Z-TRANSFORMS - Engineering Mathematics fileZ-TRANSFORMS 4.1 Introduction โ€“ Transform plays an...

15
Page | 1 Chapter 4 Z-TRANSFORMS 4.1 Introduction โ€“ Transform plays an important role in discrete analysis and may be seen as discrete analogue of Laplace transform. Role of โ€“ Transforms in discrete analysis is the same as that of Laplace and Fourier transforms in continuous systems. Definition: The โ€“Transform of a sequence defined for discrete values = 0,1,2,3, โ€ฆ and ( =0 for <0 ) is defined as = โˆ’ โˆž =0 . โ€“ Transform of the sequence i.e. is a function of and may be denoted by () Remark: โ€“ Transform exists only when the infinite series โˆ’ โˆž =0 is convergent. = โˆ’ โˆž =0 is termed as one sided transform and for two sided โ€“ transform = โˆ’ โˆž =โˆ’โˆž Results on โ€“ Transforms of standard sequences 1. = โˆ’ โˆž =0 =1+ + 2 2 + 3 3 + โ‹ฏ + + โ‹ฏ = 1 1โˆ’ , <1 โˆด = โˆ’ , <1 2. 1 = โˆ’1 Putting =1 in Result 1 3. (โˆ’1) = +1 Putting = โˆ’1 in Result 1 4. = โˆ’ โˆž =0 = โˆ’ โˆž =0 = 1+ 1 + 1 2 + 1 3 + โ‹ฏ + 1 + โ‹ฏ โˆด = โˆ’1 5. Recurrence formula for : = โˆ’ = โˆ’ (โˆ’) = + = โˆ’ = โˆ’ โˆ’

Transcript of Z-TRANSFORMS - Engineering Mathematics fileZ-TRANSFORMS 4.1 Introduction โ€“ Transform plays an...

Page 1: Z-TRANSFORMS - Engineering Mathematics fileZ-TRANSFORMS 4.1 Introduction โ€“ Transform plays an important role in discrete analysis and may be seen as discrete analogue of Laplace

Page | 1

Chapter 4

Z-TRANSFORMS 4.1 Introduction

๐‘โ€“ Transform plays an important role in discrete analysis and may be seen as discrete

analogue of Laplace transform. Role of ๐‘โ€“ Transforms in discrete analysis is the same as that

of Laplace and Fourier transforms in continuous systems.

Definition: The ๐‘โ€“Transform of a sequence ๐‘ข๐‘› defined for discrete values ๐‘› = 0,1,2,3, โ€ฆ and (๐‘ข๐‘› = 0 for ๐‘› < 0 ) is defined as ๐‘ ๐‘ข๐‘› = ๐‘ข๐‘›๐‘งโˆ’๐‘›โˆž

๐‘›=0 . ๐‘โ€“ Transform of the sequence

๐‘ข๐‘› i.e. ๐‘ ๐‘ข๐‘› is a function of ๐‘ง and may be denoted by ๐‘ˆ(๐‘ง)

Remark:

๐‘โ€“ Transform exists only when the infinite series ๐‘ข๐‘›๐‘งโˆ’๐‘›โˆž๐‘›=0 is convergent.

๐‘ ๐‘ข๐‘› = ๐‘ข๐‘›๐‘งโˆ’๐‘›โˆž๐‘›=0 is termed as one sided transform and for two sided ๐‘ โ€“

transform ๐‘ ๐‘ข๐‘› = ๐‘ข๐‘›๐‘งโˆ’๐‘›โˆž๐‘›=โˆ’โˆž

Results on ๐’โ€“ Transforms of standard sequences

1.

๐‘ ๐‘Ž๐‘› = ๐‘Ž๐‘›๐‘งโˆ’๐‘›โˆž๐‘›=0

= 1 +๐‘Ž

๐‘ง+

๐‘Ž2

๐‘ง2+

๐‘Ž3

๐‘ง3+ โ‹ฏ +

๐‘Ž๐‘›

๐‘ง๐‘›+ โ‹ฏ

=1

1โˆ’๐‘Ž

๐‘ง

, ๐‘Ž

๐‘ง < 1

โˆด ๐‘ ๐‘Ž๐‘› =๐‘ง

๐‘งโˆ’๐‘Ž ,

๐‘Ž

๐‘ง < 1

2.

๐‘ 1 =๐‘ง

๐‘งโˆ’1 Putting ๐‘Ž = 1 in Result 1

3.

๐‘ (โˆ’1)๐‘› =๐‘ง

๐‘ง+1 Putting ๐‘Ž = โˆ’1 in Result 1

4.

