Download - Andmeturve ja krüptoloogia, X Krüptoräsid. Krüptoprotokollid, TLS

Transcript
Page 1: Andmeturve ja krüptoloogia, X Krüptoräsid. Krüptoprotokollid, TLS

Andmeturve ja krüptoloogia, XAndmeturve ja krüptoloogia, X

Krüptoräsid. Krüptoräsid. Krüptoprotokollid, TLSKrüptoprotokollid, TLS

Andmeturve ja krüptoloogia, XAndmeturve ja krüptoloogia, X

Krüptoräsid. Krüptoräsid. Krüptoprotokollid, TLSKrüptoprotokollid, TLS

1. november 2011

Valdo Praust 

[email protected]

Loengukursus IT Kolledžis2011. aasta sügissemestril 

  

1. november 2011

Valdo Praust 

[email protected]

Loengukursus IT Kolledžis2011. aasta sügissemestril 

  

Page 2: Andmeturve ja krüptoloogia, X Krüptoräsid. Krüptoprotokollid, TLS

Krüptoalgoritmide peamised Krüptoalgoritmide peamised liigidliigid

Krüptoalgoritmide peamised Krüptoalgoritmide peamised liigidliigid

1. Sümmeetrilised ehk salajase võtmega krüptoalgoritmid (on traditsioonilised e ajaloolised)

2. Asümmeetrilised ehk avaliku võtmega krüptoalgoritmid (levinud viimase 25 aasta jooksul)

3. Krüptograafilised sõnumilühendi algoritmid ehk krüptoräsid jms sellesarnased funktsioonid

4. Eriotstarbega algoritmid tõestusteks, autentimisteks, ajatempli jaoks jm

Page 3: Andmeturve ja krüptoloogia, X Krüptoräsid. Krüptoprotokollid, TLS

KrüptoKrüptoräsi ehk krüptoräsi ehk krüptograafiline graafiline sõnumilühendsõnumilühend

KrüptoKrüptoräsi ehk krüptoräsi ehk krüptograafiline graafiline sõnumilühendsõnumilühend

Krüptoräsi ehk krüptograafiline sõnumilühend (cryptographic message digest, hash, fingerprint, thumbprint) on ükskõik kui pikast sõnumist (failist) teatud matemaatiliste eeskirjade järgi arvutatav lühike (paarsada bitti) teabekogum

Krüptoräsi ehk krüptograafiline sõnumilühend (cryptographic message digest, hash, fingerprint, thumbprint) on ükskõik kui pikast sõnumist (failist) teatud matemaatiliste eeskirjade järgi arvutatav lühike (paarsada bitti) teabekogum

See seos on ühesuunaline (one-way): etteantud sõnumilühendi korral ei ole võimalik tuletada faili, millele see sõnumilühend vastab

Page 4: Andmeturve ja krüptoloogia, X Krüptoräsid. Krüptoprotokollid, TLS

KrüptoKrüptoräsiräsi: kasutusala: kasutusalaKrüptoKrüptoräsiräsi: kasutusala: kasutusala

Kui meil on olemas paar – sõnum ja räsi (sõnumilühend) – , kus räsi vastab failile, võime olla igal juhul kindlad, et räsi on arvutatud kindlasti sellest failist ega mitte millestki muust

Kui meil on olemas paar – sõnum ja räsi (sõnumilühend) – , kus räsi vastab failile, võime olla igal juhul kindlad, et räsi on arvutatud kindlasti sellest failist ega mitte millestki muust

Krüptoräside peamine kasutusala on autentimisel ja tervikluse tagamisel (nt digiallkirja juures)

Üks räsi kasutamise peamisi põhjuseid seisneb asjaolus, et avaliku võtmega krüptoalgoritm ei ole võimeline töötlema suuri andmemahte

Page 5: Andmeturve ja krüptoloogia, X Krüptoräsid. Krüptoprotokollid, TLS

KrüptoKrüptoräsi ehk krüptoräsi ehk krüptograafiline graafiline sõnumilühend: toimimisskeemsõnumilühend: toimimisskeemKrüptoKrüptoräsi ehk krüptoräsi ehk krüptograafiline graafiline sõnumilühend: toimimisskeemsõnumilühend: toimimisskeem

