Download - 2006.06.14.VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 1 Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology.

Transcript

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.

  1

Introduction to Embedded Data Converters

Akira Matsuzawa

Tokyo Institute of Technology

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  2

Contents

1. Introduction

2. Characterization of data converters

3. Overview of high-speed A/D converters

4. Overview of high-speed D/A converters

5. Overview of over-sampling sigma-delta data converters

6. Basic design considerations

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  3

1. Introduction

• Mixed signal systems– Software defined radio– Digital read channel– Mixed Signal SoC

• Progress of ADC and DAC– Power and area– Embedding

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  4

Basic mixed signal system

DSPADC DACPre

FilterPostFilter

AGC

Clock

Continuous time=Analog

Discrete time=Digital

Continuous time=Analog

Mixed signal systems basically consist of DSP, ADC, DAC, and pre/post filters. The signals are converted between continuous time and discrete time.

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  5

Software defined radio

IMT-2000RF

GSMRF

BluetoothRF

GPSRF

GPSBB

BluetoothBB

GSMBB

IMT-2000BB

MCU

Power

Multi-standards and multi chipsFuture cellular phone needs 11 wireless standards!!

Current

Yrjo Neuvo, ISSCC 2004, p.32

RF filter LNA X Filter ADC

FrequencySynthesizer

FilterPA DACX Filter

DSP

Mixer

Mixer

Future

Multi-bands and Multi-standards on a single chip

Future wireless systems need powerful ADC and DAC for software defined radio.

On a chip

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  6

Mixed signal tech. ; Digital read channel

Variable Gain Amp.

Variable Gain Amp.

Analog Filter

Analog Filter

A to DConverter

A to DConverter

Digital FIR Filter

Digital FIR Filter

ViterbiError

Correction

ViterbiError

Correction

ClockRecovery

ClockRecovery

Voltage ControlledOscillator

Voltage ControlledOscillator

DataOut

Data In(Erroneous)

Data Out(No error)

Analog circuit

Digital circuit

Digital storage needs high speed mixed signal technologies.For the reduction of error rate, high speed ADC is the key.

Pickup signal

DVD

7b 400MHz

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  7

Mixed signal SoC

PixelOperationProcessor

PixelOperationProcessor

IOProcessor

IOProcessor

AVDecode

Processor

AVDecode

Processor

Back -EndBack -End

SystemCont-roller

SystemCont-roller

CPU1CPU1CPU2CPU2

VCOVCO

ADCADC

Gm-CFilterGm-CFilter

PRMLRead

Channel

PRMLRead

ChannelServo DSPServo DSP

AnalogFront End

AnalogFront End

Front-EndFront-End

Analog FE+Digital R/C

0.13um, Cu 6Layer, 24MTr

Okamoto, et al., ISSCC 2003

Mixed signal SoC can realize full system integration for DVD application.

Embedded analog is the key.

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  8

Progress of high-speed ADC

0.1

10

Pd

/ 2N

Gsp

s [m

W]

Pd of high speed CMOS ADCs

Conversion rate [x100Msps]

1

1mW/2N Gsps

10mW/2N Gsps

This Work

101

6b, 1GHz ADC2W,1.5um Bipolar

6b, 800MHz ADC400mW, 2mm2

0.25umCMOS

7b, 400MHz ADC50mW, 0.3mm2

0.18umCMOS

ISSCC 2002

ISSCC 2000

Matsuzawa, ISSCC 1991

World lowest Pd HS ADC

High speed ADC can be embedded in CMOS resulting in power reduction.ISSCC 1991

Sushihara and Matsuzawa, ISSCC 2002

Sushihara, et al, ISSCC 2000

1/8

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  9

Progress of A/D converter; video-rate 10b ADC

1980 1982 1993 Now

Board Level (Disc.+Bip)20W

$ 8,000

Conventional product World 1st Monolithic

Bipolar (3um)2W

$ 800

World lowest power

CMOS (1.2um)30mW$ 2.00

CMOS (0.15um)10mW$0.04

SoC Core

1/2000 in Power and 1/200,000 in cost during past 20 years

ADC was the bottle-neck for the digital TV and Video systemsTechnology progress has solved this problem.