๐‘ ๐‘˜ = ๐‘˜๐‘งโˆ’๐‘›โˆž๐‘›=0 = ๐‘˜ ๐‘งโˆ’๐‘›โˆž

๐‘›=0

= ๐‘˜ 1 +1

๐‘ง+

1

๐‘ง2+

1

๐‘ง3+ โ‹ฏ +

1

๐‘ง๐‘›+ โ‹ฏ

โˆด ๐‘ ๐‘˜ =๐‘˜๐‘ง

๐‘งโˆ’1

5. Recurrence formula for ๐’๐’‘:

๐’ ๐’‚๐’ =๐’›

๐’› โˆ’ ๐’‚

๐’ ๐Ÿ =๐’›

๐’› โˆ’ ๐Ÿ

๐’ (โˆ’๐Ÿ)๐’ =๐’›

๐’› + ๐Ÿ

๐’ ๐’Œ =๐’Œ๐’›

๐’› โˆ’ ๐Ÿ

๐’ ๐’๐’‘ = โˆ’๐’›๐’…

๐’…๐’›๐’ ๐’๐’‘โˆ’๐Ÿ

Page 2: Z-TRANSFORMS - Engineering Mathematics fileZ-TRANSFORMS 4.1 Introduction โ€“ Transform plays an important role in discrete analysis and may be seen as discrete analogue of Laplace

Page | 2

๐‘ ๐‘›๐‘ = ๐‘›๐‘๐‘งโˆ’๐‘›โˆž๐‘›=0 , ๐‘ is a positive integer โ€ฆโ‘ 

๐‘ ๐‘›๐‘โˆ’1 = ๐‘›๐‘โˆ’1๐‘งโˆ’๐‘›โˆž๐‘›=0 โ€ฆ โ‘ก

Differentiating โ‘ก w.r.t. ๐‘ง, we get

๐‘‘

๐‘‘๐‘ง๐‘ ๐‘›๐‘โˆ’1 = ๐‘›๐‘โˆ’1(โˆ’๐‘›)๐‘งโˆ’๐‘›โˆ’1โˆž

๐‘›=0

= โˆ’๐‘งโˆ’1 ๐‘›๐‘๐‘งโˆ’๐‘›โˆž๐‘›=0

โ‡’๐‘‘

๐‘‘๐‘ง๐‘ ๐‘›๐‘โˆ’1 = โˆ’๐‘งโˆ’1๐‘ ๐‘›๐‘ usingโ‘ 

โ‡’ ๐‘ ๐‘›๐‘ = โˆ’๐‘ง๐‘‘

๐‘‘๐‘ง๐‘ ๐‘›๐‘โˆ’1

6. Multiplication by ๐’:

๐‘ ๐‘›๐‘ข๐‘› = ๐‘›๐‘ข๐‘›๐‘งโˆ’๐‘›โˆž๐‘›=0

= โˆ’๐‘ง ๐‘ข๐‘›(โˆ’๐‘›)๐‘งโˆ’๐‘›โˆ’1โˆž๐‘›=0

= โˆ’๐‘ง ๐‘ข๐‘›๐‘‘

๐‘‘๐‘ง๐‘งโˆ’๐‘›โˆž

๐‘›=0

= โˆ’๐‘ง ๐‘‘

๐‘‘๐‘ง(๐‘ข๐‘›๐‘งโˆ’๐‘›โˆž

๐‘›=0 )

= โˆ’๐‘ง๐‘‘

๐‘‘๐‘ง ๐‘ข๐‘›๐‘งโˆ’๐‘›โˆž

๐‘›=0

= โˆ’๐‘ง๐‘‘

๐‘‘๐‘ง๐‘ ๐‘ข๐‘›

7.

๐‘ ๐‘› = โˆ’๐‘ง๐‘‘

๐‘‘๐‘ง๐‘ ๐‘›0 using Recurrence Result 5 or 6

= โˆ’๐‘ง๐‘‘

๐‘‘๐‘ง๐‘ 1

= โˆ’๐‘ง๐‘‘

๐‘‘๐‘ง

๐‘ง

๐‘งโˆ’1 using result 2

โ‡’ ๐‘ ๐‘› =๐’›

๐’›โˆ’๐Ÿ ๐Ÿ

8.

๐‘ ๐‘›2 = โˆ’๐‘ง๐‘‘

๐‘‘๐‘ง๐‘ ๐‘› using Recurrence Result 5 or 6

= โˆ’๐‘ง๐‘‘

๐‘‘๐‘ง

๐’›

๐’›โˆ’๐Ÿ ๐Ÿ using Result 7

โ‡’ ๐‘ ๐‘›2 =๐‘ง2+๐‘ง

๐‘งโˆ’1 3

9. , ๐’– ๐’ = ๐ŸŽ, ๐’ < 0๐Ÿ, ๐’ โ‰ฅ ๐ŸŽ

is Unit step sequence

๐‘ ๐‘ข(๐‘›) = ๐‘ข ๐‘› ๐‘งโ€“๐‘›โˆž๐‘›=0 = 1๐‘งโˆ’๐‘›โˆž

๐‘›=0

= 1 +1

๐‘ง+

1

๐‘ง2+

1

๐‘ง3+ โ‹ฏ +

1

๐‘ง๐‘›+ โ‹ฏ

โ‡’ ๐‘ ๐‘ข(๐‘›) =๐’›

๐’›โˆ’๐Ÿ

๐’ ๐’ =๐’›

๐’› โˆ’ ๐Ÿ ๐Ÿ

๐’ ๐’๐Ÿ =๐’›๐Ÿ + ๐’›

๐’› โˆ’ ๐Ÿ ๐Ÿ‘

๐’ ๐’– ๐’ = ๐ŸŽ, ๐’ < 0๐Ÿ, ๐’ โ‰ฅ ๐ŸŽ

=๐’›

๐’› โˆ’ ๐Ÿ

๐’ ๐’๐’–๐’ = โˆ’๐’›๐’…

๐’…๐’›๐’ ๐’–๐’

