˆ’RAB(1 + RAB) +

SRAB

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 31: Chapter 22 - Diatomic Molecules - Grandinettiโ‚ฌยฆย ยท P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : ๐œ“ el ( โƒ—r,R AB ) to ๐œ“ el ( ๐œ†,๐œ‡,๐œ™,R

LCAO : Exchange Integral

10 2 3 4-1

0

1

2

3

4 ๐›ฝ integral goes through a minimum inenergy.It is stabilization energy from allowing eโˆ’to move (exchange) between 2 nuclei.Since both ๐›ผ and ๐›ฝ are negative, E+ willbe lowest energy,

E1๐œŽg= E+ =

๐›ผ + ๐›ฝ1 + S

, (bonding)

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 32: Chapter 22 - Diatomic Molecules - Grandinettiโ‚ฌยฆย ยท P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : ๐œ“ el ( โƒ—r,R AB ) to ๐œ“ el ( ๐œ†,๐œ‡,๐œ™,R

LCAO : Energy

-1.0

-0.5

0.0

0.5

1.0

10 2 3 4

LCAO model predicts that energy of groundstate has minimum at bond length ofRe = 2.50a0 and has binding energy ofE+(Re) โˆ’ E(โˆž) = 0.0648Eh.

Predicted bond length is longer thanexperimentally observed Re = 2.00a0

Predicted binding energy is lower thanexperimentally observed value of 0.102Eh.

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 33: Chapter 22 - Diatomic Molecules - Grandinettiโ‚ฌยฆย ยท P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : ๐œ“ el ( โƒ—r,R AB ) to ๐œ“ el ( ๐œ†,๐œ‡,๐œ™,R

LCAO : Energy

Anti-bonding orbital energy is

E1๐œŽu= Eโˆ’ =

๐›ผ โˆ’ ๐›ฝ1 โˆ’ S

, (anti-bonding)

This orbital gives no stability since ๐›ฝ raises total energy in this case.Putting lone electron into ๐œ“1๐œŽu

would destabilize H+2 molecule and cause it to break apart.

P. J. Grandinetti Chapter 22: Diatomic Molecules