Download - BscThesisLUP Richelle Raaphorst - WUR · 2016. 8. 29. · Modelling)a)spatialplanning)process)basedon trust)and)opinion) BachelorthesisSpatialPlanning) Richelle)Raaphorst)) 940412677100)

Transcript
Page 1: BscThesisLUP Richelle Raaphorst - WUR · 2016. 8. 29. · Modelling)a)spatialplanning)process)basedon trust)and)opinion) BachelorthesisSpatialPlanning) Richelle)Raaphorst)) 940412677100)

Modelling  a  spatial  planning  process  based  on  trust  and  opinion  

Bachelor  thesis  Spatial  Planning  

Richelle  Raaphorst    940412677100    LUP80812

 

Page 2: BscThesisLUP Richelle Raaphorst - WUR · 2016. 8. 29. · Modelling)a)spatialplanning)process)basedon trust)and)opinion) BachelorthesisSpatialPlanning) Richelle)Raaphorst)) 940412677100)

  2  

Table  of  Contents  

ABSTRACT   2  INTRODUCTION   3  THEORETICAL  BACKGROUND   4  METHODOLOGY   5  THE  MODEL   6  MODEL  ELEMENTS   8  EQUATIONS   9  THE  EXPERIMENT   12  RESULTS   12  DISCUSSION   15  WORKS  CITED   17  APPENDIX  I   19  

 

Abstract  

Trust   and   opinion   are   important   aspects   of   spatial   planning   negotiations,   as   they  influence   how   stakeholders   behave.   In   present   day   society   processes   like  individualisation  cause  people   to  express   their  opinion  more  open  and   to  act   for   their  self-­‐interest.   These   changes   make   the   negotiations   more   and   more   complex.   The  behaviour  of  the  involved  agents  results  in  a  complex  adaptive  system,  in  which  they  act  and   react   constantly.   Understanding   these   dynamics   can   help   coping   with   the  complexity.  This  thesis  focuses  on  the  dynamics  of  trust  in  spatial  planning,  with  opinion  also  taken  into  account.  For  the  examination  of  complex  adaptive  systems,  agent-­‐based  modelling   is   most   useful   –   and   therefore   also   applied   here.   A   model   was   built   that  simulates   a   simple   planning   process   of   a   spatial   planner   trying   to   place   a   plan.  Experiments   were   done,   and   the   outcome   was   used   to   inform   spatial   planners.   It  concludes  with  some  insights  in  the  processes,  and  discusses  the  usefulness  of  models  in  spatial  planning.    

Page 3: BscThesisLUP Richelle Raaphorst - WUR · 2016. 8. 29. · Modelling)a)spatialplanning)process)basedon trust)and)opinion) BachelorthesisSpatialPlanning) Richelle)Raaphorst)) 940412677100)

  3  

Introduction  

 Planning   and   regulating   contemporary   societies   is   becoming   more   and   more  

complex.  Groups  are  becoming  less  coherent  because  of  –  among  others  –  the  decline  of  the  church,  the  women  emancipation,  and  technology  and  social  media (Schnabel, 1999).  The  consequence   is   that  everyone  has  his  own  opinion  and  with   the   individualising  of  society,  people   tend  to  speak  up  more.  Today,  we   live   in  a  participation  society  where  everyone  has  a  share  in  society  and  participation  is  an  important  aspect  of  planning.  A  system  of  which  the  behaviour  emerges  from  the  interplay  of  numerous,  heterogeneous  actors  can  be  considered  a  complex  adaptive  system.  Planning  processes  often   involve  many  independent  stakeholders  that  all  have  a  different  perspective,  and  they  all  want  to  be  heard  and  to  be  treated  fairly.  Because  of  these  diverging  perspectives  and  because  organisation   of   the   networks   is   ambiguous   and   unpredictable,   decision   making   in  planning  processes  is  difficult  and  more  often  based  on  opportunity  than  vision.    

The   unpredictability   of   network   dynamics   partly   evolves   from   dynamics   in   trust.  Trust  determines  the  extent  to  which  stakeholders  take  risks,  resist  to  change,  are  open  to  negotiations,   and   form  coalitions  with  planners  and  policymakers.  The  outcomes  of  these  processes  influence  trust  in  its  turn.  Trust  is  strongly  related  to  uncertainty,  as  it  is  a   mechanism   to   cope   with   uncertainty.   (Ramchurn, Huynh, & Jennings, 2004)   In   any  complex   adaptive   system   such   as   contemporary   society   it   is   almost   impossible   for   an  actor   to   have   perfect   knowledge   about   the   situation   and   other   actors’   attitude   and  strategies.   This   implies   that   the   actors   have   to   deal   with   significant   amounts   of  uncertainty  in  the  process.  The  complex  behaviour  resulting  from  trust  dynamics  results  in   difficulties   for   policy   making.   Understanding   trust   is   necessary   for   coping   with  complexity   in   decision-­‐making   networks.   Increasing   trust   can   make   cooperation  smoother  and  cheaper,  and  increases  robustness  of  the  cooperation (Edelenbos & Klijn, 2007).    

One   specific   field   of   policy   making   that   struggles   with   the   influences   of   trust   is  spatial   planning.   This   is   a   field   particularly   sensitive   to   trust   dynamics   as   it   can   have  major   impact   on   people.   The   everyday   surroundings   sometimes   are   strongly   and  irreversibly  affected  by  the  work  of  spatial  planners,  which  makes  the  negotiations  with  stakeholders   prone   to   distrust.   For   a   negotiation  with   citizens   to   be   successful,   those  citizens  have  to  be  able  to  trust  the  planner.  Therefore,  understanding  how  trust  works,  and  can  be  build,  is  important  for  spatial  planning.  

Intertwined   with   trust,   spatial   planning   also   struggles   with   the   opinions   of   their  stakeholders.  The  dynamics  of  opinion  is  partly  based  on  trust,   in  order  for  a  common  opinion   to  develop.  Besides,   trust   is  also  partly  based  on  opinion.  People   tend   to   trust  others  with   the   same   opinion  more.   In   spatial   planning,  when   citizens   have   a   certain  opinion  or  expectation,  this  could  be  a  basis  for  distrust.  Especially  the  NIMBY  effect  is  something  that  obstructs  many  spatial  developments  from  happening,  although  this  is  a  less   complex   behaviour.   “The   NIMBY   (Not   In   My   Backyard)   effect   may   be   defined   as  social   rejection   of   facilities,   infrastructure   and   services   location,   which   are   socially  necessary  but  have  a  negative  connotation.” (Pol, et al., 2006) The  effect  is  in  most  cases  due  to  possible  risk  and  nuisances  associated  with  the  proposed  development.  Reactions  to  negative  plans   can  get   serious.  For  example,   arson  has  happened  as   response   to  an  unwanted   project.   Citizens   have   even   bought   up   places   of   destination   to   prevent  development (Graaf, 2008).   The   opinion   of   the   inhabitants   on   the   subject   and   their  possible  reaction  is  surely  something  for  a  spatial  planner  to  take  into  account.  Because  of   the   importance  of   trust   and  opinion   in   spatial  planning  negotiations,   these   subjects  are  the  focus  of  this  research.  

   

 

Page 4: BscThesisLUP Richelle Raaphorst - WUR · 2016. 8. 29. · Modelling)a)spatialplanning)process)basedon trust)and)opinion) BachelorthesisSpatialPlanning) Richelle)Raaphorst)) 940412677100)

  4  

Theoretical  background  

 In  the  research  field  of  spatial  planning,  most  studies  are  qualitative.  Among  others,  

trust  is  a  subject  that  has  been  much  studied.  Although  little  is  known  about  the  role  of  trust  in  planning  and  governance  processes,  there  has  been  quite  some  research  into  the  topic.   For   example,   the   research   into   trust   dynamics   by   de   Vries   dealt   with   the  development  and  importance  of  trust  by  doing  case  studies (de Vries, 2014).  The  results  of  the  studies  certainly  give  insights  in  trust  dynamics,  but  it  is  highly  case  specific  and  cannot  be  generalised  into  frameworks  or  models.  Another  example  of  qualitative,  case-­‐study   based   research   is   Edelenbos   &   Klijn’s   research   into   trust   in   complex   decision-­‐making   networks (Edelenbos & Klijn, 2007).   The   background   theory   they   used  mainly  focused  on  static  aspects  of  trust,  and  made  little  notion  of  the  development  of  it.  

Also   the   research   into   opinion   with   regard   to   spatial   planning   is   mainly   of  qualitative  nature.  For  example,  some  research  goes  into  the  persuasive  part  of  opinion,  for   example   framing.   De   Boer   examines   how   opinions   about   climate   change   are  influenced   through   certain   ways   of   risk   communication (Boer, 2007).   Other   research  discusses   the   NIMBY   effect,   where   opposition   partly   depends   on   how   close   by   a  proposed   development   is   (Hubbard, 2009;  Dear, 1992;   Pol et al., 2006). Pepermans   &  Loots   approach   the   NIMBY   effect   not   as   a   siting   conflict,   but   as   a   framing   conflict (Pepermans & Loots, 2013).   Framing   the   project   in   a   certain   way   can   influence   the  resistance  by  stakeholders.  In  the  research  by  Pepermans  &  Loots  the  focus  is  on  wind  farms,  a  proper  example  of  a  project  that  tends  to  provoke  a  strong  NIMBY  effect.      