Page 6: Andmeturve ja krüptoloogia, X Krüptoräsid. Krüptoprotokollid, TLS

Krüptoräsi funktsioonide siseehitusKrüptoräsi funktsioonide siseehitusKrüptoräsi funktsioonide siseehitusKrüptoräsi funktsioonide siseehitus

Oluline osa enamikes kaasaja räsifunktsioonides on nn tihendusfunktsioonil F (compression function), mis teeb fikseeritud pikkusega bitijada lühemaks fikseeritud pikkusega jadaks ühesuunalise funktsiooni abil. Seda kasutatakse iteratiivselt:

Page 7: Andmeturve ja krüptoloogia, X Krüptoräsid. Krüptoprotokollid, TLS

Räsifunktsioon ja sRäsifunktsioon ja selle tulemelle tulemRäsifunktsioon ja sRäsifunktsioon ja selle tulemelle tulemKrüptoräsi ehk krüptograafiline sõnumilühend on mõeldud pikast sõnumist püsipikkusega lühikese bitijada, nn sõnumilühendi ehk räsi (message digest) tekitamiseks, millel oleksid teatud eriomadused

Räsi ehk sõnumilühend on täpsemini võtmeta räsifunktsiooni väljund, sõltudes vaid sõnumist

Algoritmi, mis sõnumilühendi tekitab, nimetatakse (krüptograafilisteks) räsifunktsiooniks (hash function)

Algoritmi, mis sõnumilühendi tekitab, nimetatakse (krüptograafilisteks) räsifunktsiooniks (hash function)

Page 8: Andmeturve ja krüptoloogia, X Krüptoräsid. Krüptoprotokollid, TLS

Räsifunktsioonilt nõutavad Räsifunktsioonilt nõutavad omadusedomadused

Räsifunktsioonilt nõutavad Räsifunktsioonilt nõutavad omadusedomadused

• algse sõnumi mistahes muutused peavad põhjustama muutuse ka lühendis (räsis)

• ka pika sõnumi räsi peab olema lihtsate protseduuridega leitav

• räsi leidmise algoritm ei tohi olla pööratav: etteantud räsi korral ei tohi praktikas olla võimalik leida sellega sobivat sõnumit

• etteantud räsi korral ei tohi olla leitav teist sõnumit, mis annaks sama räsi – nõrk kollisioonivabadus

• ei tohi olla leitav sellist sõnumitepaari, mis annaks sama räsi – kollisioonivabadus

• tihendusfunktsioon F peab olema kollisioonivaba – pseudo-kollisioonivabadus

Page 9: Andmeturve ja krüptoloogia, X Krüptoräsid. Krüptoprotokollid, TLS

Räsifunktsioonide liigitusRäsifunktsioonide liigitusRäsifunktsioonide liigitusRäsifunktsioonide liigitus

Kaasajal nõutakse räsifunktsioonidelt reeglina kollisioonivabadust (tugevamaid omadusi)

Kaasajal nõutakse räsifunktsioonidelt reeglina kollisioonivabadust (tugevamaid omadusi)

• Ühesuunaline (one-way) on selline räsifunktsioon, mis ei ole pööratav ja on nõrgalt kollisioonivaba

• Kollisioonivaba (collision-free) on selline räsifunktsioon, millel on lisaks veel kollisioonivabaduse omadus

Page 10: Andmeturve ja krüptoloogia, X Krüptoräsid. Krüptoprotokollid, TLS

SünnipäevaparadoksSünnipäevaparadoksSünnipäevaparadoksSünnipäevaparadoks

Sünnipäevaparadoks: tõenäosus, et N inimesel langeb kahel sünnipäev omavahel kokku, kasvab N kasvades suurusega N2 võrdeliselt ehk väga kiiresti

Sünnipäevaparadoks: tõenäosus, et N inimesel langeb kahel sünnipäev omavahel kokku, kasvab N kasvades suurusega N2 võrdeliselt ehk väga kiiresti

Põhjus: uute elementide lisamisel tekib juurde järjest rohkem elementide paare (sidemeid nende vahel)

N korral on neid paare N2 – N

N=23 juures on see tõenäosus ½.