K. Kusumoto and A. Matsuzawa, ISSCC 1993.

T. Takemoto and A. Matsuzawa, JSC, pp.1133-1138, 1982.

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  10

1

10

100

1000

10000

1980 1985 1990 1995 2000 2005 2010Year

Pow

er (

mW

)

2

5

20

50

200

500

2000

5000 FlashTwo-stepSubrangingFolding/InterpolatingPipeline

OthersLook-ahead Pipeline

1

10

100

1000

10000

1980 1985 1990 1995 2000 2005 2010Year

Pow

er (

mW

)

2

5

20

50

200

500

2000

5000 FlashTwo-stepSubrangingFolding/InterpolatingPipeline

OthersLook-ahead Pipeline

FlashTwo-stepSubrangingFolding/InterpolatingPipeline

OthersLook-ahead Pipeline

0.1

1.0

10.0

100.0

1980 1985 1990 1995 2000 2005 2010

Year

Are

a s

ize

(mm

2)

0.2

0.5

2.0

5.0

20.0

50.0FlashTwo-stepSubrangingFolding/InterpolatingPipeline

OthersLook-ahead Pipeline

0.1

1.0

10.0

100.0

1980 1985 1990 1995 2000 2005 2010

Year

Are

a s

ize

(mm

2)

0.2

0.5

2.0

5.0

20.0

50.0FlashTwo-stepSubrangingFolding/InterpolatingPipeline

OthersLook-ahead Pipeline

FlashTwo-stepSubrangingFolding/InterpolatingPipeline

OthersLook-ahead Pipeline

Power reduction Area reduction

Power and area reduction of video-rate 10b ADCs

Power and area of ADC have been reducing continuously.Currently, ADC can be embedded on a chip

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  11

0.1

1.0

10.0

100.0

0.1 1 10

Process node (m)

Po

we

r/M

Hz

(mW

/MH

z)

0.2 0.3 0.5 0.7 2 3 5 7

0.2

0.5

2.0

5.0

20.0

50.0

FlashTwo-stepSubrangingFolding/InterpolatingPipeline

OthersLook-ahead Pipeline

0.1

1.0

10.0

100.0

0.1 1 10

Process node (m)

Po

we

r/M

Hz

(mW

/MH

z)

0.2 0.3 0.5 0.7 2 3 5 7

0.2

0.5

2.0

5.0

20.0

50.0

FlashTwo-stepSubrangingFolding/InterpolatingPipeline

OthersLook-ahead Pipeline

FlashTwo-stepSubrangingFolding/InterpolatingPipeline

OthersLook-ahead Pipeline

0.1

1.0

10.0

100.0

0.1 1 10

Process node (m)

Are

a s

ize

(m

m2

)

0.2 0.5 2 5

0.2

0.5

2.0

5.0

20.0

50.0

FlashTwo-stepSubrangingFolding/InterpolatingPipeline

OthersLook-ahead Pipeline

0.3 0.70.1

1.0

10.0

100.0

0.1 1 10

Process node (m)

Are

a s

ize

(m

m2

)

0.2 0.5 2 5

0.2

0.5

2.0

5.0

20.0

50.0

FlashTwo-stepSubrangingFolding/InterpolatingPipeline

OthersLook-ahead Pipeline

FlashTwo-stepSubrangingFolding/InterpolatingPipeline

OthersLook-ahead Pipeline

0.3 0.7

M. Hotta et al. IEICE 2006. June

Power and area reduction of video-rate 10b ADCs

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  12

Embedding ADC on a CMOS chip

6b Video ADC

8b low speed ADC;DAC

Digital Video filter

8b CPU

1993 Model: Portable VCR with digital image stabilizing

CMOS ADC and DAC has been embedded on a CMOS chip.This has realized low cost and low power digital portable AV products.

System block diagram

A. Matsuzawa, JSC, pp. 470-480, 1993.

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  13

2. Characterization of data converters

• Basic functions of ADC and DAC• Static performance

– INL, DNL, monotonicity

– Quantization noise

• Dynamic performance– SNR, SFDR, THD, SNDR, ENOB

– Sampling Jitter

– ERB

– Glitch

• Figure Of Merit• Performances and applications

– Needed performances for wireless systems

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  14

Basic functions of ADC

Time

Vol

tage

Time

Sampling Quantization

0001

0010

0111

1000

1001

1000

0111

0101

0011

0010

0100

0111

0111

0111

0110

0110

0110

0110

Coding

Digital

Sam

pling

Qu

antization

Coding

Analog

ADC

Sampling: Sampling the analog signal with accurate timing.Quantization: Express the converted data with certain accuracy.

CLK

Vol

tage

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  15

Static performance

INL: Integrated Non-Linearity

INL and DNL are the major static performance indicators of ADC and DAC.

DNL: Differential Non-LinearityIDEAL

IDEALj,ACTUALj Width

WidthWidthDNL

j,IDEALj,ACTUALj fuctionTransferfunctionTransferINL

j1jj

jk

0kkj

INLINLDNL

DNLINL

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  16

DNL and INL

DNL profile INL profile

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  17

Monotonicity in DAC

Keep monotonic

In

Out

Large DNL

Degrade monotonicity

In

Out

1/2

1/4

1/81/161/32

1/2

1/4

1/8

1/16

1/32

01111->10000

→ 1/2

Binary weight

At the change of MSB bit

Binary coded DAC often degrades monotonicity.

The monotonicity stands for the qualitative characteristics of data converters of which transfer function keep the monotonic increase or decrease.

