Download - 10 Solution Chemistry Impact on Silica Polymerization by ... · 10.3.1. Water.Chemistry.Effect.on.Silica ... Solution Chemistry Impact on Silica Polymerization by Inhibitors 175 ...

Transcript

173

10 Solution Chemistry Impact on Silica Polymerization by Inhibitors

Robert W. Zuhl and Zahid Amjad

contents

10.1. Introduction................................................................................................... 17410.1.1. Silica.Solution.Chemistry................................................................ 17410.1.2. Silica.Scaling.in.Industrial.Water.Systems...................................... 17610.1.3. Silica.Scaling.Mechanism............................................................... 17710.1.4. Silica-Based.Scale.Control.Approaches.......................................... 178

10.2. Experimental................................................................................................. 18010.3. Results.and.Discussion.................................................................................. 182

10.3.1. Water.Chemistry.Effect.on.Silica.Polymerization.......................... 18210.3.1.1. Silica.Supersaturation...................................................... 18210.3.1.2. Temperature.Effect.......................................................... 18310.3.1.3. Silica.Polymerization.as.a.Function.of.pH...................... 184

10.3.2. Inhibitor.Evaluations....................................................................... 18510.3.2.1. Inhibitor.Concentration.Effect........................................ 18510.3.2.2. Inhibitor.Composition.Effect.......................................... 185

10.3.3. Hardness.Ions.Effect........................................................................ 18710.3.4. Total.Dissolved.Solids.Effect........................................................... 18910.3.5. Trivalent.Metal.Ions.Effects............................................................ 190

10.3.5.1. Fe(III).Effect................................................................... 19110.3.5.2. Al(III).Effect................................................................... 191

10.3.6. Cationic.Polymer.Effect................................................................... 19210.3.7. Solution.Temperature.Effect............................................................ 19210.3.8. Impact.of.Biocides.on.Polymer.Efficacy......................................... 19410.3.9. Impact.of.Thermal.Stress.on.Polymer.Efficacy............................... 19510.3.10. Silica.Precipitate.Characterization.................................................. 196

References............................................................................................................... 198

174 Mineral Scales in Biological and Industrial Systems

10.1  IntroductIon

Scaling.in.industrial.water.systems.is.caused.by.the.precipitation.of.sparingly.solu-ble.salts.dissolved.in.the.feed.water..During.water.system.(desalination.processes,.boilers,.cooling.loops).operation,.the.solubility.of.sparingly.soluble.salts.(or.miner-als).can.be.exceeded.and.may.cause.precipitation.(scaling).and.deposition.of.these.salts.(or.mineral.scales).on.various.substrates..Common.mineral.scales.encountered.include.calcium.carbonate,.calcium.sulfate,.barium.sulfate,.calcium.phosphate,.sil-ica,.and.metal.silicates..Other.less.commonly.found.scales.include.calcium.fluoride,.calcium.oxalate,.calcium.phosphonate,.strontium.sulfate,.and.cupric.sulfide..Silica-.and.metal.silicate-based.salts.have.been.described.as.the.most.problematic.foulants.in.industrial.water.systems.operating.with.silica-laden.feed.water.[1].

Various.approaches.can.be.used.to.prevent.or.eliminate.mineral.scale.formation..These.methods.include.(1).operating.system.at.low.supersaturation.(low.recovery.or.low.cycles.of.concentration,.(2).removing.hardness.ions.by.ion.exchange,.(3).decreas-ing. system. pH. by. acid. feed,. and. (4). using. scale. inhibitor(s).. Scale. inhibitor. addi-tion.is.generally.considered.the.most.effective.scale.formation.prevention.method.for.industrial.water.systems..Inhibitors.are.commonly.either.non-polymeric.(e.g.,.phos-phonates,. polyphosphates). or. polymeric. (e.g.,. acrylic. acid-. or. maleic. acid-based.homo-. and. copolymers)..These. ionic. inhibitors. effectively. control. ionic. salts. such.as. calcium.carbonate,. calcium.fluoride,. and.calcium.sulfate..However,. silica. scale.(SiO2). is. a. covalent. amorphous. solid. that. cannot. be. effectively. inhibited.by. com-monly.used.anionic.scale.inhibitors..Thus,.controlling.silica.precipitation.and.deposi-tion.on.equipment.surfaces.in.industrial.water.system.remains.a.challenging.problem.

10.1.1  silica soluTion cheMisTry

Silica.solubility.as.a.function.of.solution.pH.and.temperature.is.shown.in.Figures.10.1.and.10.2,.respectively..Silica.scaling.may.occur.when.the.dissolved.silica.level.in.an.aqueous.system.exceeds.the.solubility.limit.(in.the.range.of.120–150.mg/L.at.20°C). for. amorphous. silica.. Exceeding. 150. mg/L. silica. in. cold. water. (<10°C). is.

800

600

Silic

a con

cent

ratio

n (m

g/L)

400

200

04 5 6 7 8 9 10 11

pH

FIgure 10.1  Silica.solubility.as.a.function.of.pH.

175Solution Chemistry Impact on Silica Polymerization by Inhibitors

not.a.serious.problem.because.silica.polymerization.is.a.very.slow.process.at.lower.temperatures..However,.silica.in.excess.of.180.mg/L.presents.a.potential.problem.at.any.temperature.[2].

Silica.solution.chemistry.is.very.complex.and.difficult.to.predict..The.formation.of. silica. and. metal. silicate. (i.e.,. magnesium. silicate,. iron. silicate,. aluminum. sili-cate).in.aqueous.systems.depends.on.several.factors.including.silica.solubility,.pH,.temperature,.water.chemistry,.and.system.operating.conditions.[2]..The.temperature.effect.of.silica.solubility.depends.on.the.form.in.which.it.exists..Unlike.metal.silicate.salts.(e.g.,.magnesium.silicate).that.exhibit.inverse.solubility.behavior.vs..tempera-ture.(i.e.,.solubility.decreases.with.increasing.temperature),.amorphous.silica.solu-bility.increases.with.increasing.temperature.[2].

Amorphous.silica,.based.on.its.reactivity,.is.generally.classified.as.follows:

•. Dissolved.(or.reactive.silica)•. Polymerized.silica.(reacts.slowly)•. Colloidal.(or.unreactive.silica)•. Suspended.(or.particulate.silica)

The.term.reactive.refers.to.silica.that.reacts.with.ammonium.molybdate.within.2.min.to.form.colored.complex..Silica.dissolution.involves.a.chemical.reaction.shown.in.Equation.10.1:

.SiO H O Si OH2 2 4

+ → ( ) . (10.1)

Measuring. silica.concentration. in.aqueous. solutions. requires. an.understanding.of.silica. chemistry. and. attention. to. analytical. detail.. Inability. to. account. for. all. the.silica.in.an.aqueous.system.may.be.attributable.to.a.combination.of.limitations.with.the.measurement.and/or.sampling.method(s).as.well.as.silica.precipitation.in.the.sys-tem..Silica.characterization.and.quantification.terminology.are.discussed.as.follows:

350

300

250

200

150

Silic

a con

cent

ratio

n (m

g/L)

100

50

00 10 20 30 40 50 60 70 80

Temperature (°C)

FIgure 10.2  Silica.solubility.as.a.function.of.temperature.

176 Mineral Scales in Biological and Industrial Systems

. 1..The.total silica.concentration.in.an.aqueous.solution.is.determined.by.one.of.the.following:

. a.. Knowing.how.much.silica.was.added.to.the.system

. b.. Measuring.silica.by.using.the.induced.coupling.plasma.(ICP).method

. c.. Analyzing.an.unfiltered.water.sample.after.addition.of.NaOH.to.pH.>.13.(which.converts.all.silica.to.the.reactive.form).by.the.standard.colori-metric.method

. 2..Soluble silica.consists.of.both.monomeric.silica.[Si(OH)4,.a.k.a.,. reactive.silica.or.silicic.acid].and.polymerized.silica.[(OH)3Si.−.O−]n..The.total sol-uble silica.concentration.is.determined.by.filtering.(typically.with.0.22.μm.membrane.filter).an.aqueous.solution.and.measuring.(as.described.earlier).the.total.silica.concentration.in.the.filtrate..The.filtrate.can.also.be.analyzed.using.the.standard.colorimetric.method.for.silica.to.determine.the.mono-meric silica.concentration..The.amount.of.polymerized.silica.in.the.filtrate.can.be.calculated.as. the.difference.between.the.total.and.the.monomeric.silica.concentration.

. 3..Determining.the.precipitated silica.concentrations.in.an.aqueous.solution.requires.a.filtration.(typically.with.0.22.μm.membrane.filter).step..The.pre-cipitated.silica.is.the.difference.between.the.total.silica.concentrations.(see.(1)..(b).or.(c).earlier).in.solution.before.and.after.filtering.

. 4..Colloidal silica.concentrations.must.be.calculated.after.determining.other.silica.solutions.values.including.total.silica.(see.1..above),.monomeric.silica.(see. 2.. above),. and. precipitated. silica. (see. 3.. above). using. the. following.equation:

. Colloidal silica total silica monomeric silica precipitate= − − dd silica . (10.2)

10.1.2  silica scaling in indusTrial waTer sysTeMs

In. many. parts. of. the. world. including. the. western. United. States,. Hawaii,. Puerto.Rico,.Mexico,.and.Southeast.Asia,.silica.solubility.limits.the.efficient.use.of.water.in.cooling,.boiler,.geothermal,.and.reverse.osmosis.(RO).applications..Water.supplies.in. these.geographical. areas.may.have. silica. levels. ranging. from.30. to.120.mg/L..Conventional.operation.of.water.treatment.systems.limits.the.silica.concentration.to.150.mg/L.due.to.sparing.solubility.of.amorphous.silica.and.silicates.

