Download - “Complementi di Fisica” - [email protected]/.../content/1/CF2012_L27_v03_ho.pdf · Complementi di Fisica - Lecture 27 26-11-2012 L.Lanceri - Complementi di Fisica 3

Transcript
Page 1: “Complementi di Fisica” - Moodle@Unitsmoodle2.units.it/.../content/1/CF2012_L27_v03_ho.pdf · Complementi di Fisica - Lecture 27 26-11-2012 L.Lanceri - Complementi di Fisica 3

Complementi di Fisica - Lecture 27 26-11-2012

L.Lanceri - Complementi di Fisica 1

“Complementi di Fisica”Lecture 27

Livio LanceriUniversità di Trieste

Trieste, 01-12-2010

26-11-2012 L.Lanceri - Complementi di Fisica - Lecture 27 2

In this lecture• Contents

– Doped (“extrinsic”) semiconductors at equilibrium• Concentrations of charge carriers (electrons and

holes)• Fermi level

• Reference textbooks– D.A. Neamen, Semiconductor Physics and Devices, McGraw-

Hill, 3rd ed., 2003, p.83-96 (Density of states, Fermi-Dirac), p.115-145 (4.2 Dopant atoms and energy levels, 4.3 extrinsicsemiconductor, 4.4 Statistics of donors and acceptors, 4.5Charge neutrality, 4.6 Position of the Fermi level)

– R.F.Pierret, Advanced Semiconductor Fundamentals, PrenticeHall, 2003, 2nd ed., p. 96-128.

– S.M.Sze, Semiconductor Devices - Physics and Technology,J.Wiley & Sons, 2nd ed., 1985, p. 21-28.

Page 2: “Complementi di Fisica” - Moodle@Unitsmoodle2.units.it/.../content/1/CF2012_L27_v03_ho.pdf · Complementi di Fisica - Lecture 27 26-11-2012 L.Lanceri - Complementi di Fisica 3

Complementi di Fisica - Lecture 27 26-11-2012

L.Lanceri - Complementi di Fisica 2

“extrinsic” (doped)semiconductors

26-11-2012 L.Lanceri - Complementi di Fisica - Lecture 27 4

Donors and acceptors• Bond model:

n-type Si with “donor” impurities(As: 5 valence electrons)The fifth electron is “donated”to the conduction band; the remaining positive ion is fixed

p-type Si with “acceptor” impurities(B: 3 valence electrons)An additional electron is “accepted”from the valence band, creating a holeThe resulting negative ion is fixed

Page 3: “Complementi di Fisica” - Moodle@Unitsmoodle2.units.it/.../content/1/CF2012_L27_v03_ho.pdf · Complementi di Fisica - Lecture 27 26-11-2012 L.Lanceri - Complementi di Fisica 3

Complementi di Fisica - Lecture 27 26-11-2012

L.Lanceri - Complementi di Fisica 3

26-11-2012 L.Lanceri - Complementi di Fisica - Lecture 27 5

Donors and acceptors• Energy band model

n-type Si with “donor ” energy levelsvery close to the conduction band;ionization energy is very small,most donor atoms are ionizedalready at room temperature !

p-type Si with “acceptor ” energy levelsvery close to the valence band;most acceptor atoms capture an electron, leaving a free holealready at room temperature !

26-11-2012 L.Lanceri - Complementi di Fisica - Lecture 27 6

Impurities and ionization energies - 1• Measured ionization energies (eV)

Sienergy gapEg = 1.12eV

GaAsenergy gapEg =1.42eV

EC EC - E (eV)

EC EC - E (eV)

E - EV (eV)EV

E - EV (eV)EV

A = Acceptor D = Donor

Page 4: “Complementi di Fisica” - Moodle@Unitsmoodle2.units.it/.../content/1/CF2012_L27_v03_ho.pdf · Complementi di Fisica - Lecture 27 26-11-2012 L.Lanceri - Complementi di Fisica 3

Complementi di Fisica - Lecture 27 26-11-2012

L.Lanceri - Complementi di Fisica 4

26-11-2012 L.Lanceri - Complementi di Fisica - Lecture 27 7

Impurities and ionization energies - 2• Doping with donors (n-type)