Studied   significantly   less   are   the   quantitative   aspects   of   trust   in   spatial   planning  processes.   Qualitative   research   prevents   application   in   new   situations,   while  quantitative  models   can   be   adapted   to   simulate   specific   situations.   Developments   are  easier  to  depict  with  a  quantitative  model.  However,  the  qualitative  research  is  helpful  in  the  development  of  quantitative  models.  

Quantitative  representation  of  trust  dynamics  has  been  done  by  several  researchers,  although   they   discuss   diverging   topics.   Nooteboom   discussed   a   list   of   topics   already  investigated,  and  proposed  a  model   that  relates   trust   to  profit  generation (Nooteboom, 2012).  However,  here  trust  is  approached  as  a  mean  rather  than  a  goal.  Another  example  of  research  on  trust  already  done  with  use  of  agent-­‐based  simulations  is  by  Kim.  Here  it  was   used   to   simulate   the   effects   of   trust   on   supply   networks (Kim, 2009).   As   with  Nooteboom’s   research,   trust   is   seen   as   a  mean,   or   in   this   case   an   effect   on   a   separate  goal.  Hassani-­‐Mahmooei  &  Parris  investigated  into  the  dynamic  modelling  of  trust,  and  connected   this   to   rent-­‐seeking (Hassani-Mahmooei & Parris, 2014).   Taken   it   the   other  way  around,  Gans  et  al.  elaborated  on  the  topic  of  distrust (Gans).  They  proposed  a  trust-­‐confidence-­‐distrust  model  of  agent  network  dynamics.  A  more  general  model  was  made  by  Za  et  al.  They  took  into  account  the  dynamic  perspective  of  trust,  and  recognized  that  the  amount  of  trust  can  be  updated  while   interactions  go  on (Za, 2015).  Their  model   is  focussed   on   dependence   networks   and   ‘provides   a   tool   for   studying   emergent  properties/phenomena   within   social   networks.’   Doloswala   modelled   the   influence   of  lying  on  the  behaviour  of  peer  groups (Doloswala, 2014).  She  investigated  how  lying  will  influence   the   spatial  distribution  of   the  agents.  However,  no  quantitative   trust  models  have  been  developed  or  applied  in  the  domain  of  spatial  planning.  

Many   quantitative   research   on   the   topic   of   opinions   is   in   the   form   of   opinion  dynamics.   These   are  models   that   study   in   an   abstract  way   how  opinions   of   groups   of  people   evolve   (Kou, Zhao, Peng, & Shi, 2012; Allahverdyan & Galstyan, 2014; Iniguez, Kertesz, Kaski, & Barrio, 2001; Biswas, Sinha, & Sen, 2013; Weisbuch, Deffuant, Amblard, & Nadal, 2003). Less  research  has  been  done  on  opinion  dynamics  in  the  field  of  spatial  planning.  Ligtenberg  &  Bregt  made  a  model   that   simulates   the  opinion  dynamics   for  a  hypothetical   spatial   allocation   problem (Ligtenberg & Bregt, 2014).   Lober  &   Green   did  research   on   attitudes   towards   facilities   and   made   a   model   of   the   NIMBY   effect   that  

Page 5: BscThesisLUP Richelle Raaphorst - WUR · 2016. 8. 29. · Modelling)a)spatialplanning)process)basedon trust)and)opinion) BachelorthesisSpatialPlanning) Richelle)Raaphorst)) 940412677100)

  5  

occurs.   Next   to   this,   little   research   has   been   done   on   the   quantification   of   opinion   in  spatial  planning  processes  and  the  NIMBY  effect.  

Although   the   subjects   of   trust   and   opinion   have   had   sufficient   attention   from   a  qualitative  point  of  view,  it  has  had  little  expression  in  numbers  and  models.  Whilst  the  networks   can   be   very   complex   in   reality,   research   into   other   topics   show   that   it   is  possible  to  make  models  out  of  complex  decision-­‐making  networks.  Here  is  where  this  research  fills  the  gap  and  tries  to  quantify  the  dynamics  of  trust  and  role  of  opinion  in  social  networks  within  which  spatial  planning  operates.  The  objective  of  this  research  is  to   develop   a   simulation  model   of   a   spatial   planning   process   including   trust   dynamics  and  opinion.   In  an  explorative  manner,  ways   to   simulate   such  a  process  are  examined  until  a  working  model  is  created.  This  model  is  then  used  to  simulate  trust  and  opinion  during   a   planning   process   and   to   explore   how   such   a   model   can   be   used   to   inform  spatial  planners.  

 

Methodology  

 A   complex   adaptive   system   such   as   the   trust   dynamics   within   a   spatial   planning  

process  consists  of  the  interplay  of  numerous,  heterogeneous  actors  that  are  constantly  interacting.  “A  key  property  of  complex  systems  is  that  no  single  component  controls  the  system   behaviour.” (Siegried, 2014)   The   behaviour   of   the   system   emerges   from   the  interplay  of   the  actors,  where   the  whole   is  bigger   that   just   the  sum  of   its  components.  “Complexity  theory  shows  that  even  if  we  were  to  have  a  complete  understanding  of  the  factors  affecting   individual  action,   this  would  still  not  be  sufficient   to  predict  group  or  institutional  behaviour.”    

Capturing   the   dynamics   of   complex   adaptive   systems   requires   a   specific  methodology.  Models  are  typically  applied  to  capture  the  dynamics  of  a  system,  being  a  simplification   of   a   system   or   some   other   structure.   A   particular   type   of   modelling   is  simulation   (Gilbert & Troitzsch, 2005).   “Simulations   have   ‘inputs’   entered   by   the  researcher   and   ‘outputs’   which   are   observed   as   the   simulation   runs.”   (Gilbert & Troitzsch, 2005)  It  can  be  used  to  develop  a  theory,  as  it  is  more  precise  and  formal  than  textual  material.  Furthermore,   it   could  also  be  used   for   theory   testing,  by  simulating  a  certain   development   according   to   the   proposed   theory,   and   compare   simulated   with  observed  outcomes.  Simulations  can  be  repeated  many  times,  and  the  average  score  of  many  simulations  is  useful  in  drawing  conclusions.  “Simulation  allows  the  researcher  to  conduct  experiments  in  a  way  that  is  normally  impossible  in  social  science.”  Qualitative,  textual   theories   can   be   formalized   in   such   a   way   that   it   can   be   programmed   into   a  computer.   Moreover,   simulations   “can   also   usefully   be   applied   to   theories   involving  spatial  location.”  (Gilbert & Troitzsch, 2005)

There  are  multiple  ways  of  simulating,  which  can  be  used  for  various  purposes  and  the   use   also   changed   over   time.   Formerly,   classical  models  were   often   used.   Classical  models  serve  to  test  understanding  of  how  the  known,  aggregated  system  behaviour  can  be   reduced   to   specific   sub   processes   and   variables.   It   assumes   full   knowledge   of   the  dynamics   and   the   results.   A   classical  model   tries   to   take   apart   the   components   of   the  system  and  assigns  values  or  formulas  to  those  components.  It  is  based  on  whole  system  equations,  which  are  typically  applicable  where  universal  laws  apply,  such  as  the  law  of  conservation  of  mass.  

However,  researchers  have  acknowledged  the  difficulties  in  using  these  models,  and  a  switch  has  taken  place  to  other,  more  suited  models.  Social  processes  are  known  not  to  obey  the  universal  laws  on  which  the  classical  models  are  based.  However,  they  used  to  be  applied   for  example   in   the   field  of  economics,  which   is  a   social   science.  Traditional  economic   models   are   based   on   laws   concerning   equilibriums   between   supply   and  demand,   and   assume   rational   behaviour   of   economic   agents.   “Established   economic  

Page 6: BscThesisLUP Richelle Raaphorst - WUR · 2016. 8. 29. · Modelling)a)spatialplanning)process)basedon trust)and)opinion) BachelorthesisSpatialPlanning) Richelle)Raaphorst)) 940412677100)

  6  

theory   is   based   on   the   rational   actor   paradigm  which   assumes   that   individual   actors  know  their  preferences,  […]  and  best  possible  decision,  based  on  complete  information  about   their   environment   and   the   supposed   consequences.” (Billari, Fent, Prskawetz, & Scheffran, 2006)   However,   in   reality   rational   behaviour   has   its   limits   in   complex   and  uncertain  environments,  and  the  recent  credit  crisis  has  demonstrated  that  equilibriums  between  supply  and  demand  are  nothing  more  than  a  theoretical  construct.  “One  of  the  conditions   that   restrains   rationality   is   the   social   environment   itself,   in   particular   the  unpredictable   behaviour   of   other   agents.” (Billari, Fent, Prskawetz, & Scheffran, 2006)  Complex  adaptive  systems  are  not  suitable  for  a  reductionist  approach  like  the  classical  models,   as   their   aggregated   system  behaviour   shows   irregular,   unexpected  behaviour,  and   emerges   form   the   interplay   of   all   individual   subcomponents.   Recently,   also   in  economics  a  transition  has  taken  place  from  rational  actor  models  to  other  approaches,  for  example  agent-­‐based  modelling.  