Page 11: Andmeturve ja krüptoloogia, X Krüptoräsid. Krüptoprotokollid, TLS

Sünnipäevaparadoksi mõju Sünnipäevaparadoksi mõju räsifunktsioonideleräsifunktsioonidele

Sünnipäevaparadoksi mõju Sünnipäevaparadoksi mõju räsifunktsioonideleräsifunktsioonidele

Järeldus sünnipäevaparadoksist: kui räsifunktsiooni väljund on N bitine, siis tõenäosus, et K katsel saadakse vähemalt kaks identset sõnumilühendit on

K = 1,17 2N/2

Lihtsaimaks krüptoanalüütiliseks ründeks (ammendavaks otsinguks) on N-bitilise väljundiga räsifunktsiooni korral vaja 2N/2 variandi läbivaatamist

Lihtsaimaks krüptoanalüütiliseks ründeks (ammendavaks otsinguks) on N-bitilise väljundiga räsifunktsiooni korral vaja 2N/2 variandi läbivaatamist

Page 12: Andmeturve ja krüptoloogia, X Krüptoräsid. Krüptoprotokollid, TLS

Praktikas kasutatavaid häid Praktikas kasutatavaid häid räsifunktsiooneräsifunktsioone

Praktikas kasutatavaid häid Praktikas kasutatavaid häid räsifunktsiooneräsifunktsioone

• SHA-1 – konstrueeriti 1996. aastal MD4-l põhineva ideoloogia põhjal NSAs viimase turvalisust tugevdades. Räsi pikkus on 160 bitti (20 baiti)

• RIPEMD-160 – konstrueeriti 1990te algul Belgias, leiab 160-bitise räsi

Page 13: Andmeturve ja krüptoloogia, X Krüptoräsid. Krüptoprotokollid, TLS

Praktikas keelatud (või äärmiselt Praktikas keelatud (või äärmiselt ebasoovitavaid) räsifunktsioone ebasoovitavaid) räsifunktsioone Praktikas keelatud (või äärmiselt Praktikas keelatud (või äärmiselt ebasoovitavaid) räsifunktsioone ebasoovitavaid) räsifunktsioone

• MD5 – välja töötatud Ron Rivesti poolt. Leiab 128-bitise räsi ehk sõnumilühendi

• MD2, MD4 – MD5 eellased, välja töötatud samuti Ron Rivesti poolt, leiab 128-bitise räsi

On leitud kollisioone ja praktilisi murdmsvõtteid. Sellest hoolimata on eriti just MD5 siiski kahjuks senini masskasutuses praktikas

On leitud kollisioone ja praktilisi murdmsvõtteid. Sellest hoolimata on eriti just MD5 siiski kahjuks senini masskasutuses praktikas

Page 14: Andmeturve ja krüptoloogia, X Krüptoräsid. Krüptoprotokollid, TLS

Pilk ajalukku: MD2 ja MD4Pilk ajalukku: MD2 ja MD4Pilk ajalukku: MD2 ja MD4Pilk ajalukku: MD2 ja MD4• On koostatud Ron Rivesti poolt 1989 ja 1990

• Sarnanevad MD5ga nii räsi pikkuselt (128 bitti) kui ka ehituselt (raundid, sõnumi perioodiline töötlemine)

• Alates 1994-95 on mõlemal leitud kollisioone. MD4-l osatakse neid kaasajal leida tavalise personaalarvutiga juba mõne sekundiga

Järeldus: MD2 ja MD4 on lahti murtud – nad ei ole enam turvalised ega sobivad kasutada

Järeldus: MD2 ja MD4 on lahti murtud – nad ei ole enam turvalised ega sobivad kasutada

Page 15: Andmeturve ja krüptoloogia, X Krüptoräsid. Krüptoprotokollid, TLS

MD5: üldfakte ja kirjeldusMD5: üldfakte ja kirjeldusMD5: üldfakte ja kirjeldusMD5: üldfakte ja kirjeldus