If the converter can not guarantee the monotonicity, The feedback loop doesn’t work properly and results in backrush.

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  18

Quantization noise

Transfer characteristics

Quantization noise

20

112

1 22

2

22

2

2

e,eotherall,

)e(P

deede)e(PeP/

/

/

/n

76102610

25112

22

22

22

21

21

.N.PP

logSNR

.PP

SNR

P

n

sdB

NN

n

s

N

s

Quantization causes noise Higher SNR needs higher resolution

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  19

Dynamic performance

026761

10

10

10

10

..SNDR

ENOB

powerdistortionandNoisepowerSignal

logSNDR

powerSignalpowerdistortionharmonicTotal

logTHD

powerspuriousestargLpowerSignal

logSFDR

powernoisefloorTotalpowerSignal

logSNR

-=

=

=

=

=

Dynamic performance indicates the ratio between signal and noise or distortion.

We should use the suitable terms depending upon the type of application.

Fc=40MHz, fin=4MHzSFDR=49.8dBSNDR=44.9dB, ENOB=7.17-bit2ndHD=-49.8dB, 3rdHD=-56.7dB

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  20

Sampling jitter effect

2tinf2

1log10)dB(SNDR

Sampling jitter is converted to noise.When the input frequency becomes higher, the SNR becomes lower.

110 13 110 12 110 1120

40

60

80

100

120

SNDR 10 106 t SNDR 20 106 t SNDR 50 106 t SNDR 100 106 t SNDR 200 106 t

tTime

Inp

ut

sig

na

l

t0t

V

t

tsig

dt

dVV

sigV

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  21

EN

OB

(b

it)

Input frequency (MHz)

3002001003

4

5

6

SNR

SNDR

Effective Resolution Bandwidth

3dB (0.5bit) down

ERB

ERB is the input frequency where the SNDR has dropped 3dB (or ENOB 0.5 bit)

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  22

Glitch

I/2 I/4 I/8 I/16

I/2 I/4 I/8 I/16

I/2 I/4 I/8 I/16

State 1: [1000]=8

State 2: [0111]=7

Intermediate: [1111]=15 8

15

7C

urre

nt

Time

Glitch

Glitch is the spiky signal at code transition.Caused by overlapping of signalsThis appears within a few psec,However, energy is not negligible.Glitch causes the distortion of signal

Tg

Xg

N2s

g

2

QNmax,g

s

g22N2max,g

23

TT

12PP

T

T2P

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  23

Figure Of Merit

BW22Power

or

f2Power

stepConversionEnergy

FOM

ENOB

sENOB

High Speed ADC

[Sampling Freq. VS Power]

1

10

100

1000

10000

1 10 100 1000 10000

Sampling Freq.[MSps]

Power[

mW]

12Bit(Paper)10Bit(Paper)12Bit Products10Bit Products.

J SSC,ISSCC,VLSI,CICC,ESSCC & Products(≧10Bit,≧10MSps)1995-2006

conv/pJ5.0

MHz/mW3.0

bit10

conv/pJ8.0

MHz/mW1

bit12

10b12b

Figure of merit shows energy efficiency for data conversion.

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  24

Performance and application

6 8 10 12 14 16

Resolution (bits)

Co

nve

rsio

n R

ate

(MH

z)

0.1

1

10

100

1000

5

3050

300500

0.5

0.05

HDD/DVDGraphics

Audio

GeneralPurpose

DVC/DSC/Printer

Video/Communication

Servo

(µ-Computer)

Automobile

Meter

Needed resolution and conversion rate depending upon the application.

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  25

Needed SNR for certain BER in wireless system

Q

I

16QAM

10

A2

“1”“0”

BER

Noise distribution

1n2

SNR2erfc

n

112BER

Lower Bit Error Rate in the digital modulation needs higher SNR.

nsinSNRerfcBER

n-PSK

n-QAM

0 10 20 30 40110 10

110 9

110 8

110 7

110 6

110 5

110 4

110 3

0.01

0.1

1

BERq SNR 16( )

BERq SNR 64( )

BERq SNR 256( )

BERp SNR 4( )

SNR

16QAM

64QAM

256QAMQPSK

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  26

BER requirement

DAC requirement for QAM ADC requirement for digital read-channel

The lower the bit error rate the higher the required ADC/DAC resolution.

Resolution (quantization noise) affects BER.

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  27

Signal intensity in wireless system

Amp. ADC

Filter

A B C

Thermal noise Thermal noise

Thermal Noise+ Quantization noise

Wantedsignal

Adjacentsignal

FarsignalFilter

Frequency

Inte

nsi

ty (

dB

)

A

B C

Due to aliasing

Due to distortion of ADC

> Needed SNR

> Needed dynamic range to the blocker

Wireless system has strong unwanted signals. Also, electric circuits generate distortion and noise.