The   transition   from  the  out-­‐dated  classical  models   towards  approaches   like  agent-­‐based  modelling   signals   an  understanding   that   social  processes   cannot  be   captured   in  such   reductionist   models.   In   other   fields   of   social   sciences,   irrational   behaviour   and  uncertainties   have   been   taken  more   seriously  much   earlier.   As   far   as   social   scientists  used   models,   they   incorporated   these   elements.   One   way   of   simulating   that   is   most  useful   for   complex   adaptive   systems   is   agent-­‐based   modelling   (ABM).   These   models  “consist   of   a   number   of   ‘agents’   which   interact   both   with   each   other   and   with   their  environment,   and   can   make   decisions   and   change   their   actions   as   a   result   of   this  interaction.” (Matthews, Gilbert, Roach, Polhill, & Gotts, 2007)   ABM   is   appropriate   for  simulating   a   social   system   as   it   is   able   to   handle   the   uncertainties   and   irrational  behaviour  usually   found   in   these   systems.  Besides,  ABM   is   also   extremely   suitable   for  complex  systems,  as  it  models  the  individual  actors  that  constitute  the  behaviour  of  the  group.   The   behaviour   of   single   agents   is   simple   but   adaptive,   together   leading   to   the  complexity   of   aggregate   behaviour   (Gilbert & Terna, 2000). For   these   reasons,   ABM   is  used  to  model  the  dynamics  of  trust  and  opinion.  

 

The  model  

 To  make  an  ABM  specific  programs  are  available.  The  program  used  for  this  model  is  

Netlogo,  a  multi-­‐agent  programmable  modelling  environment,   free   to  download  online (Wilensky).  Due  to  the  complicated  code  design  of  an  agent-­‐based  model,  it  is  difficult  to  describe   it   in  an  understandable  way   that  makes   it  possible   to  duplicate.  Grimm  et  al.  have  developed  the  ODD  Protocol,  which  gives  guidance  for  describing  ABMs  in  a  clear  and   organized   way (Grimm et al., 2006).   The   protocol’s   purpose   is   to   help   always  structuring   the   information   about   an   ABM   in   the   same   order.   However,   the   here-­‐presented  model   is   quite   simple,   so  ODD  was  not   necessary   to   use.   In  Appendix   I   the  complete   code   is   visible.   In   this   report,   the  model  will   be   described   loosely   based   on  ODD,  but  shorter  and  more  simple.  Some  assumptions  were  made,  based  on  literature.  These  are  explained  after  the  model  description.  

Image  an  area  of  5  by  5  kilometres  with  n  inhabitants.  The  inhabitants  only  interact  within   this   area,   so   no   influence   from   the   outside   is   present.   Each   inhabitants   has   a  certain   spot  where   it   ‘lives’,   randomly   assigned   to   all   of   them   at   the   beginning   of   the  model.  Several  cores  are  present  in  the  area  with  an  urban  area  surrounding  the  cores.  Leftover   space   is   rural   area.   The   inhabitants   are   only   placed   within   the   urban   areas.  They   all   have   a   certain   degree   of   trust   towards   the   government,   which   varies   from  inhabitant   to   inhabitant.   This   trust   is   composed   of   a)   an   inherent   inclination   to   have  trust  to  begin  with,  and  b)  a  variable  part  that  depends  on  the  planner’s  actions.  

Then,  the  government  proposes  a  plan  to  place  an  object  somewhere  that  is  subject  to  typical  NIMBY  responses,  say  a  windmill.  The  inhabitants  have  an  opinion  about  this  

Page 7: BscThesisLUP Richelle Raaphorst - WUR · 2016. 8. 29. · Modelling)a)spatialplanning)process)basedon trust)and)opinion) BachelorthesisSpatialPlanning) Richelle)Raaphorst)) 940412677100)

  7  

plan  –  which  is  composed  of  a)  a  certain  attitude  towards  windmills  and  b)  an  opinion  that   is   based   on   how   close   by   their   home   it   is.   It   is   assumed   that   windmills   have   a  negative   impact   on   their   immediate   surroundings,   so   inhabitants’   opinions   tend   to   be  more  negative  the  closer  located  the  windmills  is.  

Inhabitants  can  protest  against  the  windmill.  Whether  they  do  that  or  not  depends  on  how  much  trust  they  have  in  the  planner,  and  what  their  opinion  about  the  windmill  is.  If  they  have  a  lot  of  trust,  there  is  a  bigger  chance  they  will  protest.  If  their  opinion  is  very   negative,   they  will   also   protest.   The   combination   of   trust   and   opinion   eventually  should  be  above  a  certain  threshold  in  order  to  protest.  But,  one  protestor  does  not  lead  to  a  rejection  of  the  windmill  –  there  will  have  to  be  enough  inhabitants  protesting.  This  amount  is  also  determined  by  a  threshold,  but  this  time  at  the  side  of  the  planner.  If  the  planner   listens   to   the   protests   and   changes   the   plan,   the   trust   of   the   inhabitants  increases.  But,  if  the  plan  remains  unchanged  and  the  windmill  is  implemented,  the  trust  declines.  The   feedback   loop   that  happens  here   is  pictured   in   figure  1.  The  numbers   in  the  figure  are  the  equations  explained  later  on.  

When   a  windmill   is   placed   because   there  wasn’t   enough   protest,   it   influences   the  opinion  of  the   inhabitants.  The  more  windmills  and  the  closer  the  windmills,   the  more  negative  their  opinion  becomes.  So   in  time,   if  more  windmills  are  placed,   there  will  be  more  protest  and  no  more  new  ones  will  be  placed.  

During  the  process  of  placement  of  windmills,  dynamics  of  trust  occurs.  The  goal  of  a  planner  is  to  win  trust  of  the  inhabitants,  but  also  to  successfully  place  windmills.  If  too  many  plans  are   realized,   trust  will  decline   significantly.  Trust  will   increase   if  no  plans  will  be  realized,  but  that  is  of  course  not  desired  by  the  government.  A  balance  should  be  met  between  the  placement  of  plans  and  the  building  of  trust.  This  model  will  be  used  to  search  for  this  balance,  and  the  prerequisites  for  it.  

 

Figure  1  Feedback   loop   the  model  runs  through  every  tick.  The  associated  equations  are  between  brachets.  

Page 8: BscThesisLUP Richelle Raaphorst - WUR · 2016. 8. 29. · Modelling)a)spatialplanning)process)basedon trust)and)opinion) BachelorthesisSpatialPlanning) Richelle)Raaphorst)) 940412677100)

  8  

Model  elements  

 In   the   model   multiple   parameters   and   variables   are   present,   which   will   be  

concisely   explained   in   table   1.   At   first,   the   parameters   are   listed,   which   are   set  throughout   a   run   of   the   model.   After   that,   the   variables   are   described.   Variables   are  grouped   together   dependent   on   how   they   vary.   Some   change   only   over   the   course   of  time.  Others   stay   the   same  during  a   run,  but   are  different   from  agent   to   agent.   Lastly,  some  vary  both  through  time  and  between  agents.  A  variable  that  is  different  for  every  agent   is  marked  with   an   i.  When   a   variable   changes   over   time,   it   is  marked  with   a   t.  Variables   that  concern  placed  windmills  are  marked  with  a   j.   In   the  explanation  of   the  equations,  some  will  be  explained  in  more  detail.  

 Table  1  Parameters  and  variables  present  in  the  model  Parameters  Size  world   50  by  50  patches  =  5  by  5  kilometres  Size  patch   100  by  100  metres  Town  centres   Several  cores  are  present,  around  which  the  urban  areas  are  

created  They  are  placed  randomly  at  the  beginning  of  each  run  

Urban  areas   Patches  with  value  istown  =  1  Here  the  inhabitants  are  placed  They  are  placed  in  a  random  radius  around  the  town  centres  

Rural  areas   Patches  with  value  istown  =  0  This  is  leftover  space  

Inhabitant   ‘Turtle’   (Netlogo   term   for   agent)   that   represents   an  inhabitant  with  a  level  of  trust  and  an  opinion  

Protest  threshold   In  order  for  an  inhabitant  to  protest,  ‘sum  trust  and  opinion’  has  to  be  above  a  certain  threshold  The  threshold  can  be  changed  to  simulate  its  effects  

Discard  threshold   Whether   or   not   the   spatial   planner   responds   to   protests  depends  on  the  threshold  set  The   threshold   measures   if   enough   inhabitants   protest  against  the  windmill  to  discard  it  If   more   inhabitants   protest   than   the   amount   set   by   the  threshold,  the  windmill  is  not  accepted  

Increase  trust   If   an   inhabitant   protests   successfully   and   the   windmill   is  discarded,  their  trust  in  the  planner  will  increase  

Decrease  trust   If   an   inhabitant  protests  unsuccessfully   and   the  windmill   is  placed,  their  trust  in  the  planner  will  decrease  

Variables  Plant   Patch  with  value  isplan  =  1  

This  is  the  windmill  proposed  by  the  spatial  planner  It  is  placed  randomly  every  tick  See  equation  6  

