Zhang and Whiten_1996

6
8/8/2019 Zhang and Whiten_1996 http://slidepdf.com/reader/full/zhang-and-whiten1996 1/6 ELSEVIER Powder Technology 88 (1996) 59--64 he calculation of contact forces between particles using spring and d mpingmodels D. Zhang, W.J. Whiten * Julius Kruttschnitt Mineral Research Centre University of Queensland Isles Road Indooroopilly Brisbane. QId 4068 Australia Received I Decem ber 1995; evised 20 January 1996 Abstract Discrete element simulations can be used to model the behaviour of both fluids and contacting particles in a very flexible manner. These simulations have wide applications in both mining and mineral processing. They require the calculation of forces between th e discrete elements used in the simulation typically by assuming spring, dashpot and slider components at the contact points. The accuracy of the simulaticrts depends on the assumptions made in the calculation of interelement forces. The different methods that can be used to calculate the forces have been examined and unrealistic hehaviour found for most ot methods commonly used. The non-linear force formula of Tsuji et al., Powder Technol. 71 (1992) 239, with the particles separating when the force returns to zero rather han when the distance between the centres exceeds the sum oftb e radii is found to give realistic results. Keywords: Discretelement simulations; Springcomponent; Dashpot component; Contact point 1. Introduction Owing to the rapid progress in computer hardware, it is becoming more and more realistic to simulate the behaviour of fluid and solids as an assemblage of discrete elements. Small elements, such as particles, can represent small solids or a fluid. Large elements are used as boundaries that may be fixed, such as a container, or mobile. The discrete element method simulates the mechanical response of systems by using discrete elements. In this method, the forces between assumed or actual discrete com- ponents are calculated and used to determine the motion of the discrete components thus giving a dynamic simulation. During the simulation process, the simulation time is discre- tized into small time intervals. The motion of each particle and boundary in each time interval is calculated. The posi- tions of these particles and boundaries are updated at each small time interval. The discrete element method that describes the motion of assemblies of particles was proposed by Greenspan [2] and Cundall and Straek [ 3 ] and others [ 1,4-7 ] have made exten- sive use of the technique. Cundall and Strack [3] proposed a model by assuming spring, dashpot and slider components at the contact points * Corresponding author. 0032-5910/96/ 15.00 © 1996 Elsevier Science S.A. All fights eserved Fig. I. Particle contact mod el for normal orce. of adjacent particles (Fig. 1). This model is com monly used for calculating the particle impact force which is then used for updating the particle position. Several assump~ons about the spring and dam ping forces used in the impact calculations are, made by different researchers. The accw acy of the sim- ulations depend on the calculation of interelement forces. In this paper, the different methods that can be used to calculate the impact forces are examined.

Transcript of Zhang and Whiten_1996

Page 1: Zhang and Whiten_1996

8/8/2019 Zhang and Whiten_1996

http://slidepdf.com/reader/full/zhang-and-whiten1996 1/6

E L S E V IE R Powder Technology88 (19 96) 59--64

he calcula t ion o f contact forces be twee n par t ic les u s ing spr ing andd mping models

D . Z h a n g , W . J . W h i t e n *Julius Kruttschnitt Mineral Research Centre Universityof Queensland Isles Road Indooroopilly Brisbane. QId 4068 Australia

Received I Decem ber1995; evised20 January 1996

A b s t r a c t

Discrete e lemen t simulations can be used to model the behaviour of bo th fluids and contacting particles in a ve ry flexible manner. Thesesimulations ha ve wide ap plications in both m ining and mineral processing. They require the calculation of forces between th e discrete elementsused in the simulation typically by assuming spring, dashpot and slider components at the contact points. The accuracy of the simulaticrtsdepends on the assumptions m ade in the calculation of interelement forces. The different m ethods that can be used to calculate the forces havebeen examined and unrealistic he haviour found for most ot methods commonly used. The non-linear force formula of Tsuji et al . ,P o w d e rTechnol. 71(199 2) 239, w ith the particles separating w hen the force returns to zero rather han w hen the distance between th e centres exceedsthe sum o ftb e radii is found to give realistic results.