In. evaporative. cooling. systems,. water. technologists. must. maintain. silica. at.acceptable.levels.(usually.<180.mg/L.in.the.absence.of.silica.polymerization.inhib-itor).to.avoid.the.formation.and.deposition.of.silica-based.deposits..This.requires.(1). operating. systems. at. low. cycles. of. concentration. that. increases. water. con-sumption.and/or.(2).incorporation.of.silica.polymerization.inhibitor.in.the.water.treatment.formulation..In.geothermal.applications,.silica.scale.formation.typically.occurs.when.brine.is.cooled.in.the.course.of.brine.handling.and.energy.extraction..Factors.contributing.to.silica.scale.include.variable.fluid.composition,.fluctuating.plant.operating. conditions,. and. the. complex.nature.of. the. silica.polymerization.reaction. that. collectively. contribute. to. silica. scaling. problem..The. composition.

177Solution Chemistry Impact on Silica Polymerization by Inhibitors

and. the. amount.of. silica. scale. as.well. as. the. formation. rate.depends.upon. sev-eral.factors.including.mineral.concentration.of.feed.water,.pH,.temperature,.flow.velocity,.and.system.pressure.

In.brackish,.water.RO.systems.membrane.surfaces.and.spacers.are.particularly.susceptible.to.fouling.by.polymerized.silica..These.silica-based.deposits.are.eas-ily.coagulated.by.small.amounts.of.cations.such.as.Ca,.Mg,.Fe,.and.Al.[3,4]..The.deposition.of. silica-based.deposits.on.RO.membrane.surfaces.causes.decreased.produced. water. quality. and. quantity,. increased. pumping. pressure,. and. prema-ture.replacement..Table.10.1.presents.water.system.performance.targets.for.silica.inhibitors.

Once. formed,. silica–silicate-based.deposits.are.particularly.difficult. to. remove.from.heat.exchanger,.RO.membrane,.and.other.equipment.surfaces..Both.chemical.and.mechanical.methods.are.used.to.remove.silica–silicate-based.deposits..However,.strong.chemical.cleaners.(i.e.,.hydrofluoric.acid,.ammonium.bifluoride).pose.serious.environmental.challenges.and.require.care.to.avoid.damaging.equipment,.whereas.mechanical.cleaning.is.labor.intensive.

10.1.3  silica scaling MechanisM

Amorphous.silica.polymerization.follows.a.pattern.of.soluble.silica.unit.breakdown.and.silicate.anion.growth.into.a.larger.macromolecule.via.anionic.polymerization.as.shown.in.the.following.reactions:

.Si OH OH OH SiO H O

4 3 2( ) + → ( ) +− − . (10.3)

.Si OH Si OH OH Si O Si OH OH (dimer)

3 4 3 3( ) + ( ) → ( ) ( ) +− −– – . (10.4)

.Dimer Cyclic Colloidal Amorphous silica Ca /Mg2 2

→ → →+ +

sscale( ) . (10.5)

table 10.1silica Inhibitor performance targets

parameter areverse osmosis

cooling water

boiler water

Silica 350–400 300–400 <10

Temperature.(°C) 25–35 40–60 250

Fe 0.1 2.5 <0.5

Ca.(as.CaCO3) 800 800 50

Mg.(as.CaCO3) 300 300 10

TDS 1500 2000 50

a. Units.are.mg/L.except.where.noted.

178 Mineral Scales in Biological and Industrial Systems

The.equations.earlier.illustrate.that.the.silicic.acid.(monomer).condensation.reaction.is.catalyzed.by.hydroxide.ions.and.accelerated.by.the.presence.of.salts.such.as.CaCl2.and.MgCl2..It.has.been.suggested.[4].that.dissolved.silica.comes.out.of.the.supersatu-rated.solution.in.three.forms:

. 1..Deposits. on. solid. surfaces. where. monomeric. silicic. acid. [Si(OH)4]. con-denses. with. any. solid. surface. that. has. an. −OH. group. with.which. it. can.react.

. 2..Colloidal.particles.after.polymerized.silica.grows. to. form.a.3D.polymer..These. colloidal. particles. form. large. particles. (floc). that. may. deposit. on.equipment.surfaces.

. 3..Biogenic.amorphous.silica.by.living.organisms.

It.should.be.mentioned.that.sessile.microorganisms.in.a.biofilm-fouled.heat.exchanger.can.entrap.colloidal. silica..The.high.affinity.of. soluble. silica. toward.extracellular.biopolymers.such.as.polysaccharides.has.also.been.recognized

The.interaction.of.M–OH.with.silicic.acid.is.shown.in.Equation.10.6.[5]:

.

-M-OH OH M – O OH

O + HO Si OH O Si + 2H2O

-M-OH OH M – O OH

. (10.6)

10.1.4  silica-Based scale conTrol approaches

Approaches.for.combating.silica–silicate.fouling.in.industrial.water.systems.are.as.follows:

. 1..Operating.systems.at.low.silica–silicate.supersaturation.levels

. 2..Reducing.feed.water.silica.concentration.(e.g.,.by.precipitation.processes)

. 3..Additives.to.inhibit.silica.polymerization

. 4..Additives. to. preferentially. form. metal–silica. compounds. with. greater.solubility

. 5..Dispersing.precipitated.silica–silicate.compounds

. 6..Effective.control.of.other.scales.(e.g.,.calcium.carbonate,.calcium.phosphate)

. 7..Effective.carbon.steel.corrosion.control.(<3.MPY)

. 8..Maintaining.system.<pH.8.3.to.avoid.metal–silicate.precipitation

Many.different.chemical.additives.have.been.tested.as.silica.polymerization.inhibi-tors..The.use.of.boric.acid.and/or.its.water.soluble.salts.to.control.silica–based.depos-its. in. cooling.water. systems.operating.at.250–300.mg/L. silica.has.been. reported..Silica.inhibition.presumably.originates.from.the.ability.of.borate.to.condense.with.silicate.to.form.borate–silicate.complexes.that.are.more.soluble.than.silica.[6]..The.use.of.borate-based.inhibitors.to.increase.silica.solubility.is.limited.because.of.the.high.use.levels.required.for.boron-based.compounds.as.well.as.the.associated.costs.and.effluent.discharge.limitations.

179Solution Chemistry Impact on Silica Polymerization by Inhibitors

Amjad.and.Yorke.[7].reported.that.cationic-based.copolymers.are.effective.silica.polymerization. inhibitors..Similar.conclusions.were.also. reported.by.Harrar.et. al..[8]. in. their. investigation.on. the.use.of.cationic.polymers.and.surfactants. in. inhib-iting. silica. polymerization. under. geothermal. conditions..Although. these. cationic-based.homo-.and.copolymers.showed.excellent.silica.polymerization.inhibition,.they.exhibited.poor.silica–silicate.dispersing.activity..Neofotistou.and.Demadis.[9].in.their.study.on.the.evaluation.of.polyaminoamide-based.dendrimers.as.silica.inhibitors.for.cooling.water.applications.reported.that.polymer.performance.as.silica.polymeriza-tion.inhibitor.strongly.depends.on.the.branching.present.in.the.dendrimer.

Polymeric.dispersants.that.impart.negative.charge.via.adsorption.onto.suspended.particles.have.also.been.used.to.minimize.silica–silicate.fouling.in.industrial.water.systems..Because.most.silica-based.deposits.consist.of.amorphous.silica.and/or.mag-nesium.silicate,.the.ideal.candidate(s).must.have.two.distinct.properties:.(1).disperse.both.silica.and.magnesium.silicate.and.(2).disperse.scalant.particles.(e.g.,.calcium.carbonate,.calcium.sulfate).that.can.act.as.nuclei.for.silica–silicate.deposits.[10].

The. performance. of. a. formulated. product. containing. hydroxylphosphono. ace-tic.acid.and.a.copolymer.of.acrylic.acid–hydroxyl.sulfonate.ether.in.high-hardness.waters. containing. high. alkalinity. and. 225. mg/L. silica. was. reported. [11].. Heat.exchanger.inspection.showed.essentially.no.deposits.in.the.presence.of.a.formulated.product.compared.to.heavy.scaling.and.silicate.deposits.in.the.control.(no.treatment)..Momozaki.et.al..[12].reported.the.use.of.a.poly(acrylamide)-based.treatment.program.to.control.silica.in.recirculating.cooling.water..Gill.[13].in.a.study.using.high-silica.water.at.above.pH.9.documented.that.a.blend.of.phosphonate.and.a.copolymer.of.acrylic.acid.and.2-acrylamido-2-methyl.propane.sulfonic.acid.can.effectively.extend.the.operating.limits.for.silica.from.120.to.300.mg/L.

The.influence.of.anionic.and.nonionic.polymers.as.silica.polymerization.inhibi-tors. has. been. reported. [14].. This. study. reveals. that. anionic. polymers. containing.carboxyl. group. are. ineffective. silica. polymerization. inhibitors.. Performance. data.for. nonionic. polymers. such. as. poly(2-ethyloxazoline). suggest. that. polymerization.inhibition.strongly.depends.on.polymer.molecular.weight.(MW)..The.results.on.the.evaluation.of.–NH2-terminated.(polyaminoamide).dendrimer.of.varying.MW.sug-gest.that.these.dendrimers.are.effective.silica.scale.inhibitors..Experimental.results.reveal.that.inhibition.efficiency.largely.depends.upon.dendrimer.structural.features.such.as.generation.number.and.nature.of.end.groups.as.well.as.dosage.levels.[9].

Zhang.et.al..[15].investigated.the.inhibitory.effect.of.cationic.and.anionic.poly-mers.and.polymer.blends..The.results.show.that.copolymers.of.adipic.acid–amine-terminated. polyethers. D230–diethylenetriamine. (AA:AT:DE). exhibit. excellent.silica.polymerization.inhibition..However,.a.small.amount.of.silica-AA:AT:DE.floc.appears. in. the. solution.. Performance. data. also. show. that. a. blend. of. AA:AT:DE/PESA.(polyepoxysuccinic.acid).prevents.floc.formation.and.also.improves.the.per-formance. of. copolymer.. However,. under. similar. experimental. conditions,. PESA.shows.poor.performance.as.silica.polymerization.inhibitor.