Page 3: Z-TRANSFORMS - Engineering Mathematics fileZ-TRANSFORMS 4.1 Introduction โ€“ Transform plays an important role in discrete analysis and may be seen as discrete analogue of Laplace

Page | 3

10. ๐œน ๐’ = ๐Ÿ, ๐’ = ๐ŸŽ๐ŸŽ, ๐’ โ‰  ๐ŸŽ

is Unit impulse sequence

๐‘ ๐›ฟ ๐‘› = ๐›ฟ ๐‘› ๐‘งโ€“๐‘›โˆž๐‘›=0

= 1 + 0 + 0 + โ‹ฏ

โ‡’ ๐‘ ๐›ฟ ๐‘› = 1

4.2 Properties of Z-Transforms

1. Linearity: ๐’ ๐’‚๐’–๐’ + ๐’ƒ๐’—๐’ = ๐’‚๐’ ๐’–๐’ + ๐’ƒ๐’ ๐’—๐’

Proof: ๐‘ ๐‘Ž๐‘ข๐‘› + ๐‘๐‘ฃ๐‘› = ๐‘Ž๐‘ข๐‘› + ๐‘๐‘ฃ๐‘› ๐‘งโˆ’๐‘›โˆž๐‘›=0

= ๐‘Ž ๐‘ข๐‘›๐‘งโˆ’๐‘› + ๐‘ ๐‘ฃ๐‘›๐‘งโˆ’๐‘›โˆž๐‘›=0

โˆž๐‘›=0

= ๐‘Ž๐‘ ๐‘ข๐‘› + ๐‘๐‘ ๐‘ฃ๐‘›

2. Change of scale (or Damping rule):

If ๐’ ๐’–๐’ โ‰ก ๐‘ผ(๐’›), then ๐’ ๐’‚โˆ’๐’๐’–๐’ โ‰ก ๐‘ผ(๐’‚๐’›) and ๐’ ๐’‚๐’๐’–๐’ โ‰ก ๐‘ผ ๐’›

๐’‚

Proof: ๐‘ ๐‘Žโˆ’๐‘›๐‘ข๐‘› = ๐‘Žโˆ’๐‘›๐‘ข๐‘›๐‘งโˆ’๐‘›โˆž๐‘›=0

= ๐‘ข๐‘›(๐‘Ž๐‘ง)โˆ’๐‘› โ‰ก ๐‘ˆ(๐‘Ž๐‘ง) โˆž๐‘›=0

Similarly ๐‘ ๐‘Ž๐‘›๐‘ข๐‘› โ‰ก ๐‘ˆ ๐‘ง

๐‘Ž

Results from application of Damping rule

i.

Proof: ๐‘ ๐‘› =๐‘ง

๐‘งโˆ’1 2โ‰ก ๐‘ˆ(๐‘ง) say

โˆด ๐‘ ๐‘Ž๐‘›๐‘› โ‰ก ๐‘ˆ ๐‘ง

๐‘Ž =

๐‘ง

๐‘Ž

๐‘ง

๐‘Žโˆ’1

2 =๐‘Ž๐‘ง

๐‘งโˆ’๐‘Ž 2

ii.

Proof: ๐‘ ๐‘›2 =๐‘ง2+๐‘ง

๐‘งโˆ’1 3โ‰ก ๐‘ˆ(๐‘ง) say

โˆด ๐‘ ๐‘Ž๐‘›๐‘›2 โ‰ก ๐‘ˆ ๐‘ง

๐‘Ž =

๐‘ง

๐‘Ž

2+

๐‘ง

๐‘Ž

๐‘ง

๐‘Ž โˆ’1

3 =๐‘Ž(๐‘ง2+๐‘Ž๐‘ง)

๐‘งโˆ’๐‘Ž 3

iii.

Proof: We have ๐‘ ๐‘’โ€“๐‘–๐‘›๐œƒ = ๐‘ ๐‘’๐‘–๐œƒ โ€“๐‘›

= ๐‘ ๐‘’๐‘–๐œƒ โ€“๐‘›

. 1

Now ๐‘ 1 =๐‘ง

๐‘งโˆ’1

โˆด ๐‘ ๐‘’๐‘–๐œƒ โ€“๐‘›

. 1 =๐‘ง๐‘’ ๐‘–๐œƒ

๐‘ง๐‘’ ๐‘–๐œƒ โˆ’1 โˆต ๐‘ ๐‘Žโˆ’๐‘›๐‘ข๐‘› โ‰ก ๐‘ˆ(๐‘Ž๐‘ง)

=๐‘ง

๐‘งโ€“๐‘’โ€“๐‘–๐œƒ

=๐‘ง(๐‘งโˆ’๐‘’ ๐‘–๐œƒ )