Keywords:Discreteelementsimulations;Springcomponent;Dashpotcomponent;Contactpoint

1 . I n t r o d u c t i o n

Owing to t he r ap id p rog res s i n compute r ha rdware , i t i sb e c o m i n g m o r e a n d m o r e r e a l i s ti c t o s im u l a t e t h e b e h a v i o u ro f f l u id and so l id s a s an a s semblage o f d i sc re t e e l emen t s .Sma l l e l emen t s , such a s pa r t ic l e s , can r ep resen t sma l l so l id so r a f l u id . La rge e l em en t s a r e u sed a s bound a r i e s t ha t may bef ixed , such a s a con ta ine r, o r mob i l e .

T h e d i s c r e t e e l e m e n t m e t h o d s i m u l a t e s t h e m e c h a n i c a lr e sponse o f sys t ems by us ing d i sc re t e e l emen t s . In t h i sme tho d , t he fo rces be tween a s su med o r ac tua l d i sc re t e com-p o n e n t s a r e c a l c u l a t e d a n d u s e d t o d e t e r m i n e t h e m o t i o n o ft h e d i s c re t e c o m p o n e n t s t h u s g i v i n g a d y n a m i c s i m u l a ti o n .Dur ing the s im u la t ion p rocess , t he s imu la t ion t ime i s d i sc re -t i zed in to sma l l t ime in t e rva l s . The mo t ion o f each pa r t i c l eand bo unda ry in each t im e in t e rva l i s ca l cu la t ed . The pos i -t i ons o f t hese pa r t i c l e s and bounda r i e s a r e upda ted a t eachsma l l t ime in t e rva l .

T h e d i s c re t e e l e m e n t m e t h o d t h a t d e s c r i b es t h e m o t i o n o fa s s e m b l i e s o f p a r t ic l e s w a s p r o p o s e d b y G r e e n s p a n [ 2 ] a n dCund a l l and S t r aek [ 3 ] an d o the r s [ 1 ,4 -7 ] hav e made ex ten -s ive use o f t he t echn ique .

C u n d a l l a n d S t r a c k [ 3 ] p r o p o s e d a m o d e l b y a s s u m i n gsp r ing , dash po t and s l i de r com pone n t s a t t he con tac t po in t s

* Correspondingauthor.

0032-5910/96/ 15.00 © 1996ElsevierScienceS.A. All fights eserved

Fig. I. Particlecontact mod el for normal orce.

o f ad j acen t pa r t i c l e s (F ig . 1 ) . Th i s mode l i s com mo nly usedfo r ca l cu la t ing the pa r t ic l e impac t fo rce w h ich i s t hen usedfo r upda t ing the pa r t ic l e pos i t ion . Seve ra l a s sum p~o ns abou tthe sp r ing and dam ping fo rces u sed in the imp ac t ca l cu la t ionsa re , ma de by d i f f e ren t r e sea rche r s . The accw acy o f t he s im-u la t ions depen d on the ca l cu la t ion o f i n t e re l em en t fo rces . Inth i s pape r, t he d i f f e ren t me thods tha t can be used to ca l cu la t ethe impac t fo rces a r e examined .

Page 2: Zhang and Whiten_1996

8/8/2019 Zhang and Whiten_1996

http://slidepdf.com/reader/full/zhang-and-whiten1996 2/6

D. Zhang, W.J. Whiten Powder Technology 88 1996) 59-64

2 L i n e a r d a m p i n g a n d sp r i n g m o d e l

The mos t comm only u sed me thod [3 ] a s sumes a l i nea rsp r ing and damper. The fo rce ca l cu l a t ed f rom the l i nea ra s sumpt ions i s app l i ed when the pa r t i c l e s ove r l ap , t ha t i swhen the d i s t ance be tween cen t r e i s l es s t han t he sum o f t hepar t ic le radi i .