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  28

Needed ADC dynamic range

-26dBm

-97dBm

Quantizationnoise

Wantedsignal

Blockersignal

15dB15dB

ADC dynamic range=86dB (14b)

DCS1800

-52dBm

-93dBm

Quantizationnoise

Wantedsignal

Adjacentchannel

8dB

WCDMA

-33dB

-85dB

Filter attenuation

Thermal noise

20dB

Existence of strong blockers results in the need for high dynamic range ADC.

ADC dynamic range=36dB (6b)

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  29

3. Overview of high-speed A/D converters

• Performance and ADC architecture• Integrating ADC• Successive approximation ADC• Flash ADC• Sub-ranging ADC• Interpolation method• Folding ADC• Pipelined ADC

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  30

ADC performance and architectures

4 6 8 10 12 14 16

10M

1M

100k

10k

100M

1G

10G

20184 6 8 10 12 14 16

10M

1M

100k

10k

100M

1G

10G

2018

Co

nve

rsio

n f

req

uen

cy (

Hz)

Resolution (bit)

Successiveapproximation

Integrating

Flash

Sub-range

Multi-bitsigma-delta

Pipeline

Single-bit sigma-delta

There are many conversion architectures with varying performance parameters.

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  31

Integrating ADC

+ vx +

S1

vref

-vin Comparator

T Time

vx

R

C

vref

-vin

vref

-vin

0

vin 大

Going to 0 -> 1, when Vx becomes negative.

PhaseⅠ PhaseⅡ

T

RCv

dRCv

)T(v inT

0

inx

・ High resolution ( 20bit and more)・ Very low speed ( DC measurement)・ Small DNL・ Can realize zero offset voltage・ Small analog elements and area

Water clock

Integrating ADC achieves high resolution, but at low speed.Recently it has been used as column-ADC in CMOS imager.

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  32

Successive-approximation ADC

b1 b2 b3 b4 b5 b

6

MSB LSB

VFS

V0

Binary search

Vin

VDACVin

VFS2

1

VFS2

1 VFS4

1+

VFS2

1 VFS8

1+

VFS2

1 VFS8

1+ VFS16

1+

b1=1b1=1b2=0

b1= b3= 1b2=0

b1= b3= b4= 1b2=0

S/HVin Successive-approximation resistor and control logic

b1 b2 b3 Bout

DAC Vref

VDAC

Comparator

CMPin

Balance

Successive-approximation method is based on a binary search.

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  33

Charge-redistribution ADC

C C2

C4

C8

C16

C16

Vin Vref

Vx=0Q=-2CVin

1) Sampling

C C2

C4

C8

C16

C16

Vin Vref

Vx=-Vin

Q=-2CVin2) Hold

Binary weighted Capacitor array

Charge-redistribution ADC draws attention as a suitable ADC in the nano-meter CMOS era. Because it needs no OP-Amp, but just needs capacitors and comparator.

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  34

C C2

C4

C8

C16

C16

Vin Vref

Vx=-Vin+Vref/2 Q=-2CVin

Charge-redistribution ADC

Vref

Resistor ladder for higher resolution

Higher resolution

Ultra low power

Low conversion rate

3) Charge redistribution

Determine from MSB

If needed

Easy calibration

No OP amp

Needs multi clock

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  35

Flash ADC

R

R

R

R

R

R

R

VDD

+

+

+

+

+

+

+

+

R/2

R/2

vin

En

cod

er

Comparator

Φ

Digital out

Ultra fast operation: Several GHzNo sample and holdLow resolution: <8 bitLarge input capacitance difficult to drive

Flash ADC is very fast, but area and power increase exponentially with resolution.

10001

01011

D1D2D3D4D5

0

1

Input voltage

NrefV

2

refV

Scale

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  36

Sub-ranging ADC

GND

0

8

16

24

0

2

4

6

Input voltage

Upperconversion

Lowerconversion

Multi-step conversion can reduce the # of comparators.However, it needs high precision comparators.As a result, small power and area.

62122;steptwo

102312;Flash:bits10

2N

N

Slide gauge

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  37

Interpolation method

Interpolation can generate accurate intermediate references which are between two references. Thus step sizes are almost equal, even though mismatch voltages are large.

Mismatch voltage

Small DNL

K. Kusumoto and A. MatsuzawaJSC, pp. 1200-1206, 1993.

Step sizeStep size Step size

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  38

Folding ADC

Upper bitsADC

Lower bitsLogic

Comp

Comp

Comp

Comp

Folding Circuits

Folding Circuits

Folding Circuits

Folding Circuits

vin

Analog signal

Digital signal

Input signalF

old

ed s

ign

als

Parallel

Folded signals

The signal is compressedThe signal is compressed→→The # of comparators can be reducedThe # of comparators can be reduced

Input signal is folded to the compressed signals of which phases are different.Lower bits are obtained by comparing between these folded signals.