Previous.papers.reported.the.results.of.laboratory.experiments.designed.to.deter-mine.the.efficacy.of.various.commercially.available.polymeric.additives.touted.as.silica.polymerization.inhibitors.and.meta–silicate.dispersants.[16,17]..It.was.shown.that. acrylic. acid-based.homo-.and.copolymers.commonly.used.as.deposit. control.

180 Mineral Scales in Biological and Industrial Systems

agents.are.ineffective.as.silica.polymerization.inhibitors..Earlier.studies.indicate.that.low.levels.of.metal.ions.(e.g.,.Al,.Fe,.cationic.polymeric.flocculants).markedly.reduce.the.effectiveness.of.silica.polymerization.inhibitors.[18].

It. is. generally. accepted. that. lowest. limit. of. amorphous. silica. saturation. level.in.industrial.water.systems.is.≈1.2×..Based.on.previously.published.data,.it.can.be.assumed.that.a.conservative.maximum.treated.silica.saturation.level.in.cooling.water.systems. is. ≈2.2×.. For. the. purposes. of. evaluating. silica. polymerization. inhibitors.herein,.we.selected.more.challenging.water.chemistry.with.≈3.0×.silica.saturation..This. chapter. presents. results. for. evaluations. of. polymers. with. varying. composi-tions. and.non-polymeric. additives..The. additives. tested. fall. into. three. categories:.(1).synthetic.polymers,.(2).proprietary.polymer.blends,.and.(3).non-polymeric.mate-rials..The.impacts.of.solution.chemistry.(i.e.,.pH,.temperature,. type,.and.levels.of.mono-,.di-,.and.trivalent.metal.ions),.biocides,.and.thermal.stress.on.silica.polym-erization. inhibitor. performance. are. discussed.. X-ray. diffraction. (XRD). and. elec-tromagnetic.dispersion.spectroscopy.(EDS).characterizations.of.silica.precipitates.formed.in.the.absence.and.presence.of.polymers.are.also.presented.

10.2  experImental

Reagent-grade.chemicals.and.distilled.water.were.used.throughout.this.study..Silica.stock.solutions.were.prepared.from.sodium.metasilicate.nonahydrate,.standardized.spectrophotometrically,. and. stored. in. plastic. bottles.. Calcium. chloride. and. mag-nesium. chloride. stock. solutions. were. prepared. from. calcium. chloride. dihydrate.and. magnesium. chloride. hexahydrate. and. were. standardized. by. EDTA. titration..Standard.Fe3+.and.Al3+.solutions.were.purchased.from.Fisher.Scientific..Table.10.2.

table 10.2polymeric and non-polymeric additives evaluated

additive composition acronym

HEDP 1-Hydroxyethylidine-1,1-diphosphonic.acid HEDP

PBTC 2-Phosphonobutane.1,2.4-tricarboxylic.acid PBTC

BA Boric.acid BA

PMA Poly(maleic.acid) PMA

K-732a 6.k.MW.solvent.polymerized.poly(acrylic.acid) PAA

K-775a Poly(acrylic.acid:.2-acrylamido-2-methylpropane.sulfonic.acid) CP1

K-798a Poly(AA:SA:.2-acrylamido-2-methylpropane.sulfonic.acid–sulfonated.styrene)

CP2

Competitive-1 Poly(AA:SA:.2-acrylamido-2-methylpropane.sulfonic.acid–nonionic) CP3

Competitive-2 Poly(maleic.acid–ethyl.acrylate–vinyl.acetate) CP4

Competitive-3 Proprietary.acrylic.copolymer CP5

K-XP212a Proprietary.copolymer.blend CP6

K-XP229a Proprietary.copolymer.blend CP7

a. Carbosperse™.K-700.polymer.supplied.by.The.Lubrizol.Corporation.

181Solution Chemistry Impact on Silica Polymerization by Inhibitors

lists. the.commercial. inhibitors.used. in. this.study.along.with. the.composition.and.acronym..Stock.inhibitor.solutions.were.prepared.on.active.solids.basis.

Silica. polymerization. experiments. were. performed. in. polyethylene. containers.placed. in.double-walled.glass. cells.maintained.at.40°C..The. supersaturated. solu-tions.were.prepared.by.adding.known.volumes.of.stock.solution.of.sodium.silicate.(expressed.as.SiO2).solution.and.water.in.polyethylene.containers..After.allowing.the.temperature.to.equilibrate,.the.silicate.solutions.were.quickly.adjusted.to.pH.7.0.using.dilute.hydrochloric.acid.(HCl)..The.solution.pH.was.monitored.using.Brinkmann/Metrohm.pH.meter.equipped.with.a.combination.electrode..The.electrode.was.cali-brated.before.each.experiment.with.standard.buffers..After.pH.adjustment,.known.volumes. of. calcium. chloride. and. magnesium. chloride. stock. solution. were. added.to. the. silicate. solutions.. The. supersaturated. silicate. solutions. were. readjusted. to.pH.7.0.with.dilute.HCl.and/or.NaOH.and.maintained.constant.throughout.the.silica.polymerization.experiments..For.experiments.involving.the.effect.of.solution.ionic.strength,.a.known.volume.of.standard.NaCl.or.Na2SO4.solution.was.added.to.sodium.silicate. solution.. Figure. 10.3. schematically. illustrates. the. experimental. protocol.and.Figure.10.4.shows.the.experimental.set-up.used.to.study.silica.polymerization.inhibition.

Distilled water+ sodium silicate

+ inhibitor solution

Adjust topH 7.0

Sample andfilter through 0.22 µm

Analyzefor SiO2

+ Calcium andmagnesium

solution

Adjust topH 7.0

FIgure 10.3  Silica.polymerization.inhibition.experimental.protocol.

Sample

0.22 µm filter

Retentate

Samplingport

Thermostattedwater out

Thermostattedwater in

Magnetic stirrer pH meter

7.00

Precipitated silicaSoluble silica

O

Filtrate

FIgure 10.4  Silica.polymerization.inhibition.test.equipment.setup.

182 Mineral Scales in Biological and Industrial Systems

Experiments. involving.inhibitors.were.performed.by.adding.inhibitor.solutions.to.the.silicate.solutions.before.adding.the.calcium.chloride.and.magnesium.chloride.solutions..The.reaction.containers.were.capped.and.kept.at.constant.temperature.and.pH.during.the.experiments..Silicate.polymerization.in.these.supersaturated.solutions.was.monitored.by.analyzing. the. aliquots.of. the.filtrate. from.0.22.μm.filter.paper.for.soluble.silica.using.the.standard.colorimetric.method.[16]..Silica.polymerization.inhibition.values.were.calculated.according.to.the.following.equation:

.

% Inhibition =[SiO2] [SiO2]sample – control

[SiO2][SiO2] initial – control

´ 100. (10.7)

where.the.terms.earlier.are.as.follows:%.Inhibition.is.the.percent.silica.polymerization.inhibition.or.%SI[SiO2]sample.is.the.silica.concentration.in.the.presence.of.inhibitor.at.22.h[SiO2]control.is.the.silica.concentration.in.the.absence.of.inhibitor.at.22.h[SiO2]initial.is.the.silica.concentration.at.the.beginning.of.test

The.membrane.filtration.residues.were.analyzed.by.SEM.(Model.Zeiss.EVO.50).and.XRD.spectrometry.(Model.Rigaku.Geigerflex).

For. studying. thermal. stability,. solutions. were. prepared. containing. neutralized.10%.polymer.(as.active.solids).at.pH.10.5.using.sodium.hydroxide..Sodium.sulfite.was.used.as.an.oxygen.scavenger..Known.polymer.solution.quantities.were.retained.for.characterization.and.performance.testing..The.balance.of.the.polymer.solutions.was.charged.to.stainless.tubes..The.headspace.was.purged.with.nitrogen.followed.by.tightening.the.fittings..The.tubes.were.then.placed.in.the.oven.maintained.at.the.required.temperature.(either.at.150°C.or.200°C)..At.known.times,. the. tubes.were.removed.from.the.oven.and.cooled.at.room.temperature,.and.the.polymer.solutions.transferred.to.vials.for.characterization.and.performance.testing..Nuclear.magnetic.resonance. (NMR). spectra. of. polymers. before. and. after. thermal. treatment. were.obtained.on.a.Brubaker.AV-500.NMR.

10.3  results and dIscussIon

Using. the. experimental. protocol. described. earlier,. a. series. of. experiments. were.conducted.to.investigate.the.influence.of.various.factors.(i.e.,.solution.supersatura-tion,.pH,.temperature,.ionic.strength,.type,.and.concentrations.of.metal.ions,.biocides,.polymerization.inhibitors)..The.following.sections.present.results.and.discussion.on.these.factors.on.the.performance.of.various.inhibitors.

10.3.1  waTer cheMisTry eFFecT on silica polyMerizaTion

10.3.1.1  silica supersaturationUsing.the.experimental.setup.described.earlier,.a.series.of.experiments.were.con-ducted. at. various. silica. supersaturation. (SS). conditions. and. standard. test. condi-tions.(200.mg/L.Ca,.120.mg/L.Mg,.pH.7.0,.40°C)..Figure.10.5.shows.soluble.silica.