Fo r a l i nea r sp r ing and dam per, t he equa t ion o f mo t ion o fimpac t ing pa r t i c l e s can be exp re s sed a s :

d2x dx, ,~ - 7 + q -~ ; + k ~ ( t ) = 0 ( 1 )

To s im p l i fy t he ca l cu l a t i on , Eq . I ) c an be no rm a l i zed a sfol lows:

d2.f eLf ^ ~ ,-~+ 2a - ~+ x( t )= 0 ( 2 )

whe re

x= /q,t= t(m /q) ~/2

and

ka 2 ( m q ) l / z

Th e con tact cond i t ion fo r two par t ic les i s x > O. The in i t ia lcond i t i ons fo r t h i s equa t ion a t t=0 can be s e t to x (O) =0 ,x'(O)= 1 w i thou t l o s s o f gene ra l it y. The so lu t i on o f Eq . (2 )g ives t he r e l a t i ve pos i t i on o f o ne o f t he pa r t i c l e s a t t ime twhen a > , a s show n be low:

2 ( / ' ) =exp { - [ a - ( a 2 - 1 ) , / 2 ] ~}2 ( a 2 - 1 ) I /2

e xp { - [ a + ( a 2 - l ) l / 2 ] t }2 ( a ? - 1 ) 1 / 2 ( 3 )

For the cases a < l and a = l , the pos i t ion is g iven by:

g (~ ) s i n [ ( - a 2 + l ) l / 2 t "] e x p ( - a t ' ) w h e n a < l( - - a 2 + l ) t / 2

i 4 )

g ( t ) = e x p ( t ) w h e n a--=l

The no rma l i zed ve loc i t y and acce l e r at i on can be ca l cu l a t ed

f rom these and a r e g iven i n Append ix A .To inves t i ga t e t he cha rac t e r i st i c s o f p os i t i on , ve loc it y, and

fo rce du r ing t he who le p roces s o f co l l i s i on , t he g raphs o fthe se va r i ab l e s ve r sus t ime were p lo t t ed w i th s eve ra l chosenva lues o f a .

The g raph o f pos i t i on ve r sus t ime i s shown in F ig . 2 ( a )and looks r ea sonab le . The d i sp l acemen t i nc rea se s f rom ze roun t i l a max im um i s r eached , a f t e rward r educes t o ze ro aga in .

A g raph o f ve loc i t y ve r sus t ime was p lo t t ed fo r s eve ralva lues o f a , show n in F ig . 2 (b ) . The v e loc i ty dec rea ses f romthe in i t ia l ve loci ty unt i l i t reaches zero . The di rec t ion ofveloci ty then reverses and decreases unt i l i t reaches a mini -

.... a= 0

a ] ~ a = 0 . 3

0 . ~ - 7 , _ - - ~ ~0 0 0 . 5 1 1 . 5 2 2 . 5 3 3 . 5

-o. 2 a)

V ~-~. . . . . a=4~ k \ ' \ ~ .a = 1 . 5f i \ X ~ ' ~ \ . . . . a = 0 7 q

o . s l ~ \ \ . . . ~ . . . ~ . . . :f i :0 . , ...... ......a=0

. . . . .. . . _ . .

- 1 - t b )

/ o o.s I 1.5 2 2 .s ~ s

,.. .. ... ..

_ 1 .5 1 / ~'... ... ..... -..2 1 , a = l 5 ~ , ~ - , -.

- - - • = = v , . a - 0 3

- 2 . ~ i - " a = 0]- 3 1 c )

Fi l ' 2 .. f a ) Norma l i zed pos i t i on v s . no rma l i zed t ime us ing l i nea r Eq . (2 ) ;(b) normalized velocity vs. normalized ime using linear Eq. (2 ); (c)normalized force vs. normalized ime using inearEq. (2).

m u m w h i c h , c o m p a r i n g F ig . 2 ( a ) a n d ( b ) , i s b e f o r e t h ed i sp l acemen t r e tu rns t o ze ro .