– For instance: P or As in Si– Level close to EC

• Doping with acceptors (p-type)– For instance: B in Si– Level close to EV

• Unwanted impurities– Many impurities (unavoidable, to some extent) contribute

levels close to the center of the gap– Also these levels are important, as “traps” or “recombination-

generation centers” (more on this later)

26-11-2012 L.Lanceri - Complementi di Fisica - Lecture 27 8

Impurities and ionization energies - 3• Donor ionization energies (eV): can we understand or at

least guess the order of magnitude in simple terms? Bohrmodel…

isolated H atom, lowest level:Bohr model, n=1

−q, m0+q

vacuum: ε0

eV6.13

eV16.1318

1

22220

40

!=

!=!=

Ennh

qmEn "ionization energy

−q, mn*

+q

Si: ε/ε0 = 12

Donor atom in Si crystal:Lowest level for the external electron

eV085.09.0121eV6.13

18

21,

,0

20

222

4

,

!""!

##$

%&&'

(#$%&

'(=)=

**

D

nHnn

nD

E

Emm

nhqmE

++

+

ionization energy

Page 5: “Complementi di Fisica” - Moodle@Unitsmoodle2.units.it/.../content/1/CF2012_L27_v03_ho.pdf · Complementi di Fisica - Lecture 27 26-11-2012 L.Lanceri - Complementi di Fisica 3

Complementi di Fisica - Lecture 27 26-11-2012

L.Lanceri - Complementi di Fisica 5

26-11-2012 L.Lanceri - Complementi di Fisica - Lecture 27 9

Impurities and ionization energies - 4• Acceptor ionization energies (eV): similar reasoning

isolated H atom, lowest level:Bohr model, n=1

eV6.13

eV16.1318

1

22220

40

!=

!=!=

Ennh

qmEn "

−q, m0+q

vacuum: ε0

ionization energy

+q, mp*

−q

Si: ε/ε0 = 12

Acceptor atom in Si crystal:Lowest level for the hole

eV018.019.0121eV6.13

18

21,

,0

20

222

4

,

!""!

##$

%&&'

(#$%&

'(=)=

**

D

nHpp

nD

E

Emm

nhqm

E++

+

ionization energy

26-11-2012 L.Lanceri - Complementi di Fisica - Lecture 27 10

Impurities and ionization energies - 5• The simple Bohr model for donor and acceptor

ionization energies:– Describes the impurities in an oversimplified way (pseudo-

hydrogen atoms with outer electron or hole orbiting throughthe semiconductor material):

• Effective mass mn*, mp*• Dielectric constant ε

– Gives the correct orders of magnitude for ionization energies(EI < 0.1eV): OK because many semiconductor atoms areincluded in the Bohr orbit corresponding to the lowest level(Exercise: easily checked by computing the Bohr radius)

– Is not supposed to be able to reproduce the details !• Small ionization energy ⇒ most donor/acceptor atoms

are ionized at room temperature

Page 6: “Complementi di Fisica” - Moodle@Unitsmoodle2.units.it/.../content/1/CF2012_L27_v03_ho.pdf · Complementi di Fisica - Lecture 27 26-11-2012 L.Lanceri - Complementi di Fisica 3

Complementi di Fisica - Lecture 27 26-11-2012

L.Lanceri - Complementi di Fisica 6

26-11-2012 L.Lanceri - Complementi di Fisica - Lecture 27 11

n-type in more detailExpect:

n > ni mobile electronsND

+

fixed positive ions(out of ND donors)

p < ni mobile holes

26-11-2012 L.Lanceri - Complementi di Fisica - Lecture 27 12

Intrinsic carrier concentration

gC E( ) =mn

! 2mn! E " Ec( )

# 2!3

F E( ) ! e" E"EF( ) kT

gV E( ) =mp

! 2mp! EV " E( )

# 2!3

1! F E( ) " e! EF !E( ) kT

n ! NCe" EC "EF( ) kT

p ! NVe" EF "EV( ) kT

NC ! 2 2"mn#kT

h2$

% &

'