• Räsi ehik lühendi pikkus on 128 bitti

• On koostatud 1991 Ron Rivesti poolt

• On omal ajal kuulutatud Interneti de facto standardiks RFC 1324

• Algoritm koosneb neljast üksteisest erinevast raundist (round), mille vältel sõnumit töödeldakse 512 biti kaupa

• Iga raundi alguses võetakse eelmise raundi lõpptulemus ja “segatakse” sellesse järgmised 512 bitti

Page 16: Andmeturve ja krüptoloogia, X Krüptoräsid. Krüptoprotokollid, TLS

MD5 konstandid ja funktsioonidMD5 konstandid ja funktsioonidMD5 konstandid ja funktsioonidMD5 konstandid ja funktsioonid

Page 17: Andmeturve ja krüptoloogia, X Krüptoräsid. Krüptoprotokollid, TLS

MD5 esimesed 2 raundiMD5 esimesed 2 raundiMD5 esimesed 2 raundiMD5 esimesed 2 raundi

Page 18: Andmeturve ja krüptoloogia, X Krüptoräsid. Krüptoprotokollid, TLS

MD5: 3. ja 4. raundMD5: 3. ja 4. raundMD5: 3. ja 4. raundMD5: 3. ja 4. raund

Page 19: Andmeturve ja krüptoloogia, X Krüptoräsid. Krüptoprotokollid, TLS

MD5: MD5: skeemskeemMD5: MD5:

skeemskeem

Page 20: Andmeturve ja krüptoloogia, X Krüptoräsid. Krüptoprotokollid, TLS

MD5 turvalisus ja analüüsMD5 turvalisus ja analüüsMD5 turvalisus ja analüüsMD5 turvalisus ja analüüs• 128 bitti on sünnipäevaründe võimalust

arvestades kaasajal vähe (peaks olema 160)

• 1993 leiti tihendusfunktsioonil kollisioone (Boer, Bosselaers)

• 2004 leiti lõpuks ka tervel algoritmil kollisioone (Wang, Feng, Lai, Yu, tund suurarvutil)

• 2005 suudeti praktikas murda MD5-l põhinevaid signatuure (Lenstra, Wang, Weger)

• 2006 suudetakse kollisioone leida minutiga (Klima)

Page 21: Andmeturve ja krüptoloogia, X Krüptoräsid. Krüptoprotokollid, TLS

MD5: hädapärased ajutised MD5: hädapärased ajutised kasutusvõimalusedkasutusvõimalused

MD5: hädapärased ajutised MD5: hädapärased ajutised kasutusvõimalusedkasutusvõimalused

Erandjuhtudel on lubatud 2 ajutist hädavarianti:

• Võtmetugevdus (key strengthening) – räsifunktsiooni kasutataksekaks korda järjest, mis viib ründeaja palju pikemaks

• Paroolide ja räside soolamine (salting) – enne räsi arvutamist lisatakse “sool” ehk juhuslik bitijada. Teeb palju keerukamaks sõnastikuründed (dictionary attack) jm sarnased võtted

Nende kahe abivõtte abil “tugevdatud” MD5 tuleks siiski kasutada vaid seal, kus moodsamaid räsifunktsioone pruukida ei saa

Nende kahe abivõtte abil “tugevdatud” MD5 tuleks siiski kasutada vaid seal, kus moodsamaid räsifunktsioone pruukida ei saa

Page 22: Andmeturve ja krüptoloogia, X Krüptoräsid. Krüptoprotokollid, TLS

• sarnaneb struktuuris väga paljus MD5ga

• on koostatud 1996. aastal MD5 eelkäijat MD4 eeskujuks võtteks, kuid palju turvalisemaks tehes

• räsi ehk sõnumilühendi pikkus on suurem, 160 bitti

• muudes detailides sarnaneb suurelt osalt MD5ga – neli raundi, iga raundi alguses võetakse eelmise raundi lõpptulemus ja “segatakse” sellesse järgmine osa, spetsiaalsed teisendusfunktsioonid

SHA-1: üldfakte ja kirjeldusSHA-1: üldfakte ja kirjeldusSHA-1: üldfakte ja kirjeldusSHA-1: üldfakte ja kirjeldus