The g raph o f fo r ce ve r sus t ime i s p lo t ted i n F ig . 2 ( c ) , andind i ca t e s t ha t Eq. ( 1 i s i nco r r ec t s i nce t he magn i tude o f t helb rce s ( excep t a= 0 ) s t a rt s f rom non-ze ro and r educes toze ro du r ing t he co l l i s i on p roces s .

The equa t ion o f i n i t i al f o r ce i n t e rm o f a can be ca l cu l a t edby subs t i t u t ing t= 0 i n to t he fo rce equa t ions (A ppen d ix A) .

These equa t ions can t hen be s imp l i f ied t o :i 0 ) = - 2 a 5 )

From the expe r imen ta l r e su l t s and t he mechan i sminvo lved , i t i s t hough t t ha t t he fo rce shou ld i nc rea se f romze ro un t i l i t r e aches a max imum then r educe t o ze ro . Theshape o f t he se fo rce ve r sus t ime cu rves shou ld b e c lo se r t othe cu rve when a = 0 , t ha t i s, no damping , and wou ld beexpec t ed t o become a sym met r i c a s t he damping inc rea sed .Bourgeo i s e t a l . [ 8 ] g ive an examp le o f such an expe r imen ta lcu rve . I t c an a l so be s een f rom F ig . 2 ( c ) t ha t t he fo rce changess ign , t ha t i s i t becomes a t t rac t ive , be fo re t he d i sp l acem en t

Page 3: Zhang and Whiten_1996

8/8/2019 Zhang and Whiten_1996

http://slidepdf.com/reader/full/zhang-and-whiten1996 3/6

D. Zhang, W.J. Whiten/Powder Technology 88 1996) 59- 64 61

(F ig . 2 ( a ) ) r e tu rns t o ze ro . Th i s r eve r se co r r e sponds t o theinc rea se i n ve loc i t y a ft e r the min im um in F ig . 2 (b ) .

The a l t e rna t i ve t o t he l i nea r mode l i s t o u se t he H er t z i anconta ct theory wh ich g ives th e e las t ic force . Tsuj i e t a l . [ 1 ]

added a damping t e rm to t h i s t ha t g ives an i n i t i a l f o r ce o fzero.

3 . N o n - l i n e a r s p r i n g a n d n o n - l i n e a r d a m p i n g m o d e l s

Tsuj i e t a l . [ 1 ] u sed a H e r t z i an non - l i nea r con t ac t mode lin one o f h i s pape r s . He then u sed t he l i nea r con t ac t mode l i nh i s l a t er pape r [ 7 ] . As t he l i nea r mode l does no t s eem rea l -i s ti c , i t i s wor th i nves t i ga t i ng t he no n - l i nea r mode l . I n t h i sequa t ion , t he dam ping t e rm i s a func t ion o f d i sp l acemen t andve loc i t y, and d i f f e r s f rom the damping t e rm in t he l i nea requa t ion w h ich i s on ly a func t ion o f ve loc i ty. Th i s t ype o fdamp ing ensu re s t ha t t he i n i t ia l f o r ce s t a r t s f rom ze ro . Tsu j is t a t e s t he damping t e rm was found heu r i s t i c a l l y, and t hedam ping coe ff i c i en t a i s an empi r i ca l cons t an t r e l a t ed to t he

....a = O. . . . . . . ., - a = 0 .5

z t ~ a = l

-o .J ( .) 4 .^

V . . a = O

1 ~ . ~ . . . . . . . , a = 0 . 5

I \ \ <~ a = l

° Vo 2 _

- 1 - 1 ( b) . . . . . . . . . . '

x , : :; , / . . ..

- 0 . , , . . / . .

a = 1 . 5Fig. 3. (a) Normalizeddisplacementvs. normalized im e using non-linearEq. (9); (b ) normalizedvelocityvs. normalized ime usingnon-linearEq.(9); (c) normalized orce vs normalized ime usingnon-linearEq. (9).

coe ff ic i en t o f r e s t i tu t i on . Howeve r, t he d amp ing t e rm can b ede t e rmined by d imens iona l ana lys i s .