Trust  propensityi   Base   level   of   trust   each   inhabitant   gets   assigned   at   the  beginning  of  a  run  The   level   is   determined   randomly   with   a   normal  distribution,  mean  of  0.5  and  standard  deviation  0.2  

Opinion  starti   Base   level   of   opinion   each   inhabitant   gets   assigned   at   the  beginning  of  a  run  The   level   is   determined   randomly   with   a   normal  distribution,  mean  of  0.5  and  standard  deviation  0.2  

Trust  in  planneri,t   Level  of  trust  an  inhabitant  has  towards  the  spatial  planner  

Page 9: BscThesisLUP Richelle Raaphorst - WUR · 2016. 8. 29. · Modelling)a)spatialplanning)process)basedon trust)and)opinion) BachelorthesisSpatialPlanning) Richelle)Raaphorst)) 940412677100)

  9  

The   level   is   determined   randomly   with   a   normal  distribution,  mean  of  0.5  and  standard  deviation  0.2  Fluctuations   take   place   because   of   the   trust   dynamics,   see  equation  7  

Trust  totali,t   Total  level  of  trust  The   level   is   determined   with   trust   propensity   and   trust  planner,  see  equation  1  

Opinion  plani,t   Opinion  dependent   on   the  distance   of   the   inhabitant   to   the  proposed  and  placed  windmills  The  level  is  determined  by  equation  3  

Opinion  totali,t   Total  opinion  The  level  is  determined  with  opinion  plan  and  opinion  start,  see  equation  2  

Sum  trust  and  opinioni,t   Total   value   based   on   trust   total   and   opinion   total,   see  equation  4  

Protesti,t   Depending  on  whether  the  protest  threshold   is  exceeded  or  not,   a   value   of   0   (no   protest)   or   1   (protest)   is   assigned   to  each  inhabitant,  see  equation  5  

Distance  to  plani,t   The  distance  of  an   inhabitant   to   the  proposed  plan,  used   in  equations  3.1  and  3.2  

Average   distance   to  windmillsi,t  

The   average   distance   of   an   inhabitant   to   all   the   placed  windmills,  see  equation  3.4.  Used  in  equation  3.2  

Windmillj,t   If  a  proposed  windmill  is  accepted,  a  flag  is  placed  to  indicate  its  location,  see  equation  6  

Distance  to  windmilli,j,t   The  distance   of   an   inhabitant   to   a   placed  windmill,   used   in  equations  3.2  and  3.4  

Total  windmillst   Summation  of  the  amount  of  windmills,  see  equation  3.3  Amount  protestorst   Summation   of   the   amount   of   protesting   inhabitants,   see  

equation  5  Notice  that  there  is  no  spatial  planner  present  in  the  model.  Only  its  actions  and  

choices  are  incorporated.    

Equations    

Several  equations  are  present  in  the  model,  as  mentioned  in  the  model  elements.  The  processes   these   equations  describe  are  based  on   several   assumptions   about   their  operation,  partly  taken  from  literature.    

 𝑇𝑟𝑢𝑠𝑡  𝑡𝑜𝑡𝑎𝑙!,! = 𝑠!" ∗ 𝑡𝑟𝑢𝑠𝑡  𝑝𝑟𝑜𝑝! + (   1 − 𝑠!" ∗  𝑡𝑟𝑢𝑠𝑡  𝑖𝑛  𝑝𝑙𝑎𝑛𝑛𝑒𝑟!,!)        [1]  With   str   =   share   trust   prop.   This   is   a   variable  which   can   be   set   between   0   and   1,   and  determines  how  important  the  trust  propensity  is  relative  to  the  trust  in  planner.  

 The  division  of  a  base  level  trust  and  a  fluctuating  level  in  equation  1  is  based  on  

researchers’  descriptions  of  trust.  Mayer,  Davis  &  Schoorman  propose  an  abstract  model  of   trust,   that   represents   the   important   factors   of   trust   and   their   relationships (Mayer, Davis, & Schoorman, 1995).  Here,   a  person  has  a   certain  degree  of  propensity   to   trust,  which   they  call   “the  general  willingness   to   trust  others.”  This  could  be  seen  as  a  base-­‐level  trust.  The  propensity  to  trust  is  a  characteristic  ascribed  to  the  person  who  has  to  trust  someone.    

Jones  &  George  see  trust  as  “a  psychological  construct,  the  experience  of  which  is  the  outcome  of  the  interaction  of  people’s  values,  attitudes,  and  moods  and  emotions.”  The  relatively  stable  and  enduring  characteristics  of  individuals  –  their  values  –  are  seen  as  

Page 10: BscThesisLUP Richelle Raaphorst - WUR · 2016. 8. 29. · Modelling)a)spatialplanning)process)basedon trust)and)opinion) BachelorthesisSpatialPlanning) Richelle)Raaphorst)) 940412677100)

  10  

the   basis   of   trust   (comparable   to   Mayer,   Davis   &   Schoorman’s   propensity   to   trust).  Besides   this   stable  manner  of   experiencing   trust,   attitude  adds  a  more   specific  way  of  trusting  based  on  knowledge,  beliefs,  and  feelings  about  the  other.  During  the  evolution  of   a   relationship,   attitudes   structure   the   experience   of   trust.   In   the  model,   this   is   the  trust   towards  the  planner,  as   this   is   influenced  by  choices  made  by  the  planner.  These  dynamics  are  further  explained  in  equation  7.  

 𝑂𝑝𝑖𝑛𝑖𝑜𝑛  𝑡𝑜𝑡𝑎𝑙!,! = (𝑠! ∗ 𝑜𝑝𝑖𝑛𝑖𝑜𝑛  𝑠𝑡𝑎𝑟𝑡!) + (   1 − 𝑠! ∗ 𝑜𝑝𝑖𝑛𝑖𝑜𝑛  𝑝𝑙𝑎𝑛!,!)                                      [2]  With  so  =  share  opinion  start.  This  is  a  variable  which  can  be  set  between  0  and  1,  and  determines  how  important  the  opinion  start  is  relative  to  the  opinion  plan.  

 Two   equations   are   incorporated   in   the   model   to   determine   the   opinions   of   the  

inhabitants   towards   the   plan(s).   First,   the   opinion   towards   the   proposed   windmill   is  calculated   by   a   distance   decay   function.   Then,   after   realization   of   a  windmill   a   part   is  added   to   the   equation   that   contains   a   calculation   of   the   opinion   towards   the   already  placed  windmills.  

 If  no  windmills  are  realized  yet:  𝑜𝑝𝑖𝑛𝑖𝑜𝑛  𝑝𝑙𝑎𝑛!,! =

!!!!.!!"∗!"#$%&'(  !"  !"#$!,!!

                                                                       [3.1]  

If  windmills  already  have  been  realized:  𝑜𝑝𝑖𝑛𝑖𝑜𝑛  𝑝𝑙𝑎𝑛!,! =

!!!!.!!"∗!"#$%&'(  !"  !"#$!,!!

+ !

!!!.!!"∗!!"#$%"  !"#$%&'(  !"  !"#$%"&&'!,!

!!!

!                            [3.2]  

With  𝑚 = 𝑡𝑜𝑡𝑎𝑙  𝑤𝑖𝑛𝑑𝑚𝑖𝑙𝑙𝑠! =   𝑤𝑖𝑛𝑑𝑚𝑖𝑙𝑙!,!!

!!!                                                                  [3.3]  

𝐴𝑣𝑒𝑟𝑎𝑔𝑒  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  𝑡𝑜  𝑤𝑖𝑛𝑑𝑚𝑖𝑙𝑙𝑠!,! =  !"#$%&'(  !"  !"#$%"&&!,!,!

!!!!!                                                            [3.4]  

 The  decision  to  incorporate  a  basis  level  of  opinion  is  based  on  pure  logic  that  every  person  has  an  opinion  about  a  situation.  The  opinion  towards  the  plan  is  based  on  the  NIMBY  effect.  P.  Hubbard  explains  NIMBY  as  a  reaction  if  people  who  are  at  risk  of  having  a  new  development  close  by  that  brings  negative  externalities  (Hubbard, 2009).  Especially  the  externalities  are  of  importance.  With  a  distance-­‐decay  curve,  the  decline  of  nuisances  with  increasing  distance  can  be  displayed.  In  most  cases  the  development  is  needed,  but  because  of  the  externalities  nobody  wants  it  in  their  vicinity.  It  becomes  more  likely  that  people  will  oppose  the  plan  the  closer  to  their  home  it  gets.  Therefore,  a  distance-­‐decay  function  is  incorporated  in  the  model  in  order  to  calculate  the  opinion  towards  the  plan.  It  is  assumed  that  the  inhabitants  do  not  oppose  the  plan  anymore  after  1  kilometre,  or  10  patches  (see  figure  2).  If  the  plan  is  next  to  an  inhabitant,  the  opinion  will  be  close  to  1  –  very  negative.  The  further  away  it  is  placed,  the  less  negative  the  opinion  will  be.  After  1  kilometre,  the  opinion  starts  to  become  negligible.  For  the  already  placed  windmills,  the  distance  is  calculated  as  the  mean  distance  to  all  the  placed  ones.  As  the  opinion  should  increase  as  more  plans  are  placed,  the  mean  is  corrected  for  the  amount  of  plans.      𝑆𝑢𝑚  𝑡𝑟𝑢𝑠𝑡  𝑎𝑛𝑑  𝑜𝑝𝑖𝑛𝑖𝑜𝑛!,! = 𝑠!" ∗ 𝑜𝑝𝑖𝑛𝑖𝑜𝑛  𝑡𝑜𝑡𝑎𝑙!,! + (   1 − 𝑠!" ∗ 𝑡𝑟𝑢𝑠𝑡  𝑡𝑜𝑡𝑎𝑙!,!)            