๐‘งโˆ’๐‘’โ€“๐‘–๐œƒ ๐‘งโˆ’๐‘’ ๐‘–๐œƒ

๐’ ๐œน ๐’ = ๐Ÿ, ๐’ = ๐ŸŽ๐ŸŽ, ๐’ โ‰  ๐ŸŽ

= ๐Ÿ

๐’ ๐’‚๐’๐’ =๐’‚๐’›

๐’› โˆ’ ๐’‚ ๐Ÿ

๐’ ๐’‚๐’๐’๐Ÿ =๐’‚๐’›๐Ÿ + ๐’‚๐Ÿ๐’›

๐’› โˆ’ ๐’‚ ๐Ÿ‘

๐’ ๐œ๐จ๐ฌ๐’๐œฝ =๐’› ๐’›โˆ’๐œ๐จ๐ฌ ๐œฝ

๐’›๐Ÿโˆ’๐Ÿ๐’›๐œ๐จ๐ฌ ๐œฝ+๐Ÿ , ๐’ ๐ฌ๐ข๐ง ๐’๐œฝ =

๐’› ๐ฌ๐ข๐ง ๐œฝ

๐’›๐Ÿโˆ’๐Ÿ๐’›๐œ๐จ๐ฌ ๐œฝ+๐Ÿ

Page 4: Z-TRANSFORMS - Engineering Mathematics fileZ-TRANSFORMS 4.1 Introduction โ€“ Transform plays an important role in discrete analysis and may be seen as discrete analogue of Laplace

Page | 4

=๐‘ง (๐‘งโ€“๐‘๐‘œ๐‘ ๐œƒ โˆ’๐‘–๐‘ ๐‘–๐‘›๐œƒ )

๐‘ง2โ€“๐‘ง ๐‘’ ๐‘–๐œƒ +๐‘’โˆ’๐‘–๐œƒ +1 โˆต ๐‘’๐‘–๐œƒ = ๐‘๐‘œ๐‘ ๐œƒ + ๐‘–๐‘ ๐‘–๐‘›๐œƒ

=๐‘ง (๐‘งโˆ’๐‘๐‘œ๐‘ ๐œƒ โ€“๐‘–๐‘ ๐‘–๐‘›๐œƒ

๐‘ง2โ€“2๐‘ง๐‘๐‘œ๐‘ ๐œƒ +1 โˆต ๐‘๐‘œ๐‘ ๐œƒ =

๐‘’ ๐‘–๐œƒ +๐‘’โ€“๐‘–๐œƒ

2

โˆด ๐‘ ๐‘’โ€“๐‘–๐‘›๐œƒ =๐‘ง(๐‘งโˆ’๐‘๐‘œ๐‘ ๐œƒ )

๐‘ง2โˆ’2๐‘ง cos ๐œƒ+1โˆ’ ๐‘–

๐‘ง sin ๐œƒ

๐‘ง2โˆ’2๐‘ง cos ๐œƒ+1

โ‡’ ๐‘ cos ๐‘›๐œƒ โˆ’ ๐‘– sin ๐‘›๐œƒ =๐‘ง(๐‘งโˆ’๐‘๐‘œ๐‘ ๐œƒ )

๐‘ง2โˆ’2๐‘ง cos ๐œƒ+1โˆ’ ๐‘–

๐‘ง sin ๐œƒ

๐‘ง2โˆ’2๐‘ง cos ๐œƒ+1

โˆด ๐‘ cos ๐‘›๐œƒ =๐‘ง ๐‘งโˆ’cos ๐œƒ

๐‘ง2โˆ’2๐‘ง cos ๐œƒ+1 โ€ฆโ‘ข

and ๐‘ sin ๐‘›๐œƒ =๐‘ง sin ๐œƒ

๐‘ง2โˆ’2๐‘ง cos ๐œƒ+1 โ€ฆโ‘ฃ

iv.

By Damping rule, replacing ๐‘ง by ๐‘ง

๐‘Ž in โ‘ขand โ‘ฃ, we get

๐‘ ๐‘Ž๐‘› cos ๐‘›๐œƒ =๐‘ง ๐‘งโˆ’๐‘Žcos ฮธ

๐‘ง2โˆ’2๐‘Ž๐‘ง cos ๐œƒ+๐‘Ž2 and ๐‘ ๐‘Ž๐‘› sin ๐‘›๐œƒ =

๐‘Ž๐‘ง sin ๐œƒ

๐‘ง2โˆ’2๐‘ง cos ๐œƒ+๐‘Ž2

3. Right Shifting Property

For ๐’ โ‰ฅ ๐’Œ, ๐’ ๐’–๐’โˆ’๐’Œ = ๐’›โˆ’๐’Œ๐’ ๐’–๐’ , ๐’Œ is positive integer

Proof: ๐‘ ๐‘ข๐‘›โˆ’๐‘˜ = ๐‘ข๐‘›โˆ’๐‘˜๐‘งโˆ’๐‘›โˆž๐‘›=0

= ๐‘ขโˆ’๐‘˜๐‘ง0 + ๐‘ข1โˆ’๐‘˜๐‘งโˆ’1 + โ‹ฏ +๐‘ขโˆ’1๐‘งโˆ’๐‘˜+1 + ๐‘ข0๐‘งโˆ’๐‘˜ + ๐‘ข1๐‘งโˆ’(๐‘˜+1) + ๐‘ข2๐‘งโˆ’(๐‘˜+2) + โ‹ฏ

= 0 + ๐‘ข0๐‘งโˆ’๐‘˜ + ๐‘ข1๐‘งโˆ’(๐‘˜+1) + ๐‘ข2๐‘งโˆ’(๐‘˜+2) + โ‹ฏ โˆต ๐‘ข๐‘› = 0 for ๐‘› < 0