183Solution Chemistry Impact on Silica Polymerization by Inhibitors

concentrations.as.a.function.of.time.for.various.SS.solutions..Figure.10.5.illustrates.that. a. 550. mg/L. silica. solution. reacts. instantaneously,. whereas. lower. silica. con-centrations.react.at.a.much.slower.rate..At.low.degrees.of.SS,.a.decrease.in.silica.concentration.is.preceded.by.a.slow.polymerization.reaction.(induction.time.or.α)..Figure.10.5.shows.that.the.soluble.silica.concentration.does.not.change.significantly.during.the.induction.period..However,.once.polymerization.is.underway,.the.soluble.silica.concentration.begins.decreasing..Figure.10.5.illustrates.α.values.for.various.SS.solutions:.3.h.for.525.mg/L,.8.h.for.450.mg/L.silica,.and.>20.h.for.300.mg/L.silica.compared.to.<5.min.for.high.SS.solution.(550.mg/L.silica)..The.baseline.silica.satu-ration.(solubility).level.appears.to.be.approximately.150.mg/L.that.is.consistent.with.previously.reported.silica.equilibrium.concentrations.

10.3.1.2  temperature effectThe. solubility. of. scale-forming. salts. such. as. calcium. carbonate,. calcium. sulfate,.and. calcium. phosphates. is. inversely. dependent. on. solution. temperature. [19]..The.solubility–temperature.relationship.suggests.that.the.scaling.tendency.will.be.higher.at.the.heat.exchanger.surfaces.than.in.other.parts.of.the.recirculating.water.systems..It.was.also.reported.[20].that.calcium.ion.tolerance.of.anionic.scale.control.polymer.decreases.markedly.as.solution.temperature.increases.from.25°C.to.70°C..However,.silica.solubility.increases.with.increasing.temperature.and.silica.saturation.limits.go.up. [2]..The. influence.of. solution. temperature.on. inhibitor.performance.was.deter-mined.by.conducting.a.series.of.experiments.using.the.silica.polymerization.test.con-ditions.(i.e.,.550.mg/L.silica,.200.mg/L.Ca,.120.mg/L.Mg,.pH.7.0).and.temperatures.ranging.from.25°C.to.68°C.(i.e.,.25°C,.40°C,.55°C,.and.68°C)..The.results.are.shown.in.Figure.10.6.and.illustrate.the.time-dependent.silica.concentration.profiles.in.the.absence.of.inhibitor.indicating.that.solution.temperature.significantly.influences.silica.

Silic

a con

cent

ratio

n (m

g/L)

600

500

400

300

200

100

0

550 mg/L 450 mg/L 320 mg/L 150 mg/L

Time (h)

Equilibrium solubility

0 2 4 6 8 10 12 14 16 18 20 22

FIgure 10.5  Silica.polymerization.vs.. time.as.a. function.of. initial. silica.concentration.(variable.silica,.200.mg/L.Ca,.120.mg/L.Mg,.pH.7.0,.40°C).

184 Mineral Scales in Biological and Industrial Systems

polymerization..There.are.two.competing.factors.contributing.to.temperature.influ-ence:.(1).silica.saturation.limits.increase.with.increasing.temperature.due.to.increased.silica.solubility.and.(2).the.silica.polymerization.rate.increases.with.increasing.tem-perature..Figure.10.6.data.suggest.that.temperature.is.the.primary.driver.for.changing.silica.saturation.limits.impacting.silica.solubility.in.these.test.conditions.

10.3.1.3  silica polymerization as a Function of pHAs.previously.indicated.and.shown.in.Figure.10.1,.solution.pH.has.a.profound.effect.on. silica. solubility.. A. series. of. experiments. was. conducted. to. evaluate. the. solu-tion.pH.effect.on.soluble.silica.concentration.using.Lubrizol’s.silica.polymerization.inhibition.test.procedure..The.experiments.were.conducted.at.solution.pH.ranging.from.6.5.to.8.75.using.550.mg/L.silica.and.at.40°C..In.order.to.avoid.metal–silicate.salt.precipitation.especially.at.high.alkaline.pH,.these.experiments.were.conducted.in.the.absence.of.CaCl2.and.MgCl2..Figure.10.7.presents.T1/2.(time.needed.for.50%.depletion.of.soluble.silica).as.a.function.of.solution.pH..It.is.evident.from.Figure.10.7.that.soluble.silica.decreases.within.the.pH.6.5–8.3.range.but.decreases.above.pH.8.3..The.observed.T1/2.from.pH.6.5.to.8.3.is.due.to.the.increased.amount.of.hydroxide.that.catalyzes.the.silica.polymerization.reaction..At.pH.>.8.3,.the.observed.T1/2.decrease.is.caused.by.the.lower.driving.force.resulting.from.a.slight.silica.solubility.increase.and.a.depletion.of.unionized.monomeric.silica.because.of. ionization..Figure.10.7.illustrates,.above.pH.8.5,.that.T1/2.values.increase.further.due.to.decreased.SS.

Figure.10.7.can.also.be.used.to.help.determine.the.optimum.pH.range.to.minimize.the. rate. of. silica. polymerization. and. deposition. of. polymerized. silica. or. fouling..

SiO

2 (m

g/L)

600

500

400

300

200

100

0

25°C

55°C

40°C

68°C

Time (h)0 2 4 6 8 10 12 14 16 18 20 22

FIgure 10.6  Silica.concentration.vs..time.as.a.function.of.solution.temperature.(550.mg/L.silica,.200.mg/L.Ca,.120.mg/L.Mg,.pH.7.0,.40°C).

185Solution Chemistry Impact on Silica Polymerization by Inhibitors

At.pH.>.8.5.the.potential.of.Ca.and/or.Mg.silicate.formation.increases..At.pH.<.6.5,.there. is.virtually.no. ionization.and.no.mono-ionized. (H3SiO4

−). that.can.polymer-ize.with.unionized.silicic.acid. (H4SiO4)..Therefore,. industrial.water. systems. (e.g.,.recirculating.cooling.loops,.RO.systems).should.be.operated.at.pH.<.8.3..Figure.10.7.clearly.indicates.that.solution.pH.dramatically.impacts.the.soluble.silica.concentra-tion.decline.with.time.that.agrees.with.other.researchers’.observations.[21,22]..Thus,.for.systems.operating.at.high.alkaline.pH.conditions,.the.focus.should.be.inhibiting.metal.silicates.because.the.silica.polymerization.rate.will.be.comparatively.slower.than.the.metal–silicate.precipitation.rate.

10.3.2  inhiBiTor evaluaTions

10.3.2.1  Inhibitor concentration effectAs.discussed.in.previous.papers.[17–22],. it. is.very.important.to.understand.the.rela-tionship.between.polymer.dosage.and.silica.polymerization.inhibitor.performance.par-ticularly. at. the.high. silica. saturation. (3.0×). test. conditions..Figure.10.8. shows. silica.concentration.as.a.function.of.time.at.varying.CP6.(copolymer.blend).dosages..Figure.10.8.data.indicate.(1).that.CP6.dosage.strongly.affects.silica.polymerization.inhibitor.per-formance.and.(2).that.both.50.and.75.mg/L.CP6.dosages.provide.similar.performance.

10.3.2.2  Inhibitor composition effectTo.evaluate. the.efficacy.of.various.additives.as.silica.polymerization. inhibitors,.a.series.of.experiments.was.conducted.in.the.presence.of.25.and.350.mg/L.inhibitor.dosages..The.results.that.appear.in.Figure.10.9.clearly.show.that.the.performance.of.copolymer.blends.(i.e.,.CP6.and.CP7).is.superior.to.the.other.additives.evaluated..The.data. for. the.non-polymeric. additives. (i.e.,.HEDP,.PBTC,.BA). tested. indicate.

400

350

300

250

200

150

100

50

06.5

Tim

e 1/2

(min

)*

7 7.5Solution pH

8 8.25 8.5 8.75

FIgure  10.7  Solution. pH. impact. on. soluble. silica. (550. mg/L. silica,. 40°C,. and. with-out.Ca,.Mg,.or. inhibitor).. *Time. required. to.decrease. the. soluble. silica. concentration.by.50%;.i.e.,.to.355.mg/L.or.1/2.the.difference.between.the.initial.550.mg/L.and.equilibrium.160.mg/L.levels.

186 Mineral Scales in Biological and Industrial Systems

these.materials.are.ineffective.silica.inhibitors.compared.to.CP6.and.CP7..Although.HEDP.and.PBTC.are.excellent.calcium.carbonate.inhibitors.[23],.their.poor.perfor-mance.as.silica.polymerization.inhibitors.suggests.that.phosphonate.groups.do.not.inhibit.silica.polymerization.in.aqueous.solutions.

It.has.been.reported.[24].that.solvent.polymerized.polyacrylates.are.more.tolerant.to.calcium.ions.than.the.water.polymerized.polyacrylates..For.carboxylic.acid-containing.polymers,.it.appears.that.precipitation.inhibition.is.greatest.for.MW.of.below.20,000.(daltons.or.DA).with.the.optimum.MW.dependent.on.the.polymer.composition.and.the.salts.being.inhibited..For.calcium.phosphate.and.calcium.phosphonates.inhibition,.acrylic.acid-.and/or.maleic.acid-based.copolymers.have.been.shown.to.perform.better.than.homopolymers.of.either.acrylic.acid.or.maleic.acid.[25].

600

500

400

300

200

100Silic

a con

cent

ratio

n (m

g/L)

00 5

Time (h)

0 mg/L 15 mg/L 25 mg/L 50 mg/L 75 mg/L

10 15 20 25

FIgure 10.8  Silica.polymerization.vs..time.as.a.function.of.CP6.dosage.(mg/L).

10025 ppm 350 ppm

80

60

40

20

% Si

lica i

nhib

ition

0HEDP PBTC BA PAAPMA CP1 CP2 CP3 CP4 CP5 CP6 CP7

FIgure 10.9  Silica.polymerization. inhibition. as. a. function.of. additive.dosage. for. non-polymeric.and.polymeric.additives.