Page 23: Andmeturve ja krüptoloogia, X Krüptoräsid. Krüptoprotokollid, TLS

SHA-1: skeemSHA-1: skeemSHA-1: skeemSHA-1: skeem

Page 24: Andmeturve ja krüptoloogia, X Krüptoräsid. Krüptoprotokollid, TLS

• on palju turvalisemon palju turvalisem kui MD5 ja palju laiemalt kasutuses

• ,asin, mis maksab umbes miljard krooni, leiab SHA1 kollisiooni mitte kiiremini kui tuhandete aastatega

• on ANSI X.90 standardi osa

• väikeste muudatustega on SHSi (Secure Hash Standard) osa, mis on spetsifitseeritud USA standardis FIPS PUB 180

SHA-1: turvalisus ja kasutatavusSHA-1: turvalisus ja kasutatavusSHA-1: turvalisus ja kasutatavusSHA-1: turvalisus ja kasutatavus

Page 25: Andmeturve ja krüptoloogia, X Krüptoräsid. Krüptoprotokollid, TLS

Kollisioonide kerge leidmine ei tee tegelikult SHA-1 veel pööratavaks, seega praktikas murtavaks: praktikas on selle enamik kasutusresiime veel turvalised

Kõrget turvalisust nõudvates kohtades võib kasutada SHA moodsamaid variante: SHA-256, SHA-384 või SHA-512 (üldine nimetus SHA-2)

SHA-1 krüptoanalüüsSHA-1 krüptoanalüüsSHA-1 krüptoanalüüsSHA-1 krüptoanalüüs

Viimased tulemused (Wang, Lai, Yu, august 2005): SHA-1 korral on kollisioonid leitavad 263 variandi läbivaatamise teel, mis on ca 100 000 korda kiirem kui ammendava otsinguga

Viimased tulemused (Wang, Lai, Yu, august 2005): SHA-1 korral on kollisioonid leitavad 263 variandi läbivaatamise teel, mis on ca 100 000 korda kiirem kui ammendava otsinguga

Page 26: Andmeturve ja krüptoloogia, X Krüptoräsid. Krüptoprotokollid, TLS

• On koostatud 1990te algul Hans Dobbertini, Antoon Bosselaersi ja Bart Preneeli poolt

• Räsi ehk lühendi pikkus on 160 bitti

• Muus osas on enam-vähem sarnased MD5 ja SHA-1ga (raundide arv on suurem, 5)

• On olemas modifikatsioonid RIPEMD-128 (see oli RIPEMD-160 eellane), RIPEMD-256 ja RIPEMD-320, vastavalt 128, 256 ja 320 bitilise räsi tarbeks

RIPEMD-160: üldfakteRIPEMD-160: üldfakteRIPEMD-160: üldfakteRIPEMD-160: üldfakte

Page 27: Andmeturve ja krüptoloogia, X Krüptoräsid. Krüptoprotokollid, TLS

• RIPEMD-128 ei peeta enam turvaliseks. 1994 koostasid Paul van Oorschot ja Mike Wiener 10 miljonit dollarit maksva masina plaani, mis murraks selle ammendava otsinguga kuuga

• Praegu kuluks sellise masina ehitamisele veidi alla poole miljoni dollari (Moore’i reegel: protsessori hind kahaneb pooleteise aastaga kaks korda)

• RIPEMD-160 arvatakse olevat veel vähemalt 10 aastat väga turvaline, ei ole leitud efekti andvaid krüptoanalüütilisi võtteid

RIPEMD turvalisusRIPEMD turvalisusRIPEMD turvalisusRIPEMD turvalisus

Page 28: Andmeturve ja krüptoloogia, X Krüptoräsid. Krüptoprotokollid, TLS

Kõrgendatud turve: RIPEMD-256 ja Kõrgendatud turve: RIPEMD-256 ja SHA-2SHA-2

Kõrgendatud turve: RIPEMD-256 ja Kõrgendatud turve: RIPEMD-256 ja SHA-2SHA-2

• RIPEMD-256 on RIPEMD-160 edasiarendus, kus räsi pikkus on 256 bitti (ja seega murdmine palju raskem)