( ) 3 2

NV ! 22"mp

#kTh2

$

% &

'

( ) 3 2

Page 7: “Complementi di Fisica” - Moodle@Unitsmoodle2.units.it/.../content/1/CF2012_L27_v03_ho.pdf · Complementi di Fisica - Lecture 27 26-11-2012 L.Lanceri - Complementi di Fisica 3

Complementi di Fisica - Lecture 27 26-11-2012

L.Lanceri - Complementi di Fisica 7

26-11-2012 L.Lanceri - Complementi di Fisica - Lecture 27 13

Extrinsic carrier concentration

gC E( ) =mn

! 2mn! E " Ec( )

# 2!3

F E( ) ! e" E"EF( ) kT

gV E( ) =mp

! 2mp! EV " E( )

# 2!3

1! F E( ) " e! EF !E( ) kT

n ! NCe" EC "EF( ) kT

p ! NVe" EF "EV( ) kT

NC ! 2 2"mn#kT

h2$

% &

'

( ) 3 2

NV ! 22"mp

#kTh2

$

% &

'

( ) 3 2

The same ingredients…

…the same (formal) results ! But now n ≠ p : why ??

26-11-2012 L.Lanceri - Complementi di Fisica - Lecture 27 14

Carrier concentrations: intrinsic• (approximate) equations valid for both intrinsic and extrinsic:

• Intrinsic case (EF ≡ Ei)

n ! NCe" EC "EF( ) kT

NC ! 2 2"mn#kT

h2$

% &

'

( ) 3 2

NV ! 22"mp

#kTh2

$

% &

'

( ) 3 2

p ! NVe" EF "EV( ) kT

( ) ( )

( ) kTEVCi

kTEEVCi

VCiF

kTEEV

kTEECi

gVC

ViiC

eNNneNNnnp

EEEE

eNeNnpn

22

2...

!!!

!!!!

="==

+#==

====

NC = nieEC !Ei( ) kT

NV = nieEi !EV( ) kT

Page 8: “Complementi di Fisica” - Moodle@Unitsmoodle2.units.it/.../content/1/CF2012_L27_v03_ho.pdf · Complementi di Fisica - Lecture 27 26-11-2012 L.Lanceri - Complementi di Fisica 3

Complementi di Fisica - Lecture 27 26-11-2012

L.Lanceri - Complementi di Fisica 8

26-11-2012 L.Lanceri - Complementi di Fisica - Lecture 27 15

Carrier concentrations: extrinsic• (approximate) equations valid for both intrinsic and extrinsic:

• Extrinsic case: n ≠ p ⇔ EF ≠ Ei

( ) kTEEC

FCeNn !!"23

2

22 !!"

#$$%

&'

(

hkTmN n

C)

23

2

22 !

!"

#$$%

&'

(

hkTm

N pV

)( ) kTEEV

VFeNp !!"

( ) ( ) ( )

( ) ( ) ( )

AiA

DiDi

kTEEi

kTEEkTEEi

kTEEi

kTEEkTEEi

NnnNppNnpNnnnnp

eneenp

eneennFiVFVi

iFFCiC

2

22

:type-

:type-

!!

!!=

==

==""""

""""

( ) kTEEiC

iCenN !=

( ) kTEEiV

VienN !=

approximatefor

completeionization

EF moves away from Ei

26-11-2012 L.Lanceri - Complementi di Fisica - Lecture 27 16

Fermi level EF for complete ionization• Complete ionization of donors (n-type):

• Complete ionization of acceptors (p-type):

( ) ( )

!!"

#$$%

&='(

=()= '''

D

CFC

kTEE

D

CD

kTEEC

NNkTEE

eNNNeNn FCFC

ln

( ) ( )

!!"