187Solution Chemistry Impact on Silica Polymerization by Inhibitors

Figure.10.9.also.presents.performance.data.for.polymeric.inhibitors.containing.different.functional.groups.(e.g.,.carboxylic.acid,.sulfonic.acid)..It.is.evident.that.the.homopolymers.(PMA.and.PAA),.copolymer.(CP1),.and.terpolymers.(CP2,.CP3,.CP4,.CP5).commonly.used.for.controlling.mineral.scales.and.dispersing.suspended.mat-ter.are.poor.(<20%.inhibition).silica.inhibitors..The.performance.data.clearly.show.that.carboxylic.acid,.sulfonic.acid,.ester,.and.nonionic.groups.present.in.the.com-monly.used.polymers.exhibit.poor.interaction.with.silane.groups.present.in.silica.

Figure.10.10.takes.a.closer.look.at.the.silica.polymerization.inhibition.performance.of.CP2,.CP6,.and.CP7.as.a.function.of.polymer.dosages.in.the.10–50.mg/L.range..CP2.was.selected.as.being.representative.of.all.the.other.homopolymers.(PMA.and.PAA).and.copolymers.(CP1,.CP3,.CP4,.and.CP5).tested.because.carboxylic.monomer.groups.dominate.(>50%).all.these.polymer.compositions..On.the.other.hand,.the.CP6.and.CP7.copolymer.blends.(patented.and.patent.pending,.respectively).are.distinctly.different.(contain.<50%.carboxylic.acid.monomer.groups).from.the.other.polymers.

Figure.10.10.indicates.that.at.12.5.mg/L.dosages,.CP7.provides.35%.SI.or.more.than.double.the.performance.of.either.CP6.or.CP2..At.≥15.mg/L.dosages,.the.CP6.performance.and.dosage.response.are.superior. to.all.other.additives. tested.except.CP7.that.is.dramatically.better.than.all.the.other.materials.tested..Table.10.3.sum-marizes.observations.about.the.data.in.Figures.10.7.and.10.8.

10.3.3  hardness ions eFFecT

The.impact.of.hardness.ions.on.silica.polymerization.has.been.previously.investigated..Sheikholeslami.et.al..[26].studied.the.impact.of.Ca2+.and.Mg2+.on.silica.polymeriza-tion.at.pH.6.5,.20°C,.360.mg/L.silica,.and.as.a.function.of.time.(0–200.h)..Results.of.their.study.show.that.the.rate.of.silica.polymerization.increases.with.increase.in.Ca2+.concentrations. in. the. range.100–300.mg/L..Adding.high.Ca2+.concentrations.to.200.mg/L.silica.solutions.did.not.affect.the.solution.metastability..Furthermore,.

100

80

60

40

20

00 10

Active polymer dosage (mg/L)

% Si

lica i

nhib

ition

20 30 40

CP2CP6CP7

50

FIgure  10.10  Silica. polymerization. inhibition. by. copolymers. as. a. function. of. dosage.(550.mg/L.silica,.200.mg/L.Ca,.120.mg/L.Mg,.pH.7.0,.40°C).

188 Mineral Scales in Biological and Industrial Systems

at.500.mg/L.silica.concentrations.where.polymerization.was.very.rapid,.Ca2+.addi-tion.did.not.seem.to.show.any.obvious.trend..Sahachaiyunta.et.al..[27].in.their.study.on.the.effect.of.Ba2+,.Ni2+,.and.Mn2+.ions.on.RO.system.silica.scaling.reported.that.these.ions.exhibit.accelerating.effect.on.silica.polymerization.but.do.not.show.any.influence.on.the.structure.of.precipitated.amorphous.silica.

To.understand.the.impact.of.hardness.ions.on.performance.of.polymers,.several.silica.polymerization.experiments.were.carried.out.in.the.presence.of.50.mg/L.CP7.and.varying.total.hardness.(“TH”.or.Ca2+/Mg2+.at.a.2:1.ratio).concentrations..Figure.10.11.data.clearly.show.that.silica.polymerization.inhibition.increases.as.a.function.TH.concentration.ranging.from.0.to.320.mg/L.

A.series.of.experiments.was.conducted.to.determine.whether.or.not.hardness.ions.are.coprecipitated.during.silica.polymerization.in.the.presence.of.CP7..Figure.10.12.

table 10.3observations from the data in Figures 10.7 and 10.8

additive silica polymerization Inhibition performance

Containing.>50%.carboxylic.monomersa

Provide.poor.(<20%).performance.at.all.dosages.tested.up.to.350.mg/L.(only.up.to.50.mg/L.dosage.shown.in.Figure.10.8)

CP6 Performance.increases.dramatically.from.poor.to.excellent.with.dosage.up.to.35.mg/L.and.improves.incrementally.thereafter

CP7 Performance.increases.dramatically.as.dosage.increases.from.5.mg/L.(7%.SI).to.25.mg/L.(85%.SI).and.improves.incrementally.thereafter

a. See.TABLE.10.1.including.PMA,.PAA,.CP1,.CP2,.CP3,.CP4,.and.CP5.

600

500

400

300

200

100

00 5

0 ppm TH160 mg/L TH

64 mg/L TH320 mg/L TH

10Time (h)

Silic

a (m

g/L)

15 20 25

FIgure 10.11  Silica.concentration.vs..time.in.presence.of.50.mg/L.CP7.and.varying.TH.levels. (550. mg/L. silica,. pH. 7.0,. 40°C).. (Modified. from. Paper. Number. 10048,. Presented.at. CORROSION/2010 Annual Conference and Exhibition,. Houston,. TX,. 2010;. Figure. 7..Reproduced.with.permission.from.NACE.International.)

189Solution Chemistry Impact on Silica Polymerization by Inhibitors

presents.silica,.Ca2+,.and.Mg2+.vs..time.profiles.in.the.presence.of.15.mg/L.CP7..As.shown,.the.initial.calcium.(200.mg/L).and.magnesium.(120.mg/L).concentra-tions.remain.essentially.constant.(within.the.experimental.error.of.±3%).during.the.silica.polymerization.experiments,.while.silica.concentration.decreases.with.time..Figure.10.12.data.suggest.that.neither.Ca.nor.Mg.precipitated.out.of.the.solutions.in.the.presence.of.CP7..Although.not.presented.herein,.similar.results.for.calcium.and. magnesium. concentrations. were. also. observed. with. higher. silica. super-saturated. solutions. and. higher. calcium. (280. mg/L). and. magnesium. (168. mg/L).concentrations.

10.3.4  ToTal dissolved solids eFFecT

The.influence.of.total.dissolved.solids.(TDSs).on.silica.polymerization.inhibition.in.the.presence.of.50.mg/L.CP7.was.investigated..Figure.10.13.presents.%.silica.inhibi-tion.values.at.22.h.in.the.presence.of.50.mg/L.CP7.and.varying.TDS.concentrations.(either.Ca2+/Mg2+.[2:1].as.described.earlier.or.sodium.chloride.[NaCl])..As.indicated,.silica. polymerization. inhibition. strongly. depends. on. the. Ca2+/Mg2+. concentration.present.in.the.silica.supersaturated.solutions.

Figure.10.13.also. shows. that.divalent.metal. ions. (i.e.,.Ca2+,.Mg2+). in. the.pres-ence.of.constant.ionic.strength.exhibit.a.greater.effect.on.silica.polymerization.inhi-bition. than. monovalent. cations. (i.e.,. Na+).. Specifically,. %. silica. inhibition. values.obtained.using.50.mg/L.CP7.in.the.presence.of.similar.ionic.strength.but.different.TDSs.levels.(i.e.,.Na+.[1755.mg/L.NaCl].and.Ca2+/Mg2+.[320.mg/L.TH]).at.similar.ionic.strength.are.16%.and.92%,.respectively..These.performance.variations.caused.by.TDSs.(i.e.,.Na+.and.TH.[either.Ca2+.or.Mg2+]).on.silica.polymerization.may.be.attributed.to.different.charge.density.of.these.metal.ions.

600

500

400

300

200

100

SiO

2, Ca

, and

Mg

(mg/

L)

00

2 4 6 8 10Time (h)

12 14 16 18

SiO2 (mg/L)

Ca (mg/L)

Mg (mg/L)

20 22

FIgure  10.12  Silica,. Ca,. and. Mg. concentrations. vs.. time. in. the. presence. of. 15. mg/L.CP7..(Modified.from.IWC-11-61,.Paper.presented.at.the.IWC.2011,.Orlando,.FL;.Figure.6..Reproduced.with.permission.from.the.International.Water.Conference®.)

190 Mineral Scales in Biological and Industrial Systems

10.3.5  TrivalenT MeTal ions eFFecTs

Aluminum.(Al)-.and.iron.(Fe)-based.compounds.(e.g.,.alum,.sodium.aluminate,.fer-ric.chloride).have.been.used.for.years.as.flocculating/coagulant.aids.to.clarify.munic-ipal.and.industrial.waters.[28]..These.compounds.neutralize.the.charge.of.suspended.particles.in.water.and.they.hydrolyze.to.form.insoluble.hydroxide.precipitates.that.entrap.additional.particles..In.most.cases,.these.large.particles.(or.flocs).are.removed.via.settling.in.a.clarifier.and.are.collected.as.sludge..Occasionally,.clarifier.upsets.cause.the.metal-containing.flocs.to.“carry.over.”

Among. the. various. dissolved. impurities. present. in. natural. waters,. iron-based.compounds. present. the. most. serious. problems. in. many. domestic. and. industrial.applications..In.the.reduced.state,.iron.(II).or.ferrous.(Fe2+).ions.are.very.stable.and.pose.no.serious.problems,.especially.at.low.pH.values..However,.upon.contact.with.air,.ferrous.ions.are.oxidized.to.higher.valence.state.and.readily.undergo.hydrolysis.to.form.insoluble.hydroxides.as.shown.as.follows:

. Fe Fe2 air 3+ + → . (10.8)

.Fe 3H O Fe OH 3H3

2 3+ ++ → ( ) + . (10.9)

When.ferric.or.ferrous.ions.precipitate.in.water,.an.amorphous.or.gelatinous.solid.is.usually.formed..At.low.corrosion.rates,.the.iron.hydroxide.formed.may.deposit.on. the.heat.exchanger.surface.as.a.permeable.or. impermeable.film.at. the.corro-sion.site..Under.these.conditions,.the.iron.hydroxides.that.form.are.colloidal.and.form.stable.suspensions..Other.types.of.iron-based.compounds.that.can.potentially.deposit.on. the.heat.exchanger. surfaces. include. iron.carbonate,. iron.silicate,.and.iron.sulfide.