= ๐‘ข๐‘›โˆ’๐‘˜๐‘งโˆ’๐‘›โˆž๐‘›โˆ’๐‘˜=0

= ๐‘ข๐‘š๐‘งโˆ’๐‘˜โˆ’๐‘šโˆž๐‘š=0

= ๐‘งโˆ’๐‘˜ ๐‘ข๐‘š๐‘งโˆ’๐‘šโˆž๐‘š=0

= ๐‘งโˆ’๐‘˜ ๐‘ข๐‘›๐‘งโˆ’๐‘›โˆž๐‘›=0

= ๐‘งโˆ’๐‘˜๐‘ ๐‘ข๐‘›

4. Left Shifting Property

If ๐’Œ is a positive integer ๐’ ๐’–๐’+๐’Œ = ๐’›๐’Œ ๐’ ๐’–๐’ โˆ’ ๐’–๐ŸŽ โˆ’๐’–๐Ÿ

๐’›โˆ’

๐’–๐Ÿ

๐’›๐Ÿโˆ’ โ‹ฏ โˆ’

๐’–๐’Œโˆ’๐Ÿ

๐’›๐’Œโˆ’๐Ÿ

Proof: ๐‘ ๐‘ข๐‘›+๐‘˜ = ๐‘ข๐‘›+๐‘˜๐‘งโˆ’๐‘›โˆž๐‘›=0

= ๐‘ง๐‘˜ ๐‘ข๐‘›+๐‘˜๐‘งโˆ’(๐‘›+๐‘˜)โˆž๐‘›=0

= ๐‘ง๐‘˜ ๐‘ข๐‘˜๐‘งโˆ’๐‘˜ + ๐‘ข1+๐‘˜๐‘งโˆ’(1+๐‘˜) + ๐‘ข2+๐‘˜๐‘งโˆ’(2+๐‘˜) + โ‹ฏ

= ๐‘ง๐‘˜ ๐‘ข0 + ๐‘ข1๐‘งโˆ’1 + ๐‘ข2๐‘งโˆ’2 + โ‹ฏ + ๐‘ข๐‘˜โˆ’1๐‘งโˆ’(๐‘˜โˆ’1) + ๐‘ข๐‘˜๐‘งโˆ’๐‘˜ + โ‹ฏ

โˆ’๐‘ง๐‘˜ ๐‘ข0 + ๐‘ข1๐‘งโˆ’1 + ๐‘ข2๐‘งโˆ’2 + โ‹ฏ + ๐‘ข๐‘˜โˆ’1๐‘งโˆ’(๐‘˜โˆ’1)

= ๐‘ง๐‘˜ ๐‘ข๐‘›๐‘งโˆ’๐‘›โˆž๐‘›=0 โˆ’ ๐‘ข๐‘›๐‘งโˆ’๐‘›๐‘˜โˆ’1

๐‘›=0

= ๐‘ง๐‘˜ ๐‘ข๐‘›๐‘งโˆ’๐‘›โˆž๐‘›=0 โˆ’ ๐‘ข๐‘›๐‘งโˆ’๐‘›๐‘˜โˆ’1

๐‘›=0

= ๐‘ง๐‘˜ ๐‘ ๐‘ข๐‘› โˆ’ ๐‘ข0 โˆ’๐‘ข1

๐‘งโˆ’

๐‘ข2

๐‘ง2โˆ’ โ‹ฏ โˆ’

๐‘ข๐‘˜โˆ’1

๐‘ง๐‘˜โˆ’1

In particular for ๐‘˜ = 1,2,3

๐‘ ๐‘ข๐‘›+1 = ๐‘ง ๐‘ ๐‘ข๐‘› โˆ’ ๐‘ข0

๐‘ ๐‘ข๐‘›+2 = ๐‘ง2 ๐‘ ๐‘ข๐‘› โˆ’ ๐‘ข0 โˆ’๐‘ข1

๐‘ง

๐’ ๐‘Ž๐‘›๐œ๐จ๐ฌ๐’๐œฝ =๐’› ๐’›โˆ’๐’‚๐œ๐จ๐ฌ ๐›‰

๐’›๐Ÿโˆ’๐Ÿ๐’‚๐’›๐œ๐จ๐ฌ ๐œฝ+๐’‚๐Ÿ , ๐’ ๐‘Ž๐‘› ๐ฌ๐ข๐ง ๐’๐œฝ =

๐’‚๐’› ๐ฌ๐ข๐ง๐œฝ

๐’›๐Ÿโˆ’๐Ÿ๐’›๐œ๐จ๐ฌ ๐œฝ+๐’‚๐Ÿ

Page 5: Z-TRANSFORMS - Engineering Mathematics fileZ-TRANSFORMS 4.1 Introduction โ€“ Transform plays an important role in discrete analysis and may be seen as discrete analogue of Laplace

Page | 5

๐‘ ๐‘ข๐‘›+3 = ๐‘ง3 ๐‘ ๐‘ข๐‘› โˆ’ ๐‘ข0 โˆ’๐‘ข1

๐‘งโˆ’

๐‘ข2

๐‘ง2

5. Initial Value theorem:

If ๐’ ๐’–๐’ = ๐‘ผ(๐’›), then ๐’–๐ŸŽ = ๐ฅ๐ข๐ฆ ๐’›โ†’โˆž

๐‘ผ(๐’›)