Low power and small size, yet still high speed.However, not suitable for higher resolution. <10bit

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  39

Folding circuits

VDD

vin

V1 V2 V3 V4

V1 V2 V3 V4 Input voltageO

utp

ut

volt

age

vout

VDD

Current summation

V1Vin

VDD

Vout

V1 VinInput voltage

Ou

tpu

t vo

ltag

e VDD

Composing the folding characteristics by the summation of currents from differential transistor pairs.

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  40

Pipelined ADC

vin M-bitDAP

DAP DAP DAP

MSBLSB

+ ×2M

Amplifier

S/H

Digital Approximater(DAP)

ADC(M bit)

DAC(M bit) Conventional M is 1 or 1.5

High resolution(<15bit)Moderate speed(<200MHz)Low power consumption

Suitable for CMOS

Switched capacitor operation

-Vref

+Vref

-Vref

+Vref

0 1

X2

-Vref

+Vref

-Vref

+Vref

0 1 0 1

X2

MSB 2nd

Pipelined ADC is the centerpiece of embedded ADCs for many applications,such as digital cameras, digital TVs, ADSLs, VDSLs, and wireless LANs.

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  41

MUX

+VR -VR

LA

TC

H

4RV

4RV

SUB-ADC DAC 2X GAIN

Vi

Vo

Cf

Cs

S2

S3

+

-+-

-+

1.5-bit/stage Pipeline ADC

+VR-VR

+VR

-VR

reff

ii

f

s VCC

VCC

1

if

s VCC

1

reff

ii

f

s VCC

VCC

1

4

VVi refif

if4

VV

4

V refi

ref

if 4

VV ref

i

oVUnit conversion stage for 1.5-bit/stage pipeline ADC

Transfer characteristics

Amplification at each stage reduces the input referred thermal noise.1.5b/stage architecture reduces the requirement for the comparator offset drastically.

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  42

Pipelining

-

-+

+

Op amp

CMPDAC

-

-+

+

Op amp

CMPDAC

-

-+

+

Op amp

Sample & Hold 1st stage 2nd stage

Amplify (Hold) Sample Amplify

Cf

Cs

Cf

Cs

1st stage

2nd Stage

SampleAmp.

SampleAmp.

SampleAmp.

SampleAmp.

Pipeline action relaxes settling time requirement.

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  43

4. Overview of high-speed D/A converters

• Basic two concepts of DAC• Binary method

– R-2R based DAC– Capacitor array DAC

• Decoder method– Resistor string DAC– Current steering DAC

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  44

Basic two concepts of DAC

2. Decoder method

111110101100011010001000

De

code

r

Sw

itch

ma

trix

Vref

Digital

AnalogD3

D2

D1

Small DNLSmall glitchLarge area

Bin

ary

We

igh

t ckt

.Vref

1. Binary method

Digital

D3

D2

D1

Analog

Not small DNLLarge glitchSmall area i

N

1iireflgana D

2

1VV

i

1N

0i

iqlgana D2VV

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  45

+

vout

2R 2R 2R 2R

A0 A1 A2 A3

RF

-vref

2RRRR

Virtual ground

R

vI

AI

AI

AI

AIRv

refr

rrrrFout

2

222 131210

R-2R based DAC

Resolution: 12bLarge DNLSmall area at high resolutionModerate speedLarge power consumption

Binary method

R-2R resistor ladder can generate binary weighted current easily.

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  46

16C

vref

+ vout8C 4C 2C C

CQ

v

ACACACACvQ

out

ref

16

842 3210

+ vout8C 4C 2C C

16C

vref

A0A1A2A3

Q

Reset

Enable

Capacitor array DAC

Virtual ground

Ai= 0 or 1

Binary method

Capacitor array DAC is widely used in CMOS technology.

Low power and no sample & Hold

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  47

Decoder method Resistor string DAC

Vref

+

Vout

Decoder

R

R

R

R

R

R

R

R

Resolution limit: 10bGood DNLLow speedSmall glitch

large parasitic capacitance: 2N

111

110

101

100

011

010

001

000

Digital value

Decoder method can realizes small DNL, however needs large area at high resolution.

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  48

VDD

Bias

Vout

Di Di

Current source

Di=1

Di=0

Vout

Column decoder

R

Row

dec

oder

Current cell with switch

Current steering DAC

Widely used for high speed DAC. Graphics, communications, etc.