100

80

60

40

% Si

lica i

nhib

ition

0

Total dissolved solids (TH = Total hardness)64 mg/L TH 160 mg/L TH 320 mg/L TH 1755 mg/L NaC1

20

FIgure 10.13  Influence.of.TDSs. levels.on.silica.polymerization. inhibition.by.50.mg/L.CP7.(550.mg/L.silica,.pH.7.0,.40°C,.22.h)..(Modified.from.Paper.Number.10048,.Presented.at. CORROSION/2010 Annual Conference and Exhibition,. Houston,. TX,. 2010;. Figure. 8..Reproduced.with.permission.from.NACE.International.)

191Solution Chemistry Impact on Silica Polymerization by Inhibitors

The.presence.of.iron.in.recirculating.waters.and/or.brine.in.RO.system,.whether.originating. from. the. feed. water,. as. a. result. of. iron-based. metal. corrosion. in. the.system,.or. the.carryover.from.a.clarifier.using.iron-based.flocculating.agents,.can.have.profound.effects.on.the.performance.of.polymers.used.as.scale.inhibitors.and.dispersants..It.has.been.previously.reported.that.polymer.performance.as.a.calcium.phosphate.inhibitor.is.negatively.impacted.by.Fe(III).[29].

10.3.5.1  Fe(III) effectIt. is. well. established. that. low. levels. of. coagulating/flocculating. additives. present. in.recirculating. waters. are. antagonistic. to. scale. inhibitor. and. dispersant. performance..To. understand. the. impact. of. inorganic. and. organic. coagulants/flocculants. on. silica.polymerization.inhibitor.performance,.several.experiments.were.carried.out.in.the.pres-ence.of.varying.Fe(III).concentrations..As.shown.in.Figure.10.14,. low.Fe(III). levels.(e.g.,.0.25.mg/L).exhibit.a.negative.or.antagonistic.influence.on.the.silica.polymerization.inhibition.by.CP6.and.CP7..Increasing.Fe(III).levels.to.the.0.50–1.0.mg/L.range.further.decreases.silica.inhibition.(%Si).values..It.is.evident.from.Figure.10.14.that.CP7.is.more.tolerant.to.Fe(III).than.is.CP6..Similar.antagonistic.effects.caused.by.Fe(III).have.been.reported.[30,31].in.studies.involving.calcium.phosphate.inhibition.by.anionic.polymers.

10.3.5.2  al(III) effectThe. influence.of. low.Al3+. levels.was.also. investigated.by.carrying.out.a. series.of.silica. polymerization. experiments. in. the. presence. of. 50. mg/L. copolymer. blend.dosages..Results.presented.in.Figure.10.15.clearly.show.that.silica.polymerization.inhibitor.performance.is.strongly.impacted.by.the.presence.of.Al3+..As.illustrated,.silica.polymerization.inhibition.values.for.both.CP6.and.CP7.decreased.≥20%.by.adding.0.1.mg/L.Al3+.and.more.pronounced.antagonistic.effects.occurred.when.add-ing.0.25.mg/L.Al3+..By.comparing.the.CP6.and.CP7.silica.polymerization.inhibition.

% Si

lica i

nhib

ition

100

60

80

40

20

00.00 0.25 0.50

Fe(III) dosage (mg/L)

1.00

CP6 CP7

FIgure 10.14  Effect.of.Fe(III).concentration.on.silica.polymerization.inhibition.by.polymers.(550.mg/L.silica,.200.mg/L.Ca,.120.mg/L.Mg,.50.mg/L.polymer,.pH.7.0,.40°C,.22.h)..(Modified.from.Paper.Number.10048,.Presented.at.CORROSION/2010 Annual Conference and Exhibition,.Houston,.TX,.2010;.Figure.4..Reproduced.with.permission.from.NACE.International.)

192 Mineral Scales in Biological and Industrial Systems

in.the.presence.of.metal.ions.(see.Figures.10.14.and.10.15),.it. is.evident.that.Al3+.exhibits.a.more.antagonistic.effect.than.Fe3+..The.markedly.greater.silica.polymeriza-tion.inhibition.antagonism.caused.by.Al3+.compared.to.Fe3+.may.be.attributed.to.the.different.cationic.charge.density.present.on.metal.salts.hydroxides.

10.3.6  caTionic polyMer eFFecT

As.previously.discussed,.the.use.of.flocculating.agents.(inorganic.and.organic.types).to.remove.suspended.matter.from.feed.water.and.wastewater.streams.is.well.known..Commonly.used.inorganic.salts.(e.g.,.aluminum.chloride,.aluminum.sulfate,.and.fer-ric.chloride).while.very.effective.are.corrosive.and.generate.large.sludge.volumes..These.metal.salts.treatments.can.be.augmented.by.the.use.of.cationic.polymers.such.as.diallyldimethylammonium.chloride.(DADMAC).

Figure.10.16.presents.silica.polymerization.inhibition.data.for.CP6.and.CP7.in.the.presence.of.varying.DADMAC.concentrations..Figure.10.16.data.indicate.that.DADMAC.dosages.up.to.3.0.mg/L.cause.slightly.antagonistic.effects.on.CP6.and.CP7.silica.polymerization.inhibition.performance..This.is.very.interesting.because.cationic.polymers.such.as.DADMAC.have.previously.been.shown.to.exhibit.strong.antagonistic.effects.on.the.performance.of.calcium.phosphate.[32].and.calcium.phos-phonate.[33].inhibitors..The.silica.polymerization.inhibition.performance.differences.observed.in.Figure.10.16.may.be.attributed.to.different.ionic.charges.

10.3.7  soluTion TeMperaTure eFFecT

The.impact.of.solution.temperature.on.silica.polymerization.inhibition.was.investi-gated.as.a.function.of.inhibitor.dosage..For.example,.Figure.10.17.compares.silica.inhibition.(%SI).as.a.function.of.CP7.dosage.at.40°C.and.55°C.and.clearly.shows.that.

100

80

60

40

20

00 0.1

A1(III) dosage (mg/L)

% Si

lica i

nhib

ition

0.25

CP6 CP7

FIgure 10.15  Effect.of.Al(III).concentration.on.silica.polymerization.inhibition.by.polymers.(50.mg/L,.550.mg/L.silica,.200.mg/L.Ca,.120.mg/L.Mg,.pH.7.0,.40°C,.22.h)..(Modified.from.Paper.Number.10048,.Presented. at.CORROSION/2010 Annual Conference and Exhibition,.Houston,.TX,.2010;.Figure.5..Reproduced.with.permission.from.NACE.International.)

193Solution Chemistry Impact on Silica Polymerization by Inhibitors

increasing.solution.temperature.(or.reducing.SS).reduces.the.CP7.dosage.necessary.to.inhibit.silica.polymerization.

Similarly,.the.influence.of.solution.temperature.on.silica.polymerization.is.clearly.evident.from.the.data.in.Figure.10.18..Table.10.4.summarizes.the.observations.from.Figure.10.18.data.and. the.CP6.and.CP7.polymer.dosages.needed.for.>80%.silica.inhibition.are.functions.of.both.temperature.(decrease.as.temperature.increases).and.time.(increase.with.time).

% Si

lica i

nhib

ition

100

80

60

40

20

0

Cationic polymer dosage (mg/L)0.0 1.5 3.0

CP6

CP7

FIgure  10.16  Effect. of. cationic. polymer. on. silica. polymerization. inhibition. by. poly-mers.(550.mg/L.silica,.200.mg/L.Ca,.120.mg/L.Mg,.50.mg/L.polymer,.pH.7.0,.40°C,.22.h)..(Modified.from.Paper.Number.10048,.Presented.at.CORROSION/2010 Annual Conference and Exhibition,. Houston,. TX,. 2010;. Figure. 6.. Reproduced. with. permission. from. NACE.International.)

% Si

lica i

nhib

ition

40°C55°C

CP7 dosge (mg/L)0 10 20 30 40 50

100

80

60

40

20

0

FIgure 10.17  Silica.polymerization.inhibition.by.CP7.vs..solution.temperature.(550.mg/L.silica,.200.mg/L.Ca,.120.mg/L.Mg,.pH.7.0)..(Modified.from.IWC-11-61,.Paper.presented.at.the.IWC.2011,.Orlando,.FL;.Figure.8..Reproduced.with.permission.from.the.International.Water.Conference®,.www.eswp.com/water/)

194 Mineral Scales in Biological and Industrial Systems

10.3.8  iMpacT oF Biocides on polyMer eFFicacy

Microbial. growth. on. heat. exchanger. and. RO. membrane. surfaces. is. a. major. con-cern.in.industrial.water.systems.that.causes.operational.problems.including.microbi-ally.influenced.corrosion,.reduced.heat.transfer.rates,.decreased.flow.rates,.reduced.system. cleanliness,. and. potential. health. concerns. [30]..To. overcome. these. opera-tional.challenges,.microbiocides.are.often.incorporated.into.the.water.treatment.pro-grams..The.principles.of.applications,.mechanisms.of.action,.monitoring.techniques,.and. response. to. system. contamination. differ. significantly. between. biocide. types..Biocides.are.often.classified.as.either.oxidizing.or.non-oxidizing.