[4]  With  sto  =  share  opinion  total.  This  is  a  variable  which  can  be  set  between  0  and  1,  and  determines  how  important  the  opinion  total  is  relative  to  the  trust  total.  

 

Page 11: BscThesisLUP Richelle Raaphorst - WUR · 2016. 8. 29. · Modelling)a)spatialplanning)process)basedon trust)and)opinion) BachelorthesisSpatialPlanning) Richelle)Raaphorst)) 940412677100)

  11  

 𝐴𝑚𝑜𝑢𝑛𝑡  𝑝𝑟𝑜𝑡𝑒𝑠𝑡𝑜𝑟𝑠! = 𝑝𝑟𝑜𝑡𝑒𝑠𝑡!,!!

!!!                                              [5]  𝑖𝑓  𝑠𝑢𝑚  𝑡𝑟𝑢𝑠𝑡  𝑎𝑛𝑑  𝑜𝑝𝑖𝑛𝑖𝑜𝑛!,!  > 𝑝𝑟𝑜𝑡𝑒𝑠𝑡  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 𝑡ℎ𝑒𝑛  𝑝𝑟𝑜𝑡𝑒𝑠𝑡!,! = 1                                                  [5.1]  𝑖𝑓  𝑠𝑢𝑚  𝑡𝑟𝑢𝑠𝑡  𝑎𝑛𝑑  𝑜𝑝𝑖𝑛𝑖𝑜𝑛!,! < 𝑝𝑟𝑜𝑡𝑒𝑠𝑡  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 𝑡ℎ𝑒𝑛  𝑝𝑟𝑜𝑡𝑒𝑠𝑡!,!  = 0                                                  [5.2]  

 𝐼𝑓  𝑎𝑚𝑜𝑢𝑛𝑡  𝑝𝑟𝑜𝑡𝑒𝑠𝑡𝑜𝑟𝑠   < 𝑑𝑖𝑠𝑐𝑎𝑟𝑑  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 𝑡ℎ𝑒𝑛  𝑝𝑙𝑎𝑛! →  𝑤𝑖𝑛𝑑𝑚𝑖𝑙𝑙!,!!!                                      [6]  

 First,  for  every  inhabitant  it  is  decided  whether  he  will  protest  or  not.  The  sum  trust  

and   opinion   (equation   4)   should   be   above   the   protest   threshold   in   order   to   protest  (equation   5).   The   protest   threshold   is   the   boundary   above   which   the   inhabitant   is  motivated  enough  to  try  and  do  something  against  the  plan.  Then,   if   the  summation  of  all  the  protesting  inhabitants  is  above  the  discard  threshold,  the  plan  does  not  continue.  Otherwise,   the   proposed   plan   is   accepted   and   a   windmill   is   placed   (equation   6).   The  discard   threshold   is   decided   by   the   spatial   planner   and   determines   what   part   of   the  population  should  protest  in  order  to  be  significant.  

 𝑇𝑟𝑢𝑠𝑡  𝑖𝑛  𝑝𝑙𝑎𝑛𝑛𝑒𝑟!,! =   𝑡𝑟𝑢𝑠𝑡  𝑖𝑛  𝑝𝑙𝑎𝑛𝑛𝑒𝑟!!!,!  +  ∆  𝑡𝑟𝑢𝑠𝑡                                          [7]  

If  𝑎𝑚𝑜𝑢𝑛𝑡  𝑝𝑟𝑜𝑡𝑒𝑠𝑡𝑜𝑟𝑠!  >  𝑑𝑖𝑠𝑐𝑎𝑟𝑑  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,  then                                                              [7.1]  ∆  𝑡𝑟𝑢𝑠𝑡   =  𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒  𝑡𝑟𝑢𝑠𝑡  

If  𝑎𝑚𝑜𝑢𝑛𝑡  𝑝𝑟𝑜𝑡𝑒𝑠𝑡𝑜𝑟𝑠!  ≤  𝑑𝑖𝑠𝑐𝑎𝑟𝑑  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,  then                                                                    [7.2]  ∆  𝑡𝑟𝑢𝑠𝑡   =  𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒  𝑡𝑟𝑢𝑠𝑡  

 Lewis  &  Weigert    mention   in  an  overview  of  eighteen  years  of   trust  research  a  

complicated  feedback  process  where   in  case  of  betrayal,   the   inclination  to  trust  others  declines   (Lewis & Weigert, 2012).   In   the   feedback   loop,   risk-­‐taking   behaviour   affects  trust  expectations.  Risk-­‐taking  behaviour,  which  they  term  behavioural  trust,  “not  only  results  from  trust  expectations,  it  strengthens  trusting  expectations  over  time.”  Thus,  in  case   of   betrayal,   the   inclination   to   trust   others   declines.   Betrayal   is   in   the   model’s  situation  when  inhabitants  protest,  but  the  plan  still  continues.  The  essence  of  the  trust  dynamics  in  the  model  is  based  on  the  old  saying  ‘trust  is  hard  to  gain,  but  easy  to  lose’.  In  other  words,   the  decrease   in   trust   in   case  of  betrayal   is  higher   than   the   increase   in  trust  if  the  plan  is  discarded.  

After  the  renewal  of  the  trust  level  and  the  placement  of  a  new  plan,  the  loop  is  run  through  completely  and  starts  over  from  the  beginning.  

Figure  2  Distance  decay  function  used  to  calculate    the  opinion  towards  the  plan  

Page 12: BscThesisLUP Richelle Raaphorst - WUR · 2016. 8. 29. · Modelling)a)spatialplanning)process)basedon trust)and)opinion) BachelorthesisSpatialPlanning) Richelle)Raaphorst)) 940412677100)

  12  

The  experiment  

 The  model  consists  of  a  multitude  of  variables.  They  all  have  an  important  role  in  the  

dynamics,  and  they  are  all  interesting  to  vary  and  see  what  happens.  But,  as  one  use  of  the  model   is   to  propose   insight   to  spatial  planners,   the  experiments  are  done  with  the  variables   within   the   planners’   reach.   Most   variables   are   part   of   the   behaviour   of   the  inhabitants,  so  those  are  not  an  option.  The  most  relevant  left  is  the  discard  threshold  –  how  many  people  have   to  protest  before   the  planner  decides   to  discard   the  proposed  windmill.  Next  to  that,  the  protest  threshold  is  also  varied  because  the  planner  has  some  influence   on   how   easy   it   is   to   protest.   As   outcome   the   average   level   of   trust   and   the  amount  of  protestors  are  given.  Netlogo  has  an  application  called  Behaviour  Space  that  make   it   possible   to   do   experiments.   The   variables   that   have   to   be   varied,   and   the  variables   of  which   the   values   are  wanted   as   outcome   are   entered.   These   are   listed   in  table   2.   Netlogo   then   makes   runs   for   each   combination   of   the   varied   variables,   and  reports   the   values   of   the   outcome   variables.   A   run   goes   from   the   initialisation   of   the  model,  through  the  ‘go’  procedure,  until  the  given  time  limit  is  reached.  Time  is  set  with  ticks.   Every   tick   represents   one   ‘go’   procedure   –   one   round   in   which   it   is   decided   to  continue  the  placement  of  the  proposed  windmill.  In  reality,  this  is  roughly  half  a  year.  With  11  values   for   the  protest   threshold,  and  31  values   for   the  discard   threshold,  341  runs  are  made  per  experiment.  The  same  experiment  is  repeated  over  again  15  times,  to  account  for  the  random  variables.  The  outcome  values  can  then  be  used  to  analyse  the  effects   of   varying   the   inputs   –   the   choices   the   spatial   planner   can   make.   The   chosen  values  are  based  on  earlier,  explorative  experiments.  These  were  done   to  see  how  the  model  would  react  to  certain  variables.  Because  the  results  are  not  interesting  enough  to  show  here,  these  experiments  are  also  not  described.  