High speed, -- 1 GHzResolution – 14 bSmall DNLSmall glitch

Conventionally large area

Decoder method

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  49

5. Overview of over-sampling sigma-delta data converters

• Sigma-delta modulation method– Over sampling– Noise shaping– Sigma-delta modulator– SNR– Higher order system– Feed forward and feed back compensation– MASH (Multi-stage noise shaping)

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  50

Sigma-delta ADC, DAC

+vin

C

C

Φ1

Φ1

Φ2

Φ2

2refv

2refv

1bit DAC

Integrator

Integrator

+x(n)

+ z-1

1bit DACAnalog

Digital

Comparator

DigitalFilter

Sigma delta ADC Sigma delta DAC

Digital Signal

Processing

AVDD

DAC out

Implemented in CMOS, easily.

Sigma delta ADC and DAC are widely used in high resolution (14b-24b)and not high speed ( <1MHz) applications.

LPF

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  51

Over sampling

Δx(n) y1(n)H(f)

y2(n)

he(x)

f-fs/2 fs/2

H(f)

-fb fb

OSR1

12ff2

12df

f1

12df)f(H)f(SP

2

s

b2

s

f

f

22/f

2/f

22ee

b

b

s

s

Band limitingfilter

Quantization noise power

Reduction of bandwidth by filter → Reduction of effective noise power

Total noise power is invariant

Over sampling can reduce effective quantization noise.

In-band noise

b

s

f2f

OSR

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  52

Noise shaping

The spectrum of the quantization noiseincreases with frequency increase.

In-band noise is reducedIn-band noise is reduced

Integrator Quantizer Differentiator

2Sf

2Sf

BW f

Sig

nal i

nten

sity

NoiseNoise

Low pass filter High pass filter

Input signal Output signal

1. 2. 3. 4.

1. 2. 3. 4.

Noise

Quantization noise: High pass filter Lower in low frequency

Signal: Low pass filter x High pass filter Flat

Only quantization noise is shaped in frequency characteristics

Spectrum of quantization noise is shaped by differentiator. In-band noise can be reduced.

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  53

1z

+Quantizer

1z

+

Integrator Differentiator

1z

+Quantizer

+

IntegratorDifferentiator

1z

Equivalent transform

X(z)

X(z) Y(z)

Y(z)

Q(z)

Q(z)

11 z)z(X

)z(Q)z()z(X)z(Y 11

Sigma-delta modulator

The signal will overflow

No overflow

1 ZQX

Outputsignal

Input signal

Differentiator(High pass filter)

Quantization noise

Sigma-delta modulator shapes the frequency characteristics of the quantization noise

)z(Q)z()z(X)z(Y 11

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  54

Generic expression of sigma-delta modulator

H(z) Q(z)

Input signal

+

1z

)z(Qz)z(H

)z(Xz)z(H

)z(H)z(Y 11 1

11

Filter

X(z)

Output signal

Y(z)

Quantizer

We can use not only LPF but also BPF and complex BPF.This gives us an excellent opportunity for wireless applications.

STF (Signal Transfer) NTF (Noise transfer)

Ex. 1z1

1)z(H 1z1)z(NTF,1)z(STF

High pass filterNo filter

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  55

Noise power in sigma-delta modulator

)z(Qz1)z(X)z(YL1

s

22q f12

)f(h

1L22L2

s

f

fs

2

f

f

L2

ez

12qq

OSR1L231

2df

ff2j

f12

z1)f(hN

b

b

b

bfs/f2j

0 2 4 6 8 10 12-140

-120

-100

-80

-60

-40

-20

0

SNR = 113.8dB

Frequency (MHz)dB

FS

0 2 4 6 8 10 12-140

-120

-100

-80

-60

-40

-20

0

SNR = 113.8dB

Frequency (MHz)dB

FS

Digital Filter

fs=26MHz

Lth order filterfb

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  56

2nd order sigma-delta ADC

1z

+

DAC

1z 1

+

DAC

-++

1z 1z 1

)z(X )z(Y

)z(Q

1z 1z 1

++++-

1z 1z 1

)z(X )z(Y)z(Q

1z 1z 1

++

1z 1z 1

++-

DACDAC

DACDAC

)z(Q1

1st order SD ADC

+

2

11 z

1+

DAC DAC

- -11 z 11 z

+ 11 z 11 z

+

DAC DAC

-

1)z(X )z(Y )z(Qz1)z(X)z(Y 1

1

)z(Qz1)z(Q 11

)z(Qz1)z(X)z(Y21

1st order SD ADC

Quantizer is replaced by 1st order SD ADC

2nd order SD ADC

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  57

Multi bit sigma-delta ADC

+

DAC

-11 z 11 z

+

DAC

-

1)z(X

++

)z(Y

11 z

111 z 11 z 11

z1

11 z 11 z 11

z1

11 z 11 z

Feedback type

Feedforward type

+ 11 z

1+

DAC DAC

- -11 z 11 z

+ 11 z 11 z

+

DAC DAC

-

1)z(X

+ 11 z

1+

DAC DAC

- -11 z 11 z

+ 11 z 11 z

+

DAC DAC

-

1)z(Y

1a 2a 3a 4a

1b 2b 3b 4b

41)z1()z(NTF

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  58

1L2

2N OSR1L212

23

DR

0

204060

80100120140

160180200

1 10 100 1000

Dynam

ic R

ange (dB)

1st

2nd

3rd

4th 5th

OSR

n=1bit

Dynamic range of sigma-delta ADC

Higher order SD modulator seems effective to increase the dynamic range.However it is not easy, because of instability, signal saturation, and thermal noise.

