Download - Biomedical Imaging Hyperspectral Imaging

Transcript
Page 1: Biomedical Imaging Hyperspectral Imaging

Biomedical Imaging

Hyperspectral Imaging

Charles A. DiMarzio & Eric M. Kercher

EECE–4649

Northeastern University

Universidad de los Andes

June 2019

Page 2: Biomedical Imaging Hyperspectral Imaging

Why Spectral?

June 2019 Chuck DiMarzio, Northeastern University 12286..slides7–1

Page 3: Biomedical Imaging Hyperspectral Imaging

Why Hyperspectral

Right ≈ North, Down = [400 to 2400 nm] (not Linear)

South Bay of California; 101 curves down on the left.

June 2019 Chuck DiMarzio, Northeastern University 12286..slides7–2

Page 4: Biomedical Imaging Hyperspectral Imaging

Why Hyperspectral

Right ≈ North, Down = [400 to 2400 nm] (not Linear)

Where are the Shrimp?

June 2019 Chuck DiMarzio, Northeastern University 12286..slides7–3

Page 5: Biomedical Imaging Hyperspectral Imaging

Hardware

• Tunable Filter (Lyot Filter, Pronounced “Leo”)

– x, y on camera

– λ with time

• Grating spectrometer with Pinhole

– λ on Camera

– x, y with time (whiskbroom: Slow)

∗ Slit, Grating and 2D Camera

· x, λ on camera

· y with time (pushbroom)

June 2019 Chuck DiMarzio, Northeastern University 12286..slides7–4

Page 6: Biomedical Imaging Hyperspectral Imaging

Applications

• Military (Where’s the Tank in the Trees?)

• Law Enforcement (Which crop is illegal?)

• Environmental (e.g. Deep Horizon)

• Biomedical

– Fluorescence Spectroscopy (Multiple, Overlapping Fluo-

rophores)

– Hemoglobin Spectroscopy

June 2019 Chuck DiMarzio, Northeastern University 12286..slides7–5

Page 7: Biomedical Imaging Hyperspectral Imaging

Forward Models

• Monte–Carlo

• Diffusion

• FDTD

• Linear Spectral Prediction

Yλ =N∑

n=1

Mλ,nXn

• Backscatter

Y = µa M = κn (λ)

• Fluorescence

Y = Eλ M = Eλ,n

• Intuitive Backscatter

1

W=

µs + µa

µs

1

W= 1+

µa

µs

• or µaℓeff = ln (1/T )

• Linear Superposition

µa (λ) =N∑

n=1

κn (λ)Xn

• Fluorescence

Source Powers Add

Eλ (λ) =N∑

n=1

Eλ,n (λ)Xn

June 2019 Chuck DiMarzio, Northeastern University 12286..slides7–6

Page 8: Biomedical Imaging Hyperspectral Imaging

Some CommonAbsorbers

200 300 400 500 600 700 800 900 1000

,Wavelength, nm

10-4

10-3

10-2

10-1

100

101

102

103

104

a,

Ab

sorp

tio

n C

oef

f, /

cm

Oxy in Skin

Deoxy

Oxy in Blood

Deoxy

Water

June 2019 Chuck DiMarzio, Northeastern University 12286..slides7–7

Page 9: Biomedical Imaging Hyperspectral Imaging

Some CommonFluorophores

200 300 400 500 600 700

, Wavelength, nm

-2

0

2

4

6

8

10

12

a,

Sp

ecif

ic A

bso

rpti

on

(cm

M)

- 1

104 Dye Spectra (file m10254.m)

488 514 633

Hoechst 33258

FITC Isomer 1

Mito Green FM

Mito CMXRos

June 2019 Chuck DiMarzio, Northeastern University 12286..slides7–8

Page 10: Biomedical Imaging Hyperspectral Imaging

Matrix Methods

• Forward Problem

Y = MX

• Typical Example

Y (λ1)

Y (λ2)

Y (λ3)

Y (λ4)...

Y (λ200)

=

M1,1 M1,2 M1,3

M2,1 M2,2 M2,3

M3,1 M3,2 M3,3

M4,1 M4,2 M4,3... ... ...

M200,1 M200,2 M200,3

X1

X2

X3

• Inverse Problem

X = M−1Y Oh No!!!

June 2019 Chuck DiMarzio, Northeastern University 12286..slides7–9

Page 11: Biomedical Imaging Hyperspectral Imaging

Variance, Covariance

• Variance:

Mean of Squared Difference from Mean

• Covariance:

Mean of Squared Difference

• Each Pixel (k) is a Column

Y =

Y1 (λ1) Y2 (λ1) . . .

Y1 (λ2) Y2 (λ1) . . .

Y1 (λ3) Y2 (λ1) . . .... . . .

Y1 (λ200) Y2 (λ200) . . .

COV (Y) = YY†

• We can visualize this in 3D space

June 2019 Chuck DiMarzio, Northeastern University 12286..slides7–10

Page 12: Biomedical Imaging Hyperspectral Imaging

Variance, Covariance,Principal Components

• Covariance

COV (Y) = YY†

• Find Eigenvalues and Eigenvectors

• Arrange in Eigenvalue Order Decending

• Remember Y = MX for a pixel or Y = MX for an image

• It’s Possible from this to Guess

– M, the basis comonent spectra in columns

– X , the strength of each component in each pixel

June 2019 Chuck DiMarzio, Northeastern University 12286..slides7–11

Page 13: Biomedical Imaging Hyperspectral Imaging

Non–Negative LeastSquares

Real–Time NLSS

Eric M. Kercher

NU Physics Ph.D. Candidate

DOC Teaching Assistant 2018

Application to Skin Imaging

Jaime Prieto & Matias Rivera

(UAndes)

Everett O’Malley (NU, UCSB)

June 2019 Chuck DiMarzio, Northeastern University 12286..slides7–12