๐’–๐Ÿ = ๐ฅ๐ข๐ฆ ๐’›โ†’โˆž

๐’› ๐‘ผ ๐’› โˆ’๐’–๐ŸŽ

๐’–๐Ÿ = ๐ฅ๐ข๐ฆ ๐’›โ†’โˆž

๐’›๐Ÿ ๐‘ผ ๐’› โˆ’๐’–๐ŸŽ โˆ’๐’–๐Ÿ

๐’›

โ‹ฎ

Proof: By definition ๐‘ˆ ๐‘ง = ๐‘ ๐‘ข๐‘› = ๐‘ข๐‘›๐‘งโˆ’๐‘›โˆž๐‘›=0

โ‡’ ๐‘ˆ ๐‘ง = ๐‘ข0 +๐‘ข1

๐‘ง+

๐‘ข2

๐‘ง2+

๐‘ข3

๐‘ง3+ โ‹ฏ โ€ฆโ‘ค

โˆด ๐‘ข0 = lim ๐‘งโ†’โˆž

๐‘ˆ ๐‘ง = lim๐‘งโ†’โˆž

๐‘ข0 +๐‘ข1

๐‘ง+

๐‘ข2

๐‘ง2+

๐‘ข3

๐‘ง3+ โ‹ฏ

= ๐‘ข0 + 0 + 0 + 0 + โ‹ฏ = ๐‘ข0

Again fromโ‘ค, we get

๐‘ˆ ๐‘ง โˆ’๐‘ข0 =๐‘ข1

๐‘ง+

๐‘ข2

๐‘ง2+

๐‘ข3

๐‘ง3+ โ‹ฏ

โ‡’ ๐‘ง ๐‘ˆ ๐‘ง โˆ’๐‘ข0 = ๐‘ข1 +๐‘ข2

๐‘ง+

๐‘ข3

๐‘ง2+ โ‹ฏ

โ‡’ lim๐‘งโ†’โˆž

๐‘ง ๐‘ˆ ๐‘ง โˆ’๐‘ข0 = lim๐‘งโ†’โˆž

๐‘ข1 +๐‘ข2

๐‘ง+

๐‘ข3

๐‘ง2+ โ‹ฏ = ๐‘ข1

Similarly ๐‘ข2 = lim ๐‘งโ†’โˆž

๐‘ง2 ๐‘ˆ ๐‘ง โˆ’๐‘ข0 โˆ’๐‘ข1

๐‘ง

Note: Initial value theorem may be used to determine the sequence ๐‘ข๐‘› from the given

function ๐‘ˆ ๐‘ง

6. Final Value theorem:

If ๐’ ๐’–๐’ = ๐‘ผ(๐’›), then ๐ฅ๐ข๐ฆ ๐’โ†’โˆž

๐’–๐’ = ๐ฅ๐ข๐ฆ ๐’›โ†’๐Ÿ

(๐’› โˆ’ ๐Ÿ)๐‘ผ(๐’›)

Proof: ๐‘ ๐‘ข๐‘›+1 โˆ’ ๐‘ข๐‘› = ๐‘ข๐‘›+1 โˆ’ ๐‘ข๐‘› ๐‘งโˆ’๐‘›โˆž๐‘›=0

โ‡’ ๐‘ ๐‘ข๐‘›+1 โˆ’ ๐‘ ๐‘ข๐‘› = ๐‘ข๐‘›+1 โˆ’ ๐‘ข๐‘› ๐‘งโˆ’๐‘›โˆž๐‘›=0

โ‡’ ๐‘ง ๐‘ ๐‘ข๐‘› โˆ’ ๐‘ข0 โˆ’ ๐‘ ๐‘ข๐‘› = ๐‘ข๐‘›+1 โˆ’ ๐‘ข๐‘› ๐‘งโˆ’๐‘›โˆž๐‘›=0

By using left shifting property for ๐‘˜ = 1

โ‡’ ๐‘ง โˆ’ 1 ๐‘ ๐‘ข๐‘› โˆ’ ๐‘ข0 = ๐‘ข๐‘›+1 โˆ’ ๐‘ข๐‘› ๐‘งโˆ’๐‘›โˆž๐‘›=0

or ๐‘ง โˆ’ 1 ๐‘ˆ(๐‘ง) โˆ’ ๐‘ข0 = ๐‘ข๐‘›+1 โˆ’ ๐‘ข๐‘› ๐‘งโˆ’๐‘›โˆž๐‘›=0 โˆต ๐‘ ๐‘ข๐‘› = ๐‘ˆ(๐‘ง)

Taking limits ๐‘ง โ†’ 1 on both sides

lim ๐‘งโ†’1

๐‘ง โˆ’ 1 ๐‘ˆ ๐‘ง โˆ’ ๐‘ข0 = ๐‘ข๐‘›+1 โˆ’ ๐‘ข๐‘› โˆž๐‘›=0

or lim ๐‘งโ†’1

๐‘ง โˆ’ 1 ๐‘ˆ ๐‘ง โˆ’ ๐‘ข0 = lim ๐‘›โ†’โˆž

๐‘ข1 โˆ’ ๐‘ข0 + ๐‘ข2 โˆ’ ๐‘ข1 + โ‹ฏ + ๐‘ข๐‘›+1 โˆ’ ๐‘ข๐‘›

= lim ๐‘›โ†’โˆž

๐‘ข๐‘›+1 โˆ’ ๐‘ข0

โ‡’ lim ๐‘งโ†’1

๐‘ง โˆ’ 1 ๐‘ˆ ๐‘ง = ๐‘ขโˆž

or lim ๐‘งโ†’1

๐‘ง โˆ’ 1 ๐‘ˆ ๐‘ง = lim ๐‘›โ†’โˆž

๐‘ข๐‘›

Note: Initial value and final value theorems determine the value of ๐‘ข๐‘› for ๐‘› = 0 and

for ๐‘› โŸถ โˆž from the given function ๐‘ˆ ๐‘ง .