The. influence. of. hypochlorite,. a. widely. used. oxidizing. biocide. on. the. perfor-mance.of.deposit.control.polymers,.has.been.the.subject.of.numerous.investigations.[34–36]..Results.of.these.studies.reveal.that.acrylic.acid,.maleic.acid,.and.aspartic.acid.homo-.and.copolymers.are.resistant.to.degradation.by.hypochlorite..To.study.hypochlorite’s. impact.on.CP2,.CP6,.and.CP7.silica.polymerization.inhibition.per-formance,.a.series.of.experiments.were.conducted. in. the.presence.of.4.mg/L.Cl2..

>100 mg/LPo

lym

er d

osag

e (m

g/L)

for >

80%

SI 25°C 40°C68°C55°C

>100 mg/L

80

100

60

40

20

0CP6 @ 5 h CP6 @ 22 h CP7 @ 5 h CP7 @ 22 h

FIgure 10.18  Minimum.polymer.dosage.needed.for.>80%.SiO2.inhibition.vs..temperature.and.time.(550.mg/L.silica,.200.mg/L.Ca,.120.mg/L.Mg,.pH.7.0)..(Modified.from.IWC-11-61,.Paper.presented.at.the.IWC.2011,.Orlando,.FL;.Figure.9..Reproduced.with.permission.from.the.International.Water.Conference®.)

table 10.4temperature and time Impacts on polymer dosage requirements to achieve >80% silica Inhibition

temperature Impact on polymer dosage time Impact on polymer dosage

>3×.higher.at.25°C.than.at.40°C ≈2×.higher.at.24.vs..5.h

195Solution Chemistry Impact on Silica Polymerization by Inhibitors

Experiment.results.include.negligible.polymer.performance.change.(<2%.loss).and.residual.chlorine. loss.(<3%).thus. indicating.that. these.polymers.are.not.adversely.impacted.by.chlorine.nor.consume.chlorine.

10.3.9  iMpacT oF TherMal sTress on polyMer eFFicacy

Polymer.thermal.degradation.is.a.well-investigated.area..However,.there.is.little.practical.information.available.to.water.treatment.technologists.pertaining.to.the.thermal. stability. of. low. MW. polymers. used. in. high-temperature. applications..Polymers. used. in. high-temperature. applications. should. be. able. to. sustain. per-formance. where. exposed. to. high-temperature. and. high-pressure. environments.associated.with.boiler.and. thermal.desalination.processes..McGaugh.and.Kottle.[37].studied.the.thermal.degradation.of.PAA.and.later.the.thermal.degradation.of.an.acrylic.acid–ethylene.copolymer..They.used.infrared.and.mass.spectrographic.analysis.to.examine.the.degradation.processes.that.occurred.in.several.temperature.regions:. 25°C–150°C,. 150°C–275°C,. 275°C–350°C,. and. >350°C.. Their. results.in.air.(min.heating).suggest.that.dry.PAA.decomposes.by.forming.an.anhydride,.probably. a. six-membered. glutaric. anhydride-type. structure. up. to. 150°C.. At.350°C,.there.is.drastic.unmeasurable.change.and.strong.unsaturation.absorption..Mass.spectrographic.analysis.showed.that.carbon.dioxide.was.the.major.volatile.product.at.350°C.

In.an.earlier.paper.[38],.we.reported.the.effects.of.thermal.treatment.(i.e.,.a.vari-able.temperature.[150°C,.200°C,.and.230°C],.pH.10.5,.and.20.h).on.the.silica.polym-erization. inhibition.performance.of. the.polymers.herein.designated.as.PAA,.CP3,.CP5,.and.CP6..The.results.of.that.study.clearly.show.that.the.PAA.and.copolymers.CP3.and.CP5.(promoted.as.silica–silicate.deposit.control.agents).performed.poorly.(<5%. inhibition). as. silica. polymerization. inhibitors. when. exposed. to. 150°C. and.200°C,.whereas.CP6.retained.>95%.of.its.performance.(vs..no.thermal.stress).

To.understand. the. impact.of. thermal. treatment.on. the.performance.of.CP7.as.well.as.the.other.polymers.discussed.herein,.we.conducted.a.series.of.experiments.exposing.the.polymer.to.thermal.stress.(variable.temperature.[200°C,.230°C,.250°C,.and.300°C],.pH.10.5,.and.20.h).before.evaluating.the.silica.polymerization.inhibitor.performance.[39]..Figure.10.19.presents.comparative.silica.polymerization.inhibition.data.before.and.after.thermal.stress.at.50.mg/L.polymer.dosages.

Figure. 10.19. silica. polymerization. inhibition. data. in. the. absence. of. thermal.stress. show. that. the. copolymer. blends. (i.e.,. CP6. and. CP7). are. effective. but. the.other. polymers. evaluated. are. ineffective. inhibitors. under. the. high. silica. satura-tion.level.(3.0×).test.conditions..More.specifically.the.%SI.values.obtained.for.the.homo-.(i.e.,.PMA.and.PAA).and.copolymers.(i.e.,.CP2,.CP3,.and.CP5).are.<20%.compared. to.>80%.obtained.for. the.copolymer.blends. (CP6.and.CP7)..The.data.clearly. show. that. the.deposit. control.polymers. containing.>50%.carboxylic. acid.monomer.groups.(i.e.,.PMA,.PAA,.CP2,.CP3,.and.CP5).exhibit.poor.performance.as. silica. polymerization. inhibitors.. By. contrast,. the. copolymer. blends. (CP6. and.CP7).that.contain.<50%.carboxylic.acid.monomer.groups.are.significantly.better.silica.polymerization.inhibitors.and.a.significant.improvement.over.current.silica.inhibitor.technology.

196 Mineral Scales in Biological and Industrial Systems

Silica.inhibition.data.for.polymers.after.thermal.stress.presented.in.Figure.10.19.indicate.the.following:

. 1..The.homopolymers.(PAA.and.PMA).and.copolymers.(CP2,.CP3,.and.CP5).are.ineffective.(<10%).silica.polymerization.inhibitors.

. 2..The. copolymer. blends. (CP6. and. CP7). are. very. effective. (≈80%). silica.polymerization.inhibitors.after.thermal.stress.at.200°C.

. 3..Thermal. stress. above. 230°C. for. CP6. causes. a. significant. reduction.performance.

. 4..Thermal.stress.above.250°C.for.CP7.causes.a. reduction. in.performance..However,.the.CP7.silica.polymerization.inhibitions.after.thermal.stress.at.250°C.and.300°C.were.>70%.and.>60%,.respectively.

Figure.10.20. takes. a. closer. look.at. the. silica.polymerization. inhibition.performance.of.CP6.and.CP7.after. thermal.stress.as.a. function.of.polymer.dosages. in. the.10–50.mg/L.range..The.post-thermal.stress.results.shown.in.Figure.10.20.indicate.that.(a).both.CP6.and.CP7.experience.a.modest.(<15%).performance.reduction.(suggesting.some.degradation.of.the.polymer.functional.groups).and.(b).CP7.is.a.more.effective.silica.polymerization.inhibitor.than.CP6.at.lower.dosages.both.before.and.after.thermal.stress..Collectively,. the. results.discussed.earlier.as.well.as.Figures.10.19.and.10.20.clearly.show.that.CP7.is.a.superior.silica.polymerization.inhibitor.over.a.wide.range.of.dosages.and.after.thermal.stress..Thus,.CP7.because.of.its.superior.thermal.stability.at.high.tem-perature.may.be.a.suitable.candidate.for.high-temperature.silica.control.applications.

10.3.10  silica precipiTaTe characTerizaTion

The. silica. precipitates. formed. during. the. silica. polymerization. experiments. were.investigated. using. XRD. and. EDS.. Figure. 10.21. shows. the. XRD. spectra. of. the.

23°C 200°C 230°C 250°C 300°C

PMA PAA CP2 CP3 CP5 CP6 CP7

% Si

lica i

nhib

ition

100

80

60

40

20

0

FIgure 10.19  Silica.polymerization.inhibition.by.polymers.as.a.function.of.thermal.stress.(550.mg/L.silica,.200.mg/L.Ca,.120.mg/L.Mg,.pH.7.0,.40°C,.50.mg/L.polymer).

197Solution Chemistry Impact on Silica Polymerization by Inhibitors

100CP6 @23°CCP6 @200°C

CP7 @200°CCP7 @23°C80

% Si

lica i

nhib

ition

60

40

20

00 10

Polymer dosage (mg/L)20 30 40 50

FIgure 10.20  Silica.polymerization.inhibition.as.a.function.of.polymer.thermal.stress.and.dosage.(550.mg/L.silica,.200.mg/L.Ca,.120.mg/L.Mg,.pH.7.0,.40°C).

750

500

Inte

nsity

(cou

nts)

250

010 20 30 40 50

2-Theta (deg)60 70 80

1000

FIgure 10.21  XRD.spectra.of.amorphous.silica.formed.in.the.absence.and.presence.of.CP6.and.CP7.

198 Mineral Scales in Biological and Industrial Systems

precipitates.formed.in.the.absence.of.polymer.and.in.the.presence.of.15.mg/L.poly-mer.(CP6.and.CP7)..The.spectra.suggest.that.the.silica.precipitates.formed.during.polymerization.process.are.amorphous.

Figure.10.22.presents.EDS.spectrum.of.precipitated.amorphous.silica..From.the.spectrum,.it.is.apparent.that.the.precipitates.consist.essentially.of.silicon.and.oxygen.with.only.trace.amounts.of.calcium.and.magnesium.present.in.the.silica.precipitates..This.observation.was.confirmed.by.analyzing.calcium.and.magnesium.ions.before.and.after.filtration.wherein. there.was.no.significant.concentration.difference..The.trace.levels.of.Ca.and.Mg.shown.in.the.EDS.spectra.may.be.due.to.surface.adsorp-tion.of.Ca.and.Mg.on.the.unwashed.precipitated.silica.

reFerences

. 1.. Amjad,.Z..The Science and Technology of Industrial Water Treatment..CRC.Press,.Boca.Raton,.FL.(2010).