#$$%

&='(

=()= '''

A

VVF

kTEE

A

VA

kTEEV

NNkTEE

eNNNeNp FCVF

ln

Page 9: “Complementi di Fisica” - Moodle@Unitsmoodle2.units.it/.../content/1/CF2012_L27_v03_ho.pdf · Complementi di Fisica - Lecture 27 26-11-2012 L.Lanceri - Complementi di Fisica 3

Complementi di Fisica - Lecture 27 26-11-2012

L.Lanceri - Complementi di Fisica 9

26-11-2012 L.Lanceri - Complementi di Fisica - Lecture 27 17

EF : dependence on n, p at fixed T

n-type

p-type

n ! ND " EC # EF $ kT lnNC

ND

%

& '

(

) *

p ! NA " EF # EV = kT ln NV

NA

$

% &

'

( )

NA cm-3[ ]

ND cm-3[ ]

26-11-2012 L.Lanceri - Complementi di Fisica - Lecture 27 18

Concentrations and EF : an example• A silicon ingot is doped with As (ND≈1016 atoms/cm3). Find the carrier

concentration and the Fermi level at room temperature (T=300K)Assuming complete ionization of donors:

n ! ND =1016cm"3

ni = NCe" EC "Ei( ) kT !

! 2.8 #1019( ) # 5.2 #10"10( ) !!1.45 #1010cm"3

p ! ni2 ND =

1.45 #1010( )21016

=

= 2.1#104cm"3

EC ! EF = kT ln NC

ND

"

# $

%

& ' = 0.0259ln 2.8 (10

19

1016"

# $

%

& ' =

= 0.206 eV

n = nieEF !Ei( ) kT " EF ! Ei = kT ln n

ni

#

$ %

&

' (

EF ! Ei = 0.0259ln 1016

1.45 )1010#

$ %

&

' ( = 0.354 eV

Page 10: “Complementi di Fisica” - Moodle@Unitsmoodle2.units.it/.../content/1/CF2012_L27_v03_ho.pdf · Complementi di Fisica - Lecture 27 26-11-2012 L.Lanceri - Complementi di Fisica 3

Complementi di Fisica - Lecture 27 26-11-2012

L.Lanceri - Complementi di Fisica 10

26-11-2012 L.Lanceri - Complementi di Fisica - Lecture 27 19

Carrier concentrations: general case• Both donor and acceptor impurities present

simultaneously– Concentrations: ND and NA respectively– ND

+ and NA− : concentrations of ionized donors and acceptors

• Starting point: overall charge neutrality(only “unbalanced” charges appear explicitely),and mass action law

n + NA! = p + ND

+ np = ni2

ND+ = ND ! nD

NA! = NA ! pA

nD electrons in donor states (non-ionized donors)

pA holes in acceptor states (non-ionized acceptors)

26-11-2012 L.Lanceri - Complementi di Fisica - Lecture 27 20

Carrier concentrations: general case

ND+ = ND ! nD

NA! = NA ! pA

nDpA

Page 11: “Complementi di Fisica” - Moodle@Unitsmoodle2.units.it/.../content/1/CF2012_L27_v03_ho.pdf · Complementi di Fisica - Lecture 27 26-11-2012 L.Lanceri - Complementi di Fisica 3

Complementi di Fisica - Lecture 27 26-11-2012

L.Lanceri - Complementi di Fisica 11

26-11-2012 L.Lanceri - Complementi di Fisica - Lecture 27 21

Carrier concentrations

• Assuming complete ionization of donors and acceptors

NA! " NA ND

+ " ND

n + NA = p + ND np = ni2

26-11-2012 L.Lanceri - Complementi di Fisica - Lecture 27 22

Carrier concentrations• Solving for n, p:

2iDA nnpNpNn =+=+

n-type: ND > NA p-type: NA > ND

nn = 12ND ! NA + ND ! NA( )2 + 4ni

2" # $

% & '

pn = ni2 nn

if ND ! NA >> ninn ( ND ! NA

pp = 12NA ! ND + NA ! ND( )2 + 4ni

2" # $

% & '

np = ni2 pp

if ND ! NA >> nipp ( NA ! ND

Page 12: “Complementi di Fisica” - Moodle@Unitsmoodle2.units.it/.../content/1/CF2012_L27_v03_ho.pdf · Complementi di Fisica - Lecture 27 26-11-2012 L.Lanceri - Complementi di Fisica 3