7. Convolution theorem

Convolution of two sequences ๐‘ข๐‘› and ๐‘ฃ๐‘› is defined as ๐‘ข๐‘› โˆ— ๐‘ฃ๐‘› = ๐‘ข๐‘š๐‘ฃ๐‘›โˆ’๐‘š๐‘›๐‘š=0

Convolution theorem for ๐‘-transforms states that

If ๐‘ผ ๐’› = ๐’ ๐’–๐’ and ๐‘ฝ ๐’› = ๐’ ๐’—๐’ , then ๐’ ๐’–๐’ โˆ— ๐’—๐’ = ๐‘ผ ๐’› . ๐‘ฝ ๐’›

Proof: ๐‘ˆ ๐‘ง . ๐‘‰ ๐‘ง = ๐‘ ๐‘ข๐‘› . ๐‘ ๐‘ฃ๐‘› = ๐‘ข๐‘›๐‘งโˆ’๐‘›โˆž

๐‘›=0 . ๐‘ฃ๐‘›๐‘งโˆ’๐‘›โˆž๐‘›=0

Page 6: Z-TRANSFORMS - Engineering Mathematics fileZ-TRANSFORMS 4.1 Introduction โ€“ Transform plays an important role in discrete analysis and may be seen as discrete analogue of Laplace

Page | 6

= ๐‘ข0 +๐‘ข1

๐‘ง+

๐‘ข2

๐‘ง2+ โ‹ฏ +

๐‘ข๐‘›

๐‘ง๐‘›+ โ‹ฏ . ๐‘ฃ0 +

๐‘ฃ1

๐‘ง+

๐‘ฃ2

๐‘ง2+ โ‹ฏ +

๐‘ฃ๐‘›

๐‘ง๐‘›+ โ‹ฏ

= ๐‘ข0๐‘ฃ0 + ๐‘ข0๐‘ฃ1 + ๐‘ข1๐‘ฃ0 ๐‘งโˆ’1 + ๐‘ข0๐‘ฃ2 + ๐‘ข1๐‘ฃ1 + ๐‘ข2๐‘ฃ0 ๐‘งโˆ’2 + โ‹ฏ

= ๐‘ข0๐‘ฃ๐‘› + ๐‘ข1๐‘ฃ๐‘›โˆ’1 + ๐‘ข2๐‘ฃ๐‘›โˆ’2 + โ‹ฏ + ๐‘ข๐‘›๐‘ฃ0 ๐‘งโˆ’๐‘›โˆž๐‘›=0

= ๐‘ข๐‘š๐‘ฃ๐‘›โˆ’๐‘š๐‘›๐‘š=0 ๐‘งโˆ’๐‘›โˆž

๐‘›=0

โ‡’ ๐‘ˆ ๐‘ง . ๐‘‰ ๐‘ง = ๐‘ ๐‘ข๐‘š๐‘ฃ๐‘›โˆ’๐‘š๐‘›๐‘š=0 โˆต ๐‘ข๐‘›๐‘งโˆ’๐‘› = ๐‘ ๐‘ข๐‘› โˆž

๐‘›=0

โ‡’ ๐‘ˆ ๐‘ง . ๐‘‰ ๐‘ง = ๐‘ ๐‘ข๐‘› โˆ— ๐‘ฃ๐‘› โˆต ๐‘ข๐‘› โˆ— ๐‘ฃ๐‘› = ๐‘ข๐‘š๐‘ฃ๐‘›โˆ’๐‘š๐‘›๐‘š=0

Example1 Find the ๐‘โ€“transform of 2๐‘› + 3 sin๐‘›๐œ‹

4โˆ’ 5๐‘Ž4

Solution: By linearity property

๐‘ 2๐‘› + 3 sin๐‘›๐œ‹

4โˆ’ 5๐‘Ž4 = 2๐‘ ๐‘› + 3๐‘ sin

๐‘›๐œ‹

4 โˆ’ 5๐‘ ๐‘Ž4

= 2๐‘ ๐‘› + 3๐‘ sin๐‘›๐œ‹

4 โˆ’ 5๐‘Ž4๐‘ 1

=2๐‘ง

๐‘งโˆ’1 2+

3๐‘ง ๐‘†๐‘–๐‘›๐œ‹

4

๐‘ง2โˆ’2๐‘ง๐‘๐‘œ๐‘ ๐œ‹

4+1

โˆ’5๐‘Ž4๐‘ง

๐‘งโˆ’1

โˆต ๐‘ ๐‘› =๐‘ง

๐‘งโˆ’1 2 , ๐‘ sin ๐‘›๐œƒ =

๐‘ง sin ๐œƒ

๐‘ง2โˆ’2๐‘ง cos ๐œƒ+1 , ๐‘ 1 =

๐‘ง

๐‘งโˆ’1

โˆด ๐‘ 2๐‘› + 3 sin๐‘›๐œ‹

4โˆ’ 5๐‘Ž4 =

2๐‘ง

๐‘งโˆ’1 2+

3๐‘ง

2

๐‘ง2โˆ’ 2 ๐‘ง+1โˆ’

5๐‘Ž4๐‘ง

๐‘งโˆ’1

Example2 Find the ๐‘โ€“transform of the sequence 4, 8, 16, 32, โ€ฆ

Solution: ๐‘ข๐‘› = 2๐‘›+2 , ๐‘› = 0,1,2,3 โ€ฆ.