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  59

Noise-shaping characteristics

103

104

105

106

107

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0SNDR = 99.5dBSNR  = 100.1dB

In-bandOSR=64200kHz

Dyn

amic

Ran

ge

(dB

)

Frequecy (Hz)

Thermal noise

5th order, 1bit

100dB/dec

103

104

105

106

107

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0SNDR = 99.5dBSNR  = 100.1dB

In-bandOSR=64200kHz

Dyn

amic

Ran

ge

(dB

)

Frequecy (Hz)

Thermal noise

5th order, 1bit

100dB/dec

103 104 105 106 107-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

1st order

20dB/dec

2nd order

40dB/dec

dBF

S

Frequency (Hz)

fs=26MHz

103 104 105 106 107-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

1st order

20dB/dec

2nd order

40dB/dec

dBF

S

Frequency (Hz)

fs=26MHz

Higher order sigma-delta modulator can realize higher dynamic range, theoretically.

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  60

Cascade (MASH) sigma-delta modulator

+

2

11 z

1+

- -11 z 11 z

+ 11 z 11 z

+

DAC

-

1)z(X

)z(Y1

11 z

1+-

11 z 11 z

+

DAC

)z(Y2

+-

)z(H1

)z(H 2 +

)z(Qz1)z(Q)z(Y 21

12

)z(Qz1)z(X)z(Y 1

211

)z(Q1

)z(Q2

11 QY

)z(Q1

)z(Y

1)z(H1

212 z1)z(H

)z(Qz1)z(Qz1)z(Qz1)z(XHYHY)z(Y 231

121

121

2211

)z(Qz1)z(X)z(Y 231

Cascaded SD modulator can realize higher order noise shaping without stability issues. However, high dynamic range is difficult, due to severe mismatch requirement.

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  61

6. Basic design considerations

• Accuracy– Current mismatch and DAC accuracy

– VT mismatch

– Capacitor mismatch

• Comparator– Offset compensation

• Op-Amp– Gain and GBW– kT/C noise

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  62

Current mismatch and DAC accuracy

6 8 10 12 14110 3

0.01

0.1

sigma3.0N( )

sigma2 N( )

sigma1.3N( )

sigma0.8N( )

N

90%

50%

10%

99.7%

Van den Bosch,.. Kluwer 2004

INL yield

0iI 1iI 2iI 1N2iI

N2C2

1I

)I(

N: resolution

C: constant determined by INL yield

Larger resolution requires smaller mismatch.

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  63

VT mismatch

Larger gate area is needed for smaller VT mismatch.Technology scaling reduces VT mismatch if the gate area is equal.

1 10 100 11030.1

1

10

100

VT LW( )0

VT LW( )1

VT LW( )2

LW

LWT

Vox

T

0.4um Nch

0.13um Nch In w/o Halo*

0.13um Nch Boron, w. Halo

)mV(VT

)m(LW 2

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  64

Mismatch current and transistor size

2Tgsds VVL

W'KI

L

W

LWI

'K'K

IV

VI

I dsdsT

T

dsds

LW

LW

'K'K

VVV2

II

Tgs

T

ds

ds

22WL

'K

VTT

L1

W1

A

LW

LW

LW

A'K'K

LW

AV

LW

'K

IVV ds

Tgs

Mismatch

2

222WL

2K

ds2

2VT

2

ds

ds

L

1

W

1A

WLA

IL

A'K4II

Smaller mismatch requires larger L and W.

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  65

Capacitor mismatch

)(

4106)3(

pFCC

C

)3( C

C

Capacitance (pF)

10bit, ¼ LSB

12bit, ¼ LSB

14bit, ¼ LSB

10bit:   0.4pF12bit:  4 pF14bit: 40pF

Smaller capacitor mismatch requires larger capacitance

Coefficient depends on the Fab.

Typical MIM capacitor

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  66

CMOS comparators

There are many types of comparator circuits

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  67

Low power CMOS comparator

VSS

VDD

Vin1+

m2

m7

m9 m10

m3 m4m1

m5 m6

m8

m11 m12

Out+Out-

CLK

W1 W2 W1 W2

thinthinp

thinthinp

VVL

WVV

LW

KG

VVL

WVV

LW

KG

22

11

2

22

11

1

Vin2+ Vin1- Vin2-

2121

21

inininin nVVnmnVVnm,thenmn

:m

nmW:Wif

Interpolation action

No static currentDifferential comparisonInterpolation actionHigh speed

T.B.Cho., et al., J.S.C., Vol.30, No.30, pp.166-172, Mar. 1995.