The equa t ion o f mo t ion fo r t he sys t em o f two pa r t i c l e sa s suming n on - l i nea r sp r ing and dam ping i s :

m ~+ a m k)l/2x t)l/4~ -~+6 )

To m a k e e a c h t e r m n o n - d i m e n s i o n a l, d is p l a c em e n t x ( t ) a n dt ime t a re replaced by:

x = m , : 2 1 k ) 2 / s £ 7 )

t = [ m u o / k ) 2 / 5 / Vo ] t ( 8 )

Eq. (6 ) i s rewri t ten as:

d2.~(t) . ^ . ^ i / 4 d x l ) ^ . ^ . 3 / , ~ ^- - - d - - ~ , a x t t ) - - - - ~ + x t ) - = u ( 9 )

The p lo t s o f ve loc i ty, d i sp l acemen t and fo rce ve r sus t imea re ob t a ined a f t e r i n t eg ra t ing Eq . ( 9 ) w i th t he i n i t i a l cond i -t i on x (O) = 0 , x ( 0 ) = 1 and a r e show n in F ig . 3 .

These p lo t s show tha t t he equa t ion o f mo t ion w i th non -l i nea r sp r ing and damping i s r ea sonab le . S imi l a r ly t o t hel inear case , the force reverses and the veloci ty s tar ts toinc rea se be fo re t he d i sp l acemen t r e tu rns t o ze ro .

4 . E x p e r i m e n t a l r e s u l t s

Expe r imen t s t o compare t he two mode l s we re conduc t edus ing t he Hopk inson ba r equ ipmen t de sc r ibed i n Re f. [ 9 ] . Ashor t s t ee l ba r was impac t ed on to a d i sk wh ich was he ld

aga ins t a l onge r s t ee l ba r. S t r a in gauges o n t he ba r s we re u sedto r eco rd t he im pac t fo r ce a s a func t ion o f t ime .Seve ra l t ypes o f rocks such a s s ands tone , g r an i t e and b asa l t

we re u sed . F ig . 4 show s the comp ar i son o f expe r im en ta lr e su l t and n on - l i nea r mode l u s ing basa l t . The expe r imen t sus ing o the r t ype o f rocks gave s imi l a r r esu l t s. These exp e r i -men ta l r e su l t s show tha t t he l i nea r mode l i s no t su i t ab l e fo r

f o r c e

o2~ . 0 o . z 0 . 4 0 . 6 0 . 8 1 . 0 . 2

0. 0 . • - I , , , i , , ,

-O.4

0.6

eo re t i ca l-o.8- ~ .o - ~ = e x p er im en ta l d a t a

.l.z

F i g . 4 . C o m p a r i s o n o f e x p er i m e n t al r e su l t i t h n o n - l in e a r o d e l a = 0 . 3

using basaltstone.

Page 4: Zhang and Whiten_1996

8/8/2019 Zhang and Whiten_1996

http://slidepdf.com/reader/full/zhang-and-whiten1996 4/6

D. Z.hang, W.J. Whiten/Powder Technology 88 1996) 59-64

t h i s t ype o f s imu la t ion . The non- l inea r mode l i s m uch c lose rto the exper imental resul ts . However, a bet ter form of thedamping t e rm m igh t g ive a be t t e r f i t t o t he cu rve . More inves -t i ga tion o f t he impac t m echan i sms i s neces sary.

5 . S e p a r a t i o n t i m e

Correct ly determining impact ing par t ic le separat ion t imeis cr i t ica l in the calcula t ion. Most papers a ssum e the par t ic lesseparate a t the t ime tx=o, which is when the displacem ent xre turns to zero . Ho wev er, the impact ing force changes di rec-t i on a t t he t imet :~o ( the t ime a t which the force re turns tozero) both for the l inear and non- l in ear equat ions . Therefore ,a t t he time txffio ( t x=o>t /=o , s ee F igs . 2 (a ) and ( c ) , 3 (a )aad ( c ) ) , t he fo rce has changed d i r ec tion . Th i s fo rce i s t henpul l ing the two par t ic les back towards each other ins tead of

forcing them apart . T his i s not real is t ic and hence two par t i -c les must separate when the impact ing force reaches zero ,that i s , a t t imety=o