• SHA-2 on räsifunktsioonide pere, kus SHA-1 on tugevama turbe saavutamiseks edasi arendatud ja räsi on pikem (224, 256, 384 või 512 bitti)

RIPEMD-256 või SHA-2 on kaasajal mõtet kasutada kahel juhul:

- on vaja tagada räsi pikaajaline (aastakümnete pikkune murdmatus)

- on vaja tagada erakordselt tugev turve (erakordselt kõrge tasemega terviklus)

RIPEMD-256 või SHA-2 on kaasajal mõtet kasutada kahel juhul:

- on vaja tagada räsi pikaajaline (aastakümnete pikkune murdmatus)

- on vaja tagada erakordselt tugev turve (erakordselt kõrge tasemega terviklus)

Page 29: Andmeturve ja krüptoloogia, X Krüptoräsid. Krüptoprotokollid, TLS

KrüptoKrüptoräsideräside kasutamine kasutamineKrüptoKrüptoräsideräside kasutamine kasutamine

• On kasutatavad peamiselt tervikluse tagamisel, kus nad on väga olulised mehhanismid

• Nende väga suur kasutusala on digitaalsignatuuride ja ajatemplite juures

Tulemus: me ei pea hoolitsema enam mahuka andmekogu, programmi vm volitamata muutmiste eest, vaid võime leida selle lühikese räsi ja hoolitseda selle muutumatuse eest (mida saame edaspidi alati vajadusel suure kogumiga võrrelda)

Tulemus: me ei pea hoolitsema enam mahuka andmekogu, programmi vm volitamata muutmiste eest, vaid võime leida selle lühikese räsi ja hoolitseda selle muutumatuse eest (mida saame edaspidi alati vajadusel suure kogumiga võrrelda)

Page 30: Andmeturve ja krüptoloogia, X Krüptoräsid. Krüptoprotokollid, TLS

Sõnumi autentimiskoodSõnumi autentimiskoodSõnumi autentimiskoodSõnumi autentimiskood

• On vajalik räsiasendajana juhul, kui autentimise/verifitseerimise sooritajate hulka tuleb piirata (võtme valdajatega)

• Erineb avaliku võtmega krüptoalgoritmist selle poolest, et MAC koostatakse ja verifitseeritakse sama võtmega

Sõnumi autentimiskood (message authentication code, MAC) on nn võtmega räsifunktsioon, kus räsi arvutamine/verifitseerimine eeldab lisaks sõnumile ja räsile ka salajase võtme teadmist

Sõnumi autentimiskood (message authentication code, MAC) on nn võtmega räsifunktsioon, kus räsi arvutamine/verifitseerimine eeldab lisaks sõnumile ja räsile ka salajase võtme teadmist

Page 31: Andmeturve ja krüptoloogia, X Krüptoräsid. Krüptoprotokollid, TLS

Sõnumi autentimiskoodSõnumi autentimiskoodSõnumi autentimiskoodSõnumi autentimiskood

Sõnumi autentimiskoodi (MACi) jaoks reeglina oma unikaalseid algoritme välja ei töötata, vaid see kombineeritakse räsialgoritme ja sümmeetrilisi krüptoalgoritme kasutades

Mõned

variandid

MACi

leidmiseks:

Page 32: Andmeturve ja krüptoloogia, X Krüptoräsid. Krüptoprotokollid, TLS

• Protokollid (protocol) määravad ära,mis teave millises järjekorras liigub ja kuidas seda teisendatakse

• Sellega tagavad nad vajalikud omadused (autentimine, võtmevahetus jm)

• Protokollis sisaldavad reeglina hulga krüptoalgoritme (sümmeetrilisi, asümmeetrilisi, räsifunktsioone), nende kasutamisi ning võtmete genereerimisi

Krüptoprotokolli olemusKrüptoprotokolli olemusKrüptoprotokolli olemusKrüptoprotokolli olemus

Krüptograafilisi protokolle on väga palju, üks kasutatavaim praktikas (Internetis) on TLS (Transport Layer Security)

Krüptograafilisi protokolle on väga palju, üks kasutatavaim praktikas (Internetis) on TLS (Transport Layer Security)