Complementi di Fisica - Lecture 27 26-11-2012

L.Lanceri - Complementi di Fisica 12

26-11-2012 L.Lanceri - Complementi di Fisica - Lecture 27 23

Extrinsic Fermi level vs temperature• Fermi level computation in

the general case, taking Tinto account:– from ND and NA compute n, p– from n, p extract EF

• ni increases with T !– Low T: extrinsic behaviour– High T: intrinsic behaviour

n = nieEF !Ei( ) kT " EF ! Ei = kT ln n

ni

#

$ %

&

' (

p = nieEi !EF( ) kT " Ei ! EF = kT ln p

ni

#

$ %

&

' (

26-11-2012 L.Lanceri - Complementi di Fisica - Lecture 27 24

Electron density vs temperature• Another point of view:

electron concentrationin n-type semiconductor– Very low T:

• “freeze-out” region• donors not ionized

– Medium T:• “extrinsic” region• n ≈ ND

– High T:• “intrinsic” region• n ≈ ni

Page 13: “Complementi di Fisica” - Moodle@Unitsmoodle2.units.it/.../content/1/CF2012_L27_v03_ho.pdf · Complementi di Fisica - Lecture 27 26-11-2012 L.Lanceri - Complementi di Fisica 3

Complementi di Fisica - Lecture 27 26-11-2012

L.Lanceri - Complementi di Fisica 13

26-11-2012 L.Lanceri - Complementi di Fisica - Lecture 27 25

Non-degenerate and degenerate s.c.• All the results in this lecture assumed the Boltzmann

approximation, that is EC - EF > 3kT, EF - EV > 3kT(“non-degenerate” semiconductors)– Relatively small doping concentrations: donor and acceptor atoms

can be considered as “isolated” (energy levels)

• For very large doping concentrations (ND ≈ NC , NA ≈ NV)(“degenerate” semiconductors)– Donor (acceptor) energy levels become bands, overlapping with the

conduction (valence) band– The effective forbidden gap becomes smaller– The Fermi level is inside the enlarged conduction (valence) band,

with a very large concentration of electrons (holes) available forconduction

– The Boltzmann approximation is no longer valid in this case

26-11-2012 L.Lanceri - Complementi di Fisica - Lecture 27 26

Lecture 27 - summary• The “mass action law” (np = ni

2) is valid also for extrinsic s.c.

• The intrinsic concentration ni increases with T

• We found relations between n, p, ni and EF

• In the intrinsic case n = p = ni

• We have learned how to compute n, p, and EF in the generalextrinsic case (depending on ND, NA)

• Specifying EF is a very convenient way of parameterizing n, p

• Intrinsic/extrinsic behaviour depends on T !

Page 14: “Complementi di Fisica” - Moodle@Unitsmoodle2.units.it/.../content/1/CF2012_L27_v03_ho.pdf · Complementi di Fisica - Lecture 27 26-11-2012 L.Lanceri - Complementi di Fisica 3

Complementi di Fisica - Lecture 27 26-11-2012

L.Lanceri - Complementi di Fisica 14

26-11-2012 L.Lanceri - Complementi di Fisica - Lecture 27 27

Lecture 27 - exercises• Exercise 1: A silicon sample at T=300K contains an acceptor impurity

concentration of NA=1016 cm-3. Determine the concentration of donorimpurity atoms that must be added so that the silicon is n-type and theFermi energy is 0.20 eV below the conduction band edge.

• Exercise 2: Find the electron and hole concentrations and Fermi levelin silicon at 300K (a) for 1x1015 boron atoms/cm3 and (b) for 3x1016 boronatoms /cm3 together with 2.9x1016 arsenic atoms/cm3.

• Exercise 3: Calculate the Fermi level of silicon doped with 1015, 1017

and 1019 phosphorus atoms/cm3, assuming complete ionization. From thecalculated Fermi level, check if the assumption of complete ionization isjustified for each doping. Assume that the ionized donors density isgiven by ND

+ = ND(1-F(ED)).