 Table  2  Used  variables  in  the  experiment  Fixed  variables  Initial  number  of  towns   6  Number  of  actors   75  Share  trust  prop   0.5  Share  trust  start   0.5  Share  opinion  total   0.5  Input  variables  Protest  threshold   0.5  –  0.6  increment  0.01  Discard  threshold   20  –  50  increment  1  Outcome  variables  Mean  Trust  total  of  inhabitants    Amount  of  inhabitants  protesting      

Results  

 As   mentioned   earlier,   the   model   is   used   to   search   for   a   balance   between   the  

placement  of  plans  and  the  building  of  trust.  Figure  3  shows  how  trust  decreases  as  the  amount  of  plans  increases.  The  protest  threshold  is  set  to  0.51,  this  is  partly  an  arbitrary  choice   and   partly   because   this   showed   a   clear   intersection.   On   the   x-­‐axis   the   discard  threshold   is   varied.   The   trust   is   expressed   as   the   average   value   of   trust   of   the  inhabitants  over  15  runs  at  the  25th  tick,  and  the  placement  of  plans  is  expressed  as  the  percentage  of  times  a  windmill  was  placed  at  the  25th  tick  out  of  the  15  runs.  The  figure  shows  how  changing  the  discard  threshold  influences  the  successful  placement  of  plans  and  the  trust  level.  An  optimal  discard  threshold  to  choose  by  the  spatial  planner  can  be  

Page 13: BscThesisLUP Richelle Raaphorst - WUR · 2016. 8. 29. · Modelling)a)spatialplanning)process)basedon trust)and)opinion) BachelorthesisSpatialPlanning) Richelle)Raaphorst)) 940412677100)

  13  

found  with  use  of  figure  3.  This  is  elaborated  upon  in  the  discussion.  Why  both  variable  are  measured  at  the  25th  tick  will  become  clear  later,  as  some  explanation  is  necessary  first.  

                                   

 Figure   3   is   composed   out   of   the   figures   4   and   5.   In   those   figures   the   protest  

threshold  is  also  varied,  next  to  the  discard  threshold.  The  average  trust  level  at  tick  25  for   each  protest   threshold–discard   threshold   combination   is   visible   in   figure  4.  As   the  one  of   the   thresholds   gets  higher,   the   average   level   of   trust  declines.  However,  with   a  high  discard  threshold  the  trust  actually  increases  with  increasing  protest  threshold.  

Figure  3  Development  of  the  average  trust  level  and  the  %  plans  realized  as  the  discard  threshold  increases,  with  a  protest  threshold  of  0.51  at  1:1  exchange  

Figure  4  Mean  trust  level  of  all  inhabitants,  averaged  over  15  experiments,  at  varying  protest  threshold  and  discard  threshold  

Page 14: BscThesisLUP Richelle Raaphorst - WUR · 2016. 8. 29. · Modelling)a)spatialplanning)process)basedon trust)and)opinion) BachelorthesisSpatialPlanning) Richelle)Raaphorst)) 940412677100)

  14  

 The  percentage  of  times  a  windmill  was  placed  at  the  25th  tick  is  shown  in  figure  5.  

Whether  a  windmill  is  placed  or  not  is  the  result  of  a  process  shown  in  figure  6.  Here  the  development  of   the  amount  of  protestors   is   set  out  as  a   function  of   time,   from  data  of  one   experiment.   The   different   sets   of   values   are   the   different   discard   thresholds.   At   a  protest  threshold  of  0.5,  the  amount  of  protestors  gradually  increases  until  it  reaches  a  steady   level,   for  most  discard   thresholds.  But,   at   some  discard   thresholds,  a  decline  of  protest  is  visible.  Surprisingly,  this  decline  always  kicks  in  at  tick  12,  and  the  higher  the  protest   threshold,   the   more   discard   threshold   levels   show   this   shape.   Which   discard  thresholds  show  which  behaviour  depends  partly  on  the  random  variables.  

 

             

   

Figure  5  Percentage  of   times  a  plan  was  accepted  at   tick  25  out  of  15  experiments,   at   varying  protest   threshold  and  discard  threshold  

Figure  6  Amount  of  protestors  for  different  sets  of  discard  thresholds.  Per  figure,  the  protest  threshold  is  set  and  the  discard  threshold    is  varied.  Decrease  trust  =  0.05  and  increase  trust  =  0.10  

Page 15: BscThesisLUP Richelle Raaphorst - WUR · 2016. 8. 29. · Modelling)a)spatialplanning)process)basedon trust)and)opinion) BachelorthesisSpatialPlanning) Richelle)Raaphorst)) 940412677100)

  15  

This   change   at   tick   12   only   applies   in   cases  where   the   increase   in   trust   in   case   of  discard   is   set  at  0.05  and   the  decrease   in   trust   in  case  of  accepting  a  plan   is  0.10.  The  fascinating  thing  is  that  if  these  numbers  are  altered,  or  even  if  the  increase  is  set  higher  than  the  decrease,  the  bifurcation  still  occurs  but  the  decline  kicks  in  at  a  different  tick.  But,  it  is  always  at  the  same  tick  as  long  as  the  same  values  for  the  increase  and  decrease  are  chosen.  See  for  example  figure  7,  where  the  decrease  in  trust  was  changed  to  0.15.  Now  the  bifurcation  happens  around  tick  10  at  both  protest  thresholds.  

 

 Figure  7  Amount  of  protestors  for  different  sets  of  discard  thresholds.  The  protest  threshold  is  set  and  the  discard  threshold  is  varied.  Decrease  trust  =  0.05  and  increase  trust  =  0.15  

 Now  it  can  also  be  explained  why  everything  is  measured  at  tick  25.  At  that  time  the  

declining   is   mostly   finished,   or   the   amount   of   protestors   is   still   stable.   With   ticks   of  approximately  half  a  year,   in  reality   this  would  be  more   than  12  years.   If  a   longer  run  was  chosen  it  would  take  up  too  much  time  to  do  all  the  runs.  So,  figure  5  not  only  shows  the  placement  of  plans,  but  also  whether  the  protesting  started  to  decline  or  not  like  in  figure  6.  If  there  is  a  steady  level  of  protestors,  no  more  plans  will  be  placed.  But  in  case  of  a  declining  development,  in  most  cases  the  plan  is  accepted  at  the  25st  tick.  It  shows  that  with  a  higher  protest  threshold  or  discard  threshold,  it  is  more  likely  that  a  plan  will  be  accepted,  thus  that  protest  will  decline.  

 

Discussion  

 The  bifurcation  in  the  amount  of  protestors  in  figure  6  indicates  that  at  some  point  

after  the  increase  in  protest,  a  turning  point  is  reached.  In  some  cases  a  steady  level  of  protest   continues.   But   other   times,   the   amount   of   protestors   suddenly   decreases.   The  situation   in  which   the   protest   stays   at   one   level   can   be   compared   to   a   good   planner-­‐inhabitants   relationship,   as   the   trust   of   the   inhabitants   is   still   high.   A   bad   planner-­‐inhabitants   relationship   is  when   trust  declines  among   the   inhabitants  and   they  do  not  even  have  the  motivation  to  protest  anymore.  Figure  6  shows  that  there  are  more  good  relationships  at  lower  protest  thresholds,  so  if  the  planner  wants  the  inhabitants  to  stay  satisfied,  he  should  make  sure  the  protest  threshold  is  not  too  high.  

An   explanation   for   the   bifurcation   can   be   that   the   randomly   generated   trust  propensity  was  too  low  on  average.  It  could  be  that  if,  by  chance,  too  many  inhabitants  had  a  too  low  trust  level,  not  enough  protest  took  place.  Therefore  plans  continued  to  be  placed   and   the   point   where   enough   inhabitants   protest   to   keep   the   protest   steady   is  never   reached.   Trust   declines   because   the   plans   keep   being   accepted,   thus   protest  declines.   Because   whether   the   inhabitants   protest   or   not   depends   on   the   protest  threshold,  a  decline  in  protest  occurs  more  often  with  a  higher  protest  threshold.  

This   explanation   shows   that   the   success   or   failure   of   a   planner-­‐inhabitants  relationship  is  partly  based  on  a  random  factor  –  or  luck  in  reality.  

 

Page 16: BscThesisLUP Richelle Raaphorst - WUR · 2016. 8. 29. · Modelling)a)spatialplanning)process)basedon trust)and)opinion) BachelorthesisSpatialPlanning) Richelle)Raaphorst)) 940412677100)

  16  

The   amount   of   times   a   plan   is   accepted,   in   figure  5,   gives   an   expected   image.   It   is  quite   logic   that   if   the   discard   threshold   is   higher,   it   is   less   likely   that   a   plan   will   be  discarded.  The  same  applies  for  the  protest  threshold  –  the  higher  it  is,  the  less  likely  it  becomes   that   there   will   be   enough   protest.   One   thing   to   notice   is   that   the   ‘border’  between  100%  acceptance  and  0%  acceptance  runs  in  a  straight  line  through  the  image.  Thus,  0.01  change  protest  threshold  equals  a  change  of  3  in  discard  threshold.  

From   the   acceptance   of   plans   (figure   5)   and   the   average   trust   levels   (figure   4),  optimal  choices  for  the  spatial  planner  can  be  determined.  This  optimal  choice,  however,  depends  on  the  preferences  of  the  planner.  How  much  loss  in  trust  is  the  planner  willing  to  give  up  for  more  plans?  As  the  amount  of  plans  is  an  increasing  function  of  the  discard  threshold,  and  the  average   trust   level  a  decreasing   function,   the  optimal   level   is  at   the  intersection.  However,   at  what  discard   threshold   the   intersecting   takes  place  depends  on   the   exchange   rate  between   the   two.   For   example,   looking  at   figure  3,   a  1:1   ratio   is  pictured  with  a  protest  threshold  of  0.51.  It  shows  that  in  this  situation  the  best  choice  for  the  planner  would  be  a  discard  threshold  of  42.  But,  if  the  ratio  is  changed  to  1:2,  the  optimal   discard   threshold   becomes   45   (figure   8).   This   shows   that   there   is   no   best  option,   but   this   wholly   depends   on   the   preferences   of   the   planner.   Besides,   this   all  assumes  the  protest  threshold  is  measurable.  In  reality,  the  planner  can’t  exactly  know  what   this   threshold   is.   The   threshold   is   just   a   fictional   number   not   present   in   real  situations.  