Page 33: Andmeturve ja krüptoloogia, X Krüptoräsid. Krüptoprotokollid, TLS

• on projekteeritud töötama Internetis, st TCP/IP protokollil toimivas võrgus transpordiprotokollile (nt TCP) toetudes

• võimaldab kasutajatel üksteist autentida• võimaldab vahetada võtme teabe krüpteeritud

edastamiseks ja seda teavet krüpteeritult edastada

• kuulub reeglina kõrgema taseme protokollide koosseisu, lisades funktsionaalsusele turvalisuse:

telneti asemel ssh

http asemel https

ftp asemel secure ftp

TLS: põhiomadused ja faktidTLS: põhiomadused ja faktidTLS: põhiomadused ja faktidTLS: põhiomadused ja faktid

Page 34: Andmeturve ja krüptoloogia, X Krüptoräsid. Krüptoprotokollid, TLS

TLSi kanalTLSi kanalTLSi kanalTLSi kanal

• Kanal on privaatne. Pärast seda kui osapooled on vahetanud šifreerimisvõtmeid, on kõik edastatavad andmed krüpteeritud

• Kanal on autenditud. Mõlemad pooled saavad üksteist autentida, kuid võimalik on ka ühepoolne autentimine

• TLS suudab kontrollida andmete puutumatuna päralejõudmist (hädavajalik võrgu pakettresiimi – nt TCP/IP protokolli – korral)

TLS tekitab üle võrgu turvalise sidekanali (secure channel), millel on kolm omadust:

Page 35: Andmeturve ja krüptoloogia, X Krüptoräsid. Krüptoprotokollid, TLS

TLSi toimimispõhimõttedTLSi toimimispõhimõttedTLSi toimimispõhimõttedTLSi toimimispõhimõtted

Autentimisfaas sisaldab igal juhul serveri autentimist. Vajadusel järgneb sellele ka kliendi autentimine

Autentimisfaas sisaldab igal juhul serveri autentimist. Vajadusel järgneb sellele ka kliendi autentimine

TLSi ühenduses võib eristada kahte faasi:

• autentimisfaas (handshaking)• teabe vahetamisfaas

Tavaliselt toimub ühendus kahe ebavõrdse poole vahel (klient ja server), mida TLS veidi eristab (kuigi on võimalik ka võrdse poole teabevahetus)

Page 36: Andmeturve ja krüptoloogia, X Krüptoräsid. Krüptoprotokollid, TLS

TLSi autentimisfaasTLSi autentimisfaas, I, ITLSi autentimisfaasTLSi autentimisfaas, I, I Lihtsustatult sisaldab see järgmisi tegevusi

(klient A hakkab suhtlema serveriga B):

• A ütleb B-le tere ja mainib, milliseid krüptoalgoritme ta kasutab

• A ütleb B-le, et B tõestaks et ta on B

• B tekitab teksti “mina olen B”, teeb sellest räsi ehk sõnumilühendi

lüh(“mina olen B”)

• B signeerib räsi oma privaatvõtmega, saades

sigb (lüh(“mina olen B”))

Page 37: Andmeturve ja krüptoloogia, X Krüptoräsid. Krüptoprotokollid, TLS

TLSi autentimisfaasTLSi autentimisfaas, II, IITLSi autentimisfaasTLSi autentimisfaas, II, II

• B saadab A-le oma avaliku võtme, teksti

“mina olen B” ning signatuuri

sigb (lüh(“mina olen B”))

• A, saades need need kätte verifitseerib signatuuri, veendudes et ta vestluspartner on ikka B. Samas paneb A B avaliku võtme oma kataloogi

• Sellega on klient A serveri B autentinud.