The t ime tx=o fo r a l i nea r mode l can be ca l cu la t ed us ingEqs . (3 ) and (4 ) g iv ing :

71t.~ =o ( _ a 2 + l ) , / 2 w h e n a < l ( 1 0)

The fo rce a t th is t ime is :

i x = o = 2 e x - ( ' _ a 2 + l ) t / w h e n a < 1 ( 11 )

For a > 1 the pa r ti c l e s neve r reach ze ro d i sp l acemen t aga inand hencet~=obecomes inf ini te .

From E q. (1 0) , i t can be seen that a = is the cr i t ica ldam ping va lue of th is l inear sys tem. Wh en a < 1 , the sys temosci l la tes , but wh en a > 1 , the sys tem is overdamp ed.

In Tsu j i ' s e t a l . [ 1 ] paper, ha l f of the osci l la t ion per iod isused as separat ion t ime, whic h is the t ime when the displace-men t equa l s ze ro . In t he non- l inea r mode l , t he fo rce i s equa lto ze ro when d i sp l acemen t x= 0 , t ha t i s t he po in t t~=o inFig. 5 . This f igure shows that the force changes s ign a ttf= 0be fo re becoming a t t rac t ive . The fo rce d rops ve ry r ap id ly backto ze ro a t t imet~ffioi f the calcula t ion is cont inued, assum ingthe calcula ted forc e s t i l l ac ts on the par t ic le .

F ig . 6 (a ) and (b ) shows the d i f fe rence in no rma l i zed con-t ac t t ime w hen the fo rce d rops to ze ro and when the d i sp l ace -men t r e turns to ze ro a s suming the fo rce equa tion con t inuesto hold .

Both the l inear equat ion and the no n- l inear equat ion in t ro-duce a a s t he damping coe ff i c i en t o r t he no rma l i zed dampingcoeff ic ient . This dam ping co eff ic ient a i s usual ly determine dfrom th e coeff ic ient of res ti tu t ion e of par t ic les . The coeff i -c ient of res t i tu t ion is the ra t io o f the veloci t ies af ter impact ingand be fo re impac t ing . The re fo re , a wrong sepa ra t ion t im eresul ts in a wro ng dam ping c oeff ic ient a . The graphs in Fig .6 (c ) and (d ) compa re the d i f f e ren t r e sul t s. Th e f - - O p lo t sare found by plot t ing e versus a , assuming the separat ion t ime

^

~ L . . • . 1 . , , , o . . . . ~ . ' . ~ , , ~

0 i\

F i g . 5. N o r m a l i z e d f o r c e v s . n o r m a l i z e d t i m e u s i n g n o n - l i n e a r e q u a t i o n

(a=0.5).

a t t i r e Similar ly, the x- - 0 plots are plot ted e versus a assum -ing the separat ion t ime a t tx= 0 . For low values o f e , i t can beseen the two cu rves g ive v e ry d i f f e ren t va lues o f a .

6 . C o n c l u s i o n s

The l i nea r mode l g ives t he g raph shown in F ig 2 (c ) , byp lo t ti ng fo rce ve r sus t ime and shows the p rob lem wi th th i smode l . Excep t fo r t he p lo t when the damping fo rce i s ze ro ,a l l o ther p lots s tar t f rom negat ive values ins tead of zero . Fromthe expe r imen ta l r e su l t s and the phys i ca l mechan i sm i t i sunders tood that the forces should increase f rom zero. Theshape o f t he expe r imen ta l fo rce cu rves i s s imi l a r to t ha t shownin F ig . 2 (c ) fo r t he fo rce cu rve wi thou t a damping fo rce andobtained by plot t ing force versu s t ime. This indicates that thedamping fo rmula i s i nco r rec t. The d amping coe ff i c i en t qshould not be constant . R is expected to be a funct ion ofd i sp l acemen t s ince the con tac t d i sp l acemen t i nc reases f romthe zero .