 Looking   at   the   usefulness   in   reality   of   the   model,   many   comments   can   be   made.  

Firstly,   the   inhabitants   are   only   placed   inside   the   urban   areas.   The   rural   areas   are  considered   desert,   while   in   reality   these   spaces   are   inhabited   by   farmers   etc.   In   the  model,  most  plans  are  placed  in  rural  areas  as  there  are  no  inhabitants  close  by  that  will  protest.  

Second,  the  trust  dynamics  are  very  simple.  The  only  thing  actually  happening  is  the  increase  or  decrease  depending  on  the  action  of  the  spatial  planner.  Surely  there  is  more  to  incorporate,  but  that  was  not  possible  due  to  limits  of  this  project.  For  example,  now  only   the  trust   in   the  planner   is   taken   into  account.  But   the   inhabitants  also  have  some  level  of  trust  in  their  neighbours,  and  perhaps  more  people  are  inclined  to  protest  if  they  do  it  together.  

Third,  in  the  code  a  form  of  opinion  dynamics  was  written.  But,  in  order  to  focus  on  the  trust  dynamics,  this  was  turned  off  in  the  experiments.  It  could  be  interesting  to  see  what  would  happen  if  the  opinion  dynamics  was  turned  on  again.  Due  to  time  limits,  this  was  not  carried  through.  

Figure   8   Development   of   the   average   trust   level   and   the   %   plans   realized   as   the   discard   threshold  increases,  with  a  protest  threshold  of  0.51  at  1:2  exchange  

Page 17: BscThesisLUP Richelle Raaphorst - WUR · 2016. 8. 29. · Modelling)a)spatialplanning)process)basedon trust)and)opinion) BachelorthesisSpatialPlanning) Richelle)Raaphorst)) 940412677100)

  17  

Lastly,   the   model   consisted   of   many   variables   that   were   not   altered   during   the  experiments.  It  may  be  that  the  values  chosen  while  experimenting  may  have  influenced  the  results,  but  in  order  to  make  sure  these  variables  should  also  be  altered.  Again,  due  to  constraints  this  was  left  out.    

Some  of   the   variables   in   the  model   could   be  measured   in   reality   through   surveys.  For   example,   the   share   opinion   total   decides   how   important   opinion   is   compared   to  trust   in  order   to  protest.   In   the  model   this  share   is   the  same  for  each   inhabitant.  With  use  of  surveys,  the  importance  of  trust  and  opinion  could  be  measured  for  many  people.  The  outcomes  can  then  be  used  to  amplify  the  model.  

Conclusions   from   this   model   may   be   not   realistic,   but   they   are   useful.   Although  models  are  a  simplification  of  reality  and  thus  almost  always  leave  out  several  important  factors,  they  can  give  insight  in  a  situation  and  provide  aid  in  making  decisions.  In  a  real  society   the   citizens   could   be   harmed   by   interventions   made   by   the   spatial   planner.  When   using   a   model,   anything   is   possible   without   doing   actual   damage.   No   long  negotiations   are   necessary,   but   the   consequences   can   be  monitored   directly.   Besides,  the   more   time   that   can   be   put   into   the   model   in   order   to   expand   it,   the   more   it  approaches  reality.  

Another   useful   side   of   models   is   that   they   usually   contain   multiple   theories.  Qualitative   work   describes   one   theory   thoroughly   in   a   research.   Models   use   these  theories,  summarize  them,  and  relate  them  to  each  other.  In  this  way,  they  can  provide  an  overview  of  the  many  theories  there  are  on  a  certain  subject,  like  the  development  of  trust.  

Works  Cited  

Allahverdyan,  A.,  &  Galstyan,  A.   (2014).  Opinion  Dynamics  with  Confirmation  Bias.  Plos  one  ,  9  (7),  e99557.  

Billari,  F.,  Fent,  T.,  Prskawetz,  A.,  &  Scheffran,  J.  (2006).  Agent-­‐Based  Computational  Modelling:  An   Introduction.   In  F.  C.  Billari,  T.  Fent,  A.  Prskawetz,  &   J.  Scheffran,  Agent-­‐Based  Computational  Modelling  (pp.  1-­‐16).  Springer.  

Biswas,   S.,   Sinha,   S.,   &   Sen,   P.   (2013).   Opinion   dynamics   model   with   weighted  influence:  Exit  probability  and  dynamics.  Physical  review  ,  88  (2),  022152.  

Boer,   J.   (2007).   Framing   climate   change   and   spatial   planning:   how   risk  communication  can  be  improved.  Water  Science  &  Technology  ,  56  (4),  71-­‐78.  

de  Vries,  J.  (2014).  Understanding  Trust.  Wageningen:  Wageningen  University.  Dear,  M.   (1992).   Understanding   and   Overcoming   the   NIMBY   Syndrome.   Journal  of  

the  American  Planning  Association  ,  58  (3),  288-­‐300.  Doloswala,  K.  N.  (2014).  Eroding  trust  -­‐  An  agent  based  model  to  explore  how  trust  

flows.  Australasian  Marketing  Journal  (22),  51-­‐53.  Edelenbos,   J.,   &  Klijn,   E.-­‐H.   (2007).   Trust   in   complex   decision-­‐making   networks.   A  

theoretical  and  empirical  exploration.  Administration  &  Society  ,  39  (1),  25-­‐50.  Gans,   G.   J.   Towards   (dis)trust-­‐based   simulations   of   agent   networks.  Proceedings  of  

the   4th   International   Workshop   on   Deception,   Fraud,and   Trust   in   Agent   Societies.  Montreal.  

Gilbert,  N.,  &  Troitzsch,  K.  (2005).  Simulation  for  the  Social  Scientist.  Open  University  Press.  

Graaf,   P.   (2008,   march   1).   De   Volkskrant.   Retrieved   june   24,   2015   from  www.volkskrant.nl:   http://www.volkskrant.nl/binnenland/nimby-­‐reflex-­‐heerst-­‐van-­‐villawijk-­‐tot-­‐volksbuurt~a886117/  

Hassani-­‐Mahmooei,   B.,   &   Parris,   B.   (2014).   Dynamics   of   effort   allocation   and  evolution  of  trust:  an  agent-­‐based  model.  Comput  Math  Organ  Theory  (20),  133-­‐154.  

Hubbard,  P.   (2009).  NIMBY.   In  The  International  Encyclopedia  of  Human  Geography  (pp.  444-­‐449).  

Page 18: BscThesisLUP Richelle Raaphorst - WUR · 2016. 8. 29. · Modelling)a)spatialplanning)process)basedon trust)and)opinion) BachelorthesisSpatialPlanning) Richelle)Raaphorst)) 940412677100)

  18  

Iniguez,   G.,   Kertesz,   J.,   Kaski,   K.,   &   Barrio,   R.   (2001).   Phase   change   in   an   opinion-­‐dynamics  model  with  separation  of  time  scales.  Physical  review  ,  83  (1),  016111.  

Kim,   W.-­‐S.   (2009).   Effects   of   a   Trust   Mechanism   on   Complex   Adaptive   Supply  Networks:   An   Agent-­‐Based   Social   Simulation   Study.   Journal   of   artificial   societies   and  social  simulation  ,  12  ((3)  4),  <http://jasss.soc.surrey.ac.uk/12/3/4.html>.  

Kou,   G.,   Zhao,   Y.,   Peng,   Y.,   &   Shi,   Y.   (2012).   Multi-­‐Level   Opinion   Dynamics   under  Bounded  Confidence.  Plos  one  ,  7  (9),  e43507.  

Lewis,   J.,   &   Weigert,   A.   (2012).   The   Social   Dynamics   of   Trust:   Theoretical   and  Empirical  Research,  1985-­‐2012.  Social  Forces  ,  91  (1),  25-­‐31.  

Ligtenberg,   A.,   &   Bregt,   A.   (2014).   Simulating   Opinion   Dynamics   in   Land   Use  Planning.  Advances  in  Intelligent  Systems  and  Computing  ,  229,  271-­‐282.  

Matthews,  R.,  Gilbert,  N.,  Roach,  A.,  Polhill,   J.,  &  Gotts,  N.   (2007).  Agent-­‐based   land-­‐use  models:  a  review  of  applications.  Landscape  Ecology  (22),  1447-­‐1459.  

Mayer,  R.,  Davis,  J.,  &  Schoorman,  F.  (1995).  An  Integrative  Model  of  Organizational  Trust.  The  Academy  of  Management  Review  ,  20  (3),  709-­‐734.  

Nooteboom,  B.  (2012).  Agent-­‐based  simulations  of  trust.   In  F.  Lyon,  G.  Mollering,  &  M.  N.  Saunders,  Handbook  of  research  methods  on  trust  (pp.  40-­‐48).  Cheltenham:  Edward  Elgar  Publishing.  