• Kui vaja, võib B ka A-d samamoodi autentida (vahel seda tehakse, kui server peab ka klienti autentima, alati pole seda vaja)

Page 38: Andmeturve ja krüptoloogia, X Krüptoräsid. Krüptoprotokollid, TLS

• A genereerib sümmeetrilise krüptoalgoritmi võtme (primaarvõtme), paneb selle oma andmebaasi ja saadab selle B avaliku võtmega krüpteeritult B-le

• B dešifreerib saadud salajase primaarvõtme oma privaatvõtmega ja paneb ka oma baasi

• Sellega on autentimisfaas lõppenud: mõlemad osapooled on üksteist “tundma õppinud” ja vastava teabe endale talletanud

TLSi autentimisfaasTLSi autentimisfaas, III, IIITLSi autentimisfaasTLSi autentimisfaas, III, III

Page 39: Andmeturve ja krüptoloogia, X Krüptoräsid. Krüptoprotokollid, TLS

TLSi sidefaasTLSi sidefaasTLSi sidefaasTLSi sidefaas

• A genereerib seansi võtme ja krüpteerib selle sümmeetrilist krüptoalgoritmi kasutades, misjärel saadab ta selle B-le

• B teeb oma primaarvõtmega seansi võtme lahti

• Seejärel saavad A ja B suvalist teavet seansi võtme abil krüpteeritult omavahel turvaliselt vahetada

Eeldus: A ja B hakkavad suhtlema ja veenduvad, et nad on autentimisfaasi juba läbinud ja vastav teave on neil olemas ja varem talletatud

Page 40: Andmeturve ja krüptoloogia, X Krüptoräsid. Krüptoprotokollid, TLS

• TLS 1.1 on detailselt kirjeldatud RFC 4346-s (aprill 2006)

• võrreldes SSL3ga on TLSis mitmed puudused ja turvanõrkused kõrvaldatud

• SSL1 ja SSL2 juures on leitud turvaauke ja nende kasutamine on praktikas keelatud

SSL SSL versusversus TLS TLSSSL SSL versusversus TLS TLS

TLS (Transport Layer Security) on SSLi edasiarendus, kus on mitmed puudused ja ebakõlad kõrvaldatud

TLS (Transport Layer Security) on SSLi edasiarendus, kus on mitmed puudused ja ebakõlad kõrvaldatud

Page 41: Andmeturve ja krüptoloogia, X Krüptoräsid. Krüptoprotokollid, TLS

TLS: turvalisus ja probleemidTLS: turvalisus ja probleemidTLS: turvalisus ja probleemidTLS: turvalisus ja probleemid• Kui B on A-le oma avaliku võtme ja sellele vastava

privaatvõtmega signeeritud teabe saatnud, võib olla sellest hetkest kindel, et keegi ei suuda A-le enam hiljem B-d teeselda (tal ei ole B privaatvõtit)

• Keegi ei saa hiljem liine pealt kuulates ega sinna sekkudes A ja B vahelist teavet ka pealt kuulata (ta ei tea primaarvõtit)

• Jääb aga probleem: kui A-ga hakkas algusest peale suhtlema B nime all keegi teine, siis ei suuda A seda avastada

Seda probleemi ei ole võimalik lahendada ära ainuüksi TLS protokolli sees

Seda probleemi ei ole võimalik lahendada ära ainuüksi TLS protokolli sees

Page 42: Andmeturve ja krüptoloogia, X Krüptoräsid. Krüptoprotokollid, TLS

SSL/TLS suudab ilma sertifikaatide ja seda toetava infrastruktuurita vaid tõestada, et järgmise ühenduse tegija oli sama, kes tegi eelmise ühenduse

Et midagi lisaks nõuda, peab olema lisateavet (nt sertifikaate, püsiparoole jm) – reeglina on selleks sertifikaat

TLSi võimalused ja rakendatavusTLSi võimalused ja rakendatavusTLSi võimalused ja rakendatavusTLSi võimalused ja rakendatavus

Page 43: Andmeturve ja krüptoloogia, X Krüptoräsid. Krüptoprotokollid, TLS

• DNSSEC (Domain Name Sysrem Security Extensions) – asendamaks tavalist ebaturvalist DNSi

• IEEE 802.11 – traadita lokaalvõrgu protokoll

• IPSec (IP Security Protocol)• S/MIME (Secure MIME) – andmete

turvaliseks ja autenditud edastamiseks• SSH (Secure Shell) – turvaline

kaugpöördus• ... (ja palju-palju muid)

Teisi krüptoprotokolleTeisi krüptoprotokolleTeisi krüptoprotokolleTeisi krüptoprotokolle