A CMOS comparator is low power because of no need of static current.

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  68

Isink

R R

Isink

R R

effoxj

ksin

oxj

m

VLWC32

WC2

I

LWC32

WC2

gGBW

2eff

oxksin V

LW

2C

I

L

Cox

k

C

32

L2

VGBW

j2

eff

0

5

10

15

20

0.1 0.2 0.3 0.4 0.5

Re

lati

ve

ba

nd

wid

th

Feature size ( )m

0

5

10

15

20

0.1 0.2 0.3 0.4 0.5

Re

lati

ve

ba

nd

wid

th

Feature size ( )mFeature size ( )m

Design rule and Speed in Comparator

Gain bandwidth (=Speed) is inversely proportional to the L2 (channel length).Technology scaling is still effective to increase the comparator speed, if we don’t take care of the signal dynamic range.

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  69

Offset compensation

CLK

LatchVin1

Vin2

A Vout

+

-

-

+Va

Vo

CLK

LatchVin1

Vin2

VoutA+

-

-

+

Store the offset voltage in capacitors and subtract it from the signal.

osAao

aoosAa

VA1

AVV

VV)A(VV

AV

Vosl

in_os

VosA: Offset of the amplifier

VosL: Offset of the latcha) Offset cancel at input nodes

b) Offset cancel at output nodes

Feedback= High gain type

Feed forward =Low gain type

Two ways for suppressing offset voltage.

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  70

Operational amplifier

-

-+

+

Op amp

Cf

Cs Cp

Vout

VDAC

Vn

Vn

-

-+

+

Op amp

Cf

Cs

VinVn

Vn

Sampling

Amplify

GC

C

GG

f

perror

12

1

f

p

C

C2

1

106)( NdBG

N:ADC resolutionM: Stage resolution

1MN2G1

for 1.5b pipeline ADC

DC gain

Cf

Cs Cpi gm Cpo COLRL2

1

1

p

Equivalent circuit

pisf

f

CCC

C

β

pisf

pisfoLpoL CCC

CCCCCC

3fcN

C2g

GBWL

mclose_

πβ

Closed loop gain-bandwidth

Higher resolution requires higher open loop gain.Higher conversion frequency requires higher closed loop GBW.

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  71

kT/C noise

R

CL

Larger SNR requires larger capacitance and larger signal swing.Low signal swing increases required capacitance.

CL

vout

φ

vn

0.1 1 10 10050

60

70

80

90

10095.918

51.938

SNRC 1 2 C

SNRC 2 2 C

SNRC 3 2 C

SNRC 5 2 C

1000.1 C

14bit

12bit

10bit

0.1 1 10 100

VFS=5V

VFS=3V

VFS=2V

VFS=1V

n=2

SN

R (

dB)

Capacitance (pF)

CkT

2d

CR1

1kTR4v

22n

CnkT

v2n n: configuration coefficient

nkT8CV

log10)dB(SNR2FS

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  72

Basic design consideration

Small mismatch

NFS

off

2

1V

Vor

CC

goff

C

1

LW

1Vor

C

1CC

Increase Capacitance

Decrease speed and Increase Power

N2mm

s 2

gCg

GBWf N2

dd

2

ICI

GBW

N2ssddd 2fCfIVP

N22C

Solutions1) Architecture Pipeline, Parallel2) Redundancy3) Error compensation4) Circuit design

However, kT/C issue remainsN22

sig 2CVSNR 2

sig

N

V2

C

N2d

s 2

If N2

sd 2fP

Solutions

1) Increase signal swing2) Increase OSR

OSRSNR

Very tough tradeoffs, so let’s keep up the design effort.

Results in

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  73

Acknowledgement

• The author thanks Mr. T. Matsuura from Renesus for some slides provision.

2006.06.14.

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.  74

Study-aid books

• B. Razavi, “Data conversion system design,” IEEE press.

• P. E. Allen and D. R. Holberg, “ CMOS Analog Circuit Design,” 2nd Edition, OXFORD University Press.

• D. A. Johns and K. Martin, “Analog integrated circuit design,” John Wiley & Sons.

• R. J. Baker, “ CMOS mixed-signal circuit design,” IEEE Press.

• R.van de Plassche, “CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters,” 2nd Edition, Kluwer Academic Publishers.

• M. Gustavsson, J. J. Wikner and N. N. Tan, “CMOS data converters for communications,” Kluwer Academic Publishers.

• C. Shi and M. Ismail, ”Data converters for wireless standards,” Kluwer Academic Publishers.

• A. Rodriguez-Vazquez, F. Mederio, and E. Janssens, “CMOS Telecom Data Converters,” Kluwer Academic Publishers.