Pepermans,   Y.,   &   Loots,   I.   (2013).   Wind   farm   struggles   in   Flanders   fields:   A  sociological  perspective.  Energy  Policy  ,  59,  321-­‐328.  

Pol,   E.,   Di   Masso,   A.,   Castrechini,   A.,   Bonet,   M.,   &   Vidal,   T.   (2006).   Psychological  parameters   to   understand   and   manage   the   NIMBY   effect.   Revue   europeenne   de  psychologie  appliquee  ,  56,  43-­‐51.  

Pol,   E.,   Di   Masso,   A.,   Castrechini,   A.,   Bonet,   M.,   &   Vidal,   T.   (2006).   Psychological  parameters   to   understand   and   manage   the   NIMBY   effect.   Revue   Europeenne   de  Psychologie  Appliquee  ,  56,  43-­‐51.  

Ramchurn,   S.,   Huynh,   D.,   &   Jennings,   N.   (2004).   Trust   in  multi-­‐agent   systems.  The  Knowledge  Engineering  Review  ,  19  (1),  1-­‐25.  

Schnabel,   P.   (.   (1999).   Individualisering   en   social   integratie.   Nijmegen:   Uitgeverij  SUN.  

Siegried,  R.  (2014).  Modeling  and  Simulation  of  Complex  Systems.  Munchen:  Springer.  Weisbuch,   G.,   Deffuant,   G.,   Amblard,   F.,   &   Nadal,   J.   (2003).   Interacting   Agents   and  

Continuous   Opinions   Dynamics.   In   R.   Cowan,   &   N.   Jonard,   Heterogenous   Agents,  Interactions  and  Economic  Performance  (pp.  225-­‐242).  Springer  Berlin  Heidelberg.  

Wilensky,   U.   (n.d.).   Netlogo.   Retrieved   june   30,   2015   from   Netlogo:  https://ccl.northwestern.edu/netlogo/  

Za,   S.   M.   (2015).   Agent   Based   Simulation   of   Trust   Dynamics   in   Dependence  Networks.  In  Exploring  Services  Science  (pp.  243-­‐252).  Springer  International  Publishing.  

       

Page 19: BscThesisLUP Richelle Raaphorst - WUR · 2016. 8. 29. · Modelling)a)spatialplanning)process)basedon trust)and)opinion) BachelorthesisSpatialPlanning) Richelle)Raaphorst)) 940412677100)

  19  

Appendix  I  

;;trust  model  ;;june  2015  ;;=====================================================      globals  [      max_distance        amount_protest        amount_windmills      ]    breed  [towns]  breed  [inhabitants  inhabitant]  breed  [windmills]    patches-­‐own  [      landuse        isplan      istown  ]    inhabitants-­‐own  [      trust_prop        trust_planner        opinion_windmill      trust_total        opinion_start        opinion_plan        opinion_total        distance_to_plan        distance_to_windmill      sum_trust_opinion      protest  ]    ;===============================================================================  to  init      clear-­‐all      set-­‐default-­‐shape  towns  "house"      set-­‐default-­‐shape  inhabitants  "face  happy"      make-­‐towns      make-­‐townarea      make-­‐ruralarea      make-­‐plan      make-­‐inhabitants      reset-­‐ticks  end    ;;=====================================================      

Page 20: BscThesisLUP Richelle Raaphorst - WUR · 2016. 8. 29. · Modelling)a)spatialplanning)process)basedon trust)and)opinion) BachelorthesisSpatialPlanning) Richelle)Raaphorst)) 940412677100)

  20  

to  go            ask  inhabitants  [          set  protest  0          if  sum_trust_opinion  >  protest_threshold  [              set  color  scale-­‐color  red  trust_total  0  1              set  shape  "face  sad"              set  protest  1          ]          if  sum_trust_opinion  <  protest_threshold  [              set  color  scale-­‐color  grey  trust_total  0  1              set  shape  "face  happy"          ]      ]            set  amount_protest  count  inhabitants  with  [protest  =  1]            ask  inhabitants  with  [protest  =  1]  [          if  amount_protest  >  discard_threshold  [              set  trust_planner  trust_planner  +  increase_trust          ]          if  amount_protest  <=  discard_threshold  [              set  trust_planner  trust_planner  -­‐  decrease_trust          ]      ]      if  amount_protest  <=  discard_threshold  [          ask  patches  with  [isplan  =  1][sprout-­‐windmills  1  [set  shape  "flag"  set  size  3  set  color  red]]          new-­‐location      ]            set  amount_windmills  count  windmills              if  amount_protest  >  discard_threshold  [          new-­‐location      ]        ;    opinion-­‐dynamics            ask  inhabitants  [          set   trust_total   (   share_trust_prop   *   trust_prop   )   +   (   (   1   -­‐   share_trust_prop   )   *  trust_planner  )          set   opinion_total   (   share_opinion_start   *   opinion_windmill   )   +   (   (   1   -­‐  share_opinion_start  )  *  opinion_plan  )          set   sum_trust_opinion   (   share_opinion_total   *   opinion_total   )   +   (   (   1   -­‐  share_opinion_total  )  *  trust_total  )      ]            tick  end    ;;=====================================================      

Page 21: BscThesisLUP Richelle Raaphorst - WUR · 2016. 8. 29. · Modelling)a)spatialplanning)process)basedon trust)and)opinion) BachelorthesisSpatialPlanning) Richelle)Raaphorst)) 940412677100)

  21  

to  make-­‐towns  create-­‐towns  initial-­‐number-­‐towns  [      set  color  white      set  size  1      setxy  random-­‐xcor  random-­‐ycor      set  istown  1  ]  end    to  make-­‐townarea      ask  towns  [          ask  patches  in-­‐radius  (  10  +  random  10  )  [          set  pcolor  35          set  landuse  2          set  isplan  0  ]  ]  end    to  make-­‐ruralarea      ask  patches  [          if  landuse  !=  2  [              set  pcolor  green              set  landuse  1                set  isplan  0  ]  ]  end    to  make-­‐plan      ask  one-­‐of  patches  [          if  not  any?  windmills-­‐here        [set  isplan  1      set  pcolor  yellow]  ]  end    to  make-­‐inhabitants      create-­‐inhabitants  nr_actors  [          set  size  1.5          move-­‐to  one-­‐of  patches  with  [landuse  =  2]          set  protest  0          set  trust_prop  random-­‐normal  0.5  0.2          set  trust_planner  random-­‐normal  0.5  0.2          set   trust_total   (   share_trust_prop   *   trust_prop   )   +   (   (   1   -­‐   share_trust_prop   )   *  trust_planner  )          set  opinion_start  random-­‐normal  0.5  0.2          set  distance_to_plan  calc_distance_to_plan          set  opinion_plan  1  /  (  1  +  0.003  *  (distance_to_plan  ^  3  )  )            set  opinion_total  (  share_opinion_start  *  opinion_start  )  +  (  (  1  -­‐  share_opinion_start  )  *  opinion_plan  )          set   sum_trust_opinion   (   share_opinion_total   *   opinion_total   )   +   (   (   1   -­‐  share_opinion_total  )  *  trust_total  )          set  color  4      ]  end    ;;=====================================================  

Page 22: BscThesisLUP Richelle Raaphorst - WUR · 2016. 8. 29. · Modelling)a)spatialplanning)process)basedon trust)and)opinion) BachelorthesisSpatialPlanning) Richelle)Raaphorst)) 940412677100)

  22  

to-­‐report  calc_distance_to_plan      report  distance  one-­‐of  patches  with  [isplan  =  1]  end    to-­‐report  calc_distance_windmill      report  mean  [  distance  myself  ]  of  windmills  end    to  new-­‐location      ask  patches  [          if  landuse  =  2  [              set  pcolor  35              set  isplan  0  ]          if  landuse  =  1  [              set  pcolor  green              set  isplan  0  ]      ]      make-­‐plan      ask  inhabitants  [          set  distance_to_plan  calc_distance_to_plan          set  opinion_plan  1  /  (  1  +  0.003  *  (distance_to_plan  ^  3  )  )            if  amount_protest  <=  discard_threshold  [              set  distance_to_windmill  calc_distance_windmill              set  opinion_windmill  opinion_start  +  (  1  /  (  1  +  0.003  *  (  (distance_to_windmill  /  (  1  +  amount_windmills  )  )  ^  3  )  )  )          ]      ]  end    ;;=====================================================    ;to  opinion-­‐dynamics  ;    ask  inhabitants  [  ;        let  neighbours  inhabitants  in-­‐radius  distance_threshold  ;        let  min_opinion  opinion_start  -­‐  opinion_threshold  ;        let  max_opinion  opinion_start  +  opinion_threshold  ;         let   similar_neighbours   neighbours   with   [opinion_start   >   min_opinion   and  opinion_start  <  max_opinion]  ;        let  opinion_receiver  self  ;        ask  similar_neighbours  [    ;                let  update_opinion  opinion_start  ;                ask  opinion_receiver  [  ;                    set  opinion_start  (opinion_start  +  update_opinion)  /  2  ;                    ;;  als  twee  agents  een  opinie  bijna  delen,  zal  het  basisvertrouwen  toenemen  ;                      ]  ;        ]  ;    ]  ;end