A second p rob lem i s t hat t he fo rces change d i r ec t ion be fo rethe par t ic les separate , based on thei r radi i , which m eans thatthe force is pul l ing the par t ic les together befo re they separate .

The Tsu j i e t a l . [ 1 ] mode l u sed non- l inea r sp r ing and non-l inear damping . The damping fo rce i s t he func t ion o f d i s -placem ent and veloci ty. This form ula ensures that the in i t ia lfo rces inc rease f rom a ze ro va lue . F ig . 3 (c ) ( and a l so F ig . 3f rom Ref . [ 1 ] ) shows the fo rce become s a t t r ac tive be fo re thepar t ic les separate based on thei r radi i . The force betwe en thecontact par t ic les changes di rect ion before the par t ic les sepa-ra te . This i s not real is t ic , the par t ic les should separate a t thet ime o f t he fo rce go ing to ze ro and be fo re the fo rce s t a r ts t opul l the par t ic les together. After the force has reached zero ,the par t ic les are separat ing fas ter than they are recover ingtheir or ig inal shape.

A l inea r damping fo rce fo rmula wi l l a l so cause the ca l cu -la t ion of unreal is t ica l ly large forces between the par t ic les ,which wi l l then be t ransmit ted to other par t ic les . The non-l inear damping form su ggested by Tsuj i e t a l . [ 1 ] g ives a

Page 5: Zhang and Whiten_1996

8/8/2019 Zhang and Whiten_1996

http://slidepdf.com/reader/full/zhang-and-whiten1996 5/6

D. Zhang W.J. Whiten/Powder Technology 88 1996)59--64

i

5

~ ~ f=O. . . . . . , , , v , , , , | . . . . , .-: ---~ .

0 0 2 0 4 0 6 0 8 0 9

1. c)

, 2 o . 2 . 4 . 6 . 8 1 1 ~ : 1 .4 1 .6 1 .8

a

'1 (b)

o .2 . 4 .G ,8 1 1 ,2 : . 4 ' 1 .6 . 8

a

e

11 - ~ d )

.~ ~.~.

- .2 O .2 .4 .G .8 1 1 Z 1 .4 1 f i ] .8a

F i g . 6 . ( a ) N o r m a l i z e d t i m e v s . a a t t , = o u s i n g l in e a r e q u a t i o n ( b ) n o r m a l i z e d t i m e v s . a a t t ,~ o u s i n g n o n - l i n e a r e q u a t i o n : ( c ) c o e f f i c i e n t o f r e s t i t m i o n e v s.

a using inearequation: (d) coefficientof restitution e vs, a using non-linearequation•

qual i ta t ively acceptable form for the in ter-par t ic le force .How ever, more r e sea rch shou ld be done on the bes t fo rm fo rthe damping fo rce .

The p ar t ic le separat ion cr i ter ion that uses the p ar t ic le radi iresul ts in a t t ract ive forces between par t ic les i f damping ispresent . The corr ect ca lcula t ion separates the par t ic les wh enthe force (w hich is negat ive as def ined in th is paper) r i ses tozero. Afte r th is t ime the par t ic le surfaces re turn to thei r or ig-inal shape s low er than the veloci ty of separat ion of theparticles.

In a d iscre te e le me nt s imulat ion, the calcula t ion o f instan-taneous forc e or the var ia t ion in forces could be ser iously iperror unless careful considerat ion is g iven to the assumptkm smade in de t e rmin ing the magn i tude o f t he in t e r-pa r t i c l eforces .

7 . L i s tof symbols

a damping coe ff i c i en te the coeff ic ien t of res t i tu t ionf contact force

i In l i n e a r e q u a t i o n s , i t i s a n o r m = . i z e d c o e f f i c i e n t . I n n o n - E n e a r e q u a t i o n ,

it is an em piricalconstant hat can be related o 6~e coefficient f restitution.

no rma l i zed con tac t fo rcek s t i ffness coeff ic ientm par t ic le massq damping coe ff i c i en tt t imet no rma l i zed t imev par t ic le veloci ty0 no rma l i zed ve loc i tyv in i t ia l veloci ty

: x par t ic le d isplacem ent£ norma l ized par t ic le d isplacem ent

cknowledgements

Author s wou ld l i ke to t hank M r Cameron Br iggs fo r sup -p ly ing the expe rimen ta l da t a i n F ig . 4 and the JKM RC m an-agem ent for supper t of th is project .