. 2.. Iler,.R..K..The Chemistry of Silica..John.Wiley.&.Sons,.New.York.(1979).

. 3.. Bremere,. I.,. Kennedy,. M.,. Mhyio,. S.,. Jalijuli,.A.,.Witkamp,. G.-J.,. and. Schippers,. J..Prevention. of. silica. scale. in. membrane. systems:. Removal. of. monomer. and. polymer.silica..Desalination.132,.89–100.(2000).

. 4.. Sheikholeslami,.R..and.Bright,.J..Silica.and.metals.removal.by.pretreatment.to.prevent.fouling.of.reverse.osmosis.membrane..Desalination.143,.255–267.(2002).

. 5.. Dubin,.L.,.Dammeier,.R..L.,.and.Hart,.R..A..Deposit.control.in.high.silica.water..Paper.No..131,.CORROSION/85,.NACE.International,.Houston,.TX.(1985).

. 6.. Meier,.D..A..and.Dubin,.L..A.novel.approach.to.silica.scale.inhibition..Paper.No..334,.CORROSION/87,.NACE.International,.Houston,.TX.(1987).

. 7.. Yorke,.M..and.Amjad,.Z..Carboxylic.functional.polyampholytes.as.silica.polymerization.inhibitors..U.S..Patent.No..4510059.(1985).

. 8.. Harrar,.J..E.,.Lorensen,.L..E.,.and.Locke,.F..E..Method.for.inhibiting.silica.precipitation.and.scaling.in.geothermal.flow.systems..US.Patent.No..4328106.(1982).

. 9.. Neofotistou,.E..and.Demadis,.K..Use.of.antiscalants.for.mitigation.of.silica.(SiO2).fouling.and.deposition:.Fundamentals. and.applications. in.desalination. systems..Desalination.167,.257–272.(2004).

0.0000

11000Co

unts

Si

keV 10.240C

C1C1 Ca Ca

O

NaMg

FIgure 10.22  EDS.spectra.of.amorphous.silica.

199Solution Chemistry Impact on Silica Polymerization by Inhibitors

. 10.. Hann,.W.. F.,. Robertson,. S.. T.,. and. Bardsley,. J.. H.. Recent. experience. in. controlling.silica.and.magnesium.silicate.deposits.with.polymeric.dispersants..Paper.No..93–59,.International Water Conference,.Pittsburgh,.PA.(1993).

. 11.. Perez,.L..A.,.Brown,.J..M.,.and.Nguyen,.K..T..Method.for.controlling.silica.and.water.soluble.silicate.deposition..US.Patent.No..5256302.(1993).

. 12.. Momozaki,.K.,.Kira,.M.,.Murano,.Y.,.Okamoto,.M.,.and.Kawamura,.F..Polyacrylamide.based.treatment.program.for.open.recirculating.cooling.water.system.with.high.silica.content..Paper.No..92–11,.International Water Conference,.Pittsburgh,.PA.(1992).

. 13.. Gill,. J.. S.. Inhibition. of. silica-silicate. deposit. in. industrial. waters.. Colloid Surf A: Physiochem Eng Aspects.74,.101–106.(1994).

. 14.. Amjad,.Z..and.Zuhl,.R..W..Silica.control.in.industrial.water.systems.with.a.new.polymeric.dispersant.. Association of Water Technologies Annual Convention,. Hollywood,. FL.(2009).

. 15.. Zhang,.B.,.Xin,.S.,.Chen,.Y.,.and.Li,.F..Synergistic.effect.of.polycation.and.polyanion.on.silica.polymerization..J Colloid Interf Sci.368,.181–190.(2012).

. 16.. Nicholas,.P..P..and.Amjad,.Z..Method.for.inhibiting.and.deposition.of.silica.and.silicate.compounds..US.Patent.No..5658465.(1997).

. 17.. Amjad,.Z..and.Zuhl,.R..W..Factors.impacting.silica-silicate.control.agent.performance.in.industrial.water.systems..International Water Conference,.Orlando,.FL.(2011).

. 18.. Amjad,.Z..and.Zuhl,.R..W..Laboratory.evaluation.of.process.variables. impacting. the.performance.of.silica.control.agents.in.industrial.water.treatment.programs..Association of Water Technologies Annual Convention,.Austin,.TX.(2008).

. 19.. Cowan,.J..C..and.Weintritt,.D..J..(Eds.)..Water Formed Scale Deposits..Gulf.Publishing,.Houston,.TX.(1976).

. 20.. Amjad,.Z.,.Zuhl,.R..W.,.and.Zibrida,.J..Factors.influencing.the.precipitation.of.calcium-inhibitor. salts. in. industrial.water. systems..Association of Water Technologies Annual Convention,.Phoenix,.AZ.(2003).

. 21.. Sheikholeslami,.R.,.Al-Mutaz,.I..S.,.Koo,.T.,.and.Young,.A..Pretreatment.and.the.effect.of.cations.and.anions.on.prevention.of.silica.fouling..Desalination.139,.83–95.(2001).

. 22.. Icopini,.G..A.,.Brantley,.S..L.,.and.Heaney,.P..J..Kinetics.of.silica.oligomerization.and.nanocolloid.formation.as.a.function.of.pH.and.ionic.strength.at.25°C..Geochimica et Cosmochimica Acta.69(2).293–303.(2005).

. 23.. Amjad,.Z..and.Zuhl,.R..W..The.use.of.polymers.to.improve.control.of.calcium.phos-phonates.and.calcium.carbonate.in.high.stressed.cooling.water.systems..Association of Water Technologies Annual Convention,.Nashville,.TN.(2004).

. 24.. Amjad,.Z..Interactions.of.hardness.ions.with.polymeric.scale.inhibitors.in.aqueous.sys-tems..Tenside Surf Det.45,.71–77.(2005).

. 25.. Amjad,. Z.,. Zuhl,. R..W.,. and. Huang,. S.. Deposit. control. polymers:. Types,. character-ization,.and.applications..Chapter.No..22.in.The Science and Technology of Industrial Water Treatment,.Z..Amjad.(Ed.)..CRC.Press,.Boca.Raton,.FL.(2010).

. 26.. Sheikholeslami,. R.,.Al-Mutaz,. I.. S.,. Tan,.A.,. and. Tan,. S.. D.. Some. aspects. of. silica.polymerization.and.fouling.and.its.pretreatment.by.sodium.aluminate,.lime,.and.soda.ash..Desalination.150,.85–92.(2002).

. 27.. Sahachaiyunta,.P.,.Koo,.T.,.and.Sheikholeslami,.R..Effect.of.several.inorganic.species.on.silica.fouling.in.RO.membranes..Desalination.144,.373–378.(2002).

. 28.. Kemmer,. F.. N.. and. McCallion,. J.. (Eds.).. The Nalco Handbook.. McGraw-Hill. Book.Company,.New.York.(1979).

. 29.. Amjad,.Z.,.Zuhl,.R..W.,.and.Zibrida,.J..F..Performance.of.polymers.in.industrial.water.systems:.The.influence.of.process.variables..Mat Perf.36(1).32–37.(1997).

. 30.. Kessler,.S..M..Advanced.scale.control.technology.for.cooling.water.systems..Paper.No..02402,.CORROSION/2002,.NACE.International,.Houston,.TX.(2002).

200 Mineral Scales in Biological and Industrial Systems

. 31.. Smyk,.E..B.,.Hoots,.J..E.,.Fivizzani,.K..P.,.and.Fulks,.K..E..The.design.and.applica-tion.of.polymers. in. cooling.water. programs..Paper.No..14,.CORROSION/84,.NACE.International,.Houston,.TX.(1988).

. 32.. Amjad,.Z..and.Zuhl,.R..W..Influence.of.cationic.polymers.on.the.performance.of.anionic.polymers.as.precipitation.inhibitors.for.calcium.phosphonates..Phos Res Bull.13,.59–65.(2002).

. 33.. Nalepa,.C..J..and.Williams,.T..W..Biocides:.Selection.and.application..Chapter.No..19,.in.The Science and Technology of Industrial Water Treatment,.Z..Amjad. (Ed.)..CRC.Press,.Boca.Raton,.FL.(2010).

. 34.. Wilson,. D.,. Harris,. K.,. and.Toole,. M..Towards. a. better. environment:. Improved. bio-degradability.from.a.polymeric.scale.inhibitor..Paper.No..10047,.CORROSION/2010,.NACE.International,.Houston,.TX.(2010).

. 35.. Patel,. S..An. investigation. of. sulfonated. polymers. for. deposit. and. corrosion. control..Paper.No..225,.CORROSION/98,.NACE.International,.Houston,.TX.(1998).

. 36.. Bain,.D..I.,.Fan,.G.,.and.Fan,.J..Laboratory.and.field.development.of.a.novel.environ-mentally.acceptable.scale.and.corrosion.inhibitor..Paper.No..02230,.CORROSION/2002,.Houston,.TX.(2002).

. 37.. McGaugh,.M..C..and.Kottle,.S..The.thermal.degradation.of.poly(acrylic.acids)..Polm Lett.5,.817–823.(1967).

. 38.. Amjad,. Z.. and. Zuhl,. R.. W.. Effects. of. thermal. stress. on. silica-silicate. deposit. con-trol. deposit. control. agent. performance.. Association of Water Technologies Annual Convention,.Reno,.NV.(2010).

. 39.. Amjad,.Z.. and.Zuhl,.R..W..The. role.of.water. chemistry.on.preventing. silica. fouling.in. industrial. water. systems.. Paper. Number. 10048,. Presented. at. CORROSION/2010,.NACE.International,.Houston,.TX.(2010).

. 40.. Amjad,.Z..and.Zuhl,.R..W..Factors.impacting.silica-silicate.control.agent.performance.in.industrial.water.systems..Paper.number.IWC-11-61..Presented.at.the.International.Water.Conference,.Orlando,.FL.(2011).