๐‘ 2๐‘›+2 = ๐‘ 222๐‘›

= 4 ๐‘ 2๐‘› =4๐‘ง

๐‘งโˆ’2 ,

2

๐‘ง < 1 โˆต ๐‘ ๐‘Ž๐‘› =

๐‘ง

๐‘งโˆ’๐‘Ž ,

๐‘Ž

๐‘ง < 1

Example3 Find the ๐‘โ€“transform of (๐‘› + 1)2

Solution: ๐‘ (๐‘› + 1)2 = ๐‘ ๐‘›2 + 2๐‘› + 1 = ๐‘ ๐‘›2 + 2๐‘ ๐‘› + ๐‘ 1

=๐‘ง2+ ๐‘ง

(๐‘งโˆ’1)3+

2๐‘ง

(๐‘งโˆ’1)2+

๐‘ง

๐‘งโˆ’1

โˆต ๐‘ ๐‘›2 =๐‘ง2+ ๐‘ง

(๐‘งโˆ’1)3, ๐‘ ๐‘› =

๐‘ง

๐‘งโˆ’1 2, ๐‘ 1 =

๐‘ง

๐‘งโˆ’1

Example4 Find the ๐‘โ€“transform of

i. ๐‘› cos ๐‘›๐œƒ ii. sin ๐‘›๐œ‹

2+

๐œ‹

4 iii. ๐‘’โˆ’2๐‘› iv. ๐‘Ž ๐‘›

Solution: i. ๐‘ cos ๐‘›๐œƒ =๐‘ง (๐‘งโˆ’๐‘๐‘œ๐‘ ๐œƒ )

๐‘ง2โˆ’2๐‘ง๐‘๐‘œ๐‘ ๐œƒ +1

โˆด ๐‘ ๐‘›cos ๐‘›๐œƒ = โˆ’๐‘ง๐‘‘

๐‘‘๐‘ง

๐‘ง ๐‘งโ€“๐‘๐‘œ๐‘ ๐œƒ

๐‘ง2โˆ’2๐‘ง๐‘๐‘œ๐‘ ๐œƒ +1

โˆต ๐‘ ๐‘›๐‘ข๐‘› = โˆ’๐‘ง๐‘‘

๐‘‘๐‘ง๐‘ ๐‘ข๐‘›

= โˆ’๐‘ง โˆ’๐‘ง2๐‘๐‘œ๐‘ ๐œƒ +2๐‘งโ€“๐‘๐‘œ๐‘ ๐œƒ

๐‘ง2โˆ’2๐‘ง๐‘๐‘œ๐‘ ๐œƒ +1 2

=๐‘ง3๐‘๐‘œ๐‘ ๐œƒ โˆ’2๐‘ง2+ ๐‘ง๐‘๐‘œ๐‘ ๐œƒ

๐‘ง2โˆ’2๐‘ง๐‘๐‘œ๐‘ ๐œƒ +1 2

ii. ๐‘ sin ๐‘›๐œ‹

2+

๐œ‹

4 = ๐‘ sin

๐‘›๐œ‹

2cos

๐œ‹

4+ cos

๐‘›๐œ‹

2sin

๐œ‹

4

= cos๐œ‹

4๐‘ sin

๐‘›๐œ‹

2 + sin

๐œ‹

4๐‘ cos

๐‘›๐œ‹

2

Page 7: Z-TRANSFORMS - Engineering Mathematics fileZ-TRANSFORMS 4.1 Introduction โ€“ Transform plays an important role in discrete analysis and may be seen as discrete analogue of Laplace

Page | 7

=1

2

๐‘ง sin๐œ‹

2

๐‘ง2โˆ’2๐‘ง cos๐œ‹

2+1

+๐‘ง ๐‘งโˆ’๐‘๐‘œ๐‘ 

๐œ‹

2

๐‘ง2โˆ’2๐‘ง ๐‘๐‘œ๐‘ ๐œ‹

2+1

โˆต ๐‘ sin ๐‘›๐œƒ =๐‘ง sin ๐œƒ

๐‘ง2โˆ’2๐‘ง cos ๐œƒ+1 , ๐‘ cos ๐‘›๐œƒ =

๐‘ง ๐‘งโˆ’cos ๐œƒ

๐‘ง2โˆ’2๐‘ง cos ๐œƒ+1

=1

2

๐‘ง

๐‘ง2+1+

๐‘ง2

๐‘ง2+1 =

1

2 ๐‘ง+๐‘ง2

๐‘ง2+1

iii. ๐‘ ๐‘