A p p e n d i x A

The ve loci ty and normal ized force a t t ime t us ing a l inearequa t ion can be de r ived a s shown:

Page 6: Zhang and Whiten_1996

8/8/2019 Zhang and Whiten_1996

http://slidepdf.com/reader/full/zhang-and-whiten1996 6/6

D. Zhang. W .J. Whiten/Powder Technology 88 (1996) 59-64

d .f ( t ) [ - a + ( a 2 - 1 ) ~ / 2 ] e x p l - [ a - ( a - l ) J ~ 2 ] t }6 ( t ) = d ~: 2 ( a 2 - 1 ) 1 /2

[ - a - ( a 2 - I ) i /2 ] e x p l - [ a + ( a 2 - 1 ) 1 / 2 ] t }w h e n a > 12 ( a 2 - 1 ) I /2

v ( t ) = - - - d - ~ = c o s [ ( - a 2 + 1 ) e x p ( - a t ' )

s in [ ( - a z + 1 ) i / 2~ ] a ex p ( - a t )w h e n a < 1( - a 2 + l ) ~ / 2

t ~ (1 ) = d . f ( h ; ld l = - e x p ( t ' ) + ~ w h en a = 1

^ . ~ . d 0 ( D [ - - a + ( a 2 - - 1 ) l / 2 ] 2 e x p { - - j a - - ( a 2 - - 1 ) l / 2 ] t }f ( t ) = d [ 2 ( a 2 - 1 ) I /2

[ - a - ( a 2 - 1 ) i / 2 ] exp { - [ a + ( a 2 - 1 ) ~ /2] ~ i

2 ( a 2 - l )U / 2 w h e n a > 1^

= ~ = - s i n [ ( - a 2 + I ) I /2 t' ] ( - a 2 + 1 ) 1 /2 e x p ( - a t ' ) - 2 c o s [ ( - a 2 + l ) I / 2t '] a e x p ( - a t )

s in [ ( - a 2 + 1 ) ,/ 2~ ] a 2 ex p( - a t ' )-4 w h e n a < 1( - a 2 + l ) ~ / 2

~ , ^ . d tT ( i ) t 2t ) = d t = e x p ( . ; ) e x p ( t ) w h e n a = 1

( A l )

A2)

A3)

( A 4 )

( A S )

( A 6 )

e f e r e n c e s

[ I ] Y . Tsuj i , T. Tan aka a nd T. Ishida,Powder TechnoL, 71 (1992)239.[2 ] D . Greenspan ,Discrete NumericaIMethods in Physicsand Enginee iug,

Aca dem ic Press. Ne~, , York. 1974.[3] P.A. Cundal l and O.D.L. Strack,Geotechnique. 29 (1979)4 1.[4] R. E Barbosa-Carr i llo ,Pi~.D Thes;,. ,'he.ln:versity of Illinois, Urba na,

IL. 1985.

[5] B.K. Mishra,Ph.D Th esis,The Unive r s i ty o f Utah , Logan . UT. 1991.[6} B.K. Mishra,Appl. Math. Modelling, 61 (1992)598.[7 ] Y . Tsu j i , T. Kaw aguch i and T. Tanaka ,Powdrr Technal., 77 (1993)

79.[8 ] F. Bourgeo i s , R .P. K ing and J .A . H erbs t in S .K . Kaw ata ( ed . ) ,

Comminution Theory andP raclice,AIM E, Lit lle ton, 1992, Ch. 8, p . 99.[9 ] C . Br iggs and R . Bearman ,The Assessment of Rock Breakage and

Damag e in Crushing Machinery. Proc. EXPLO'95.1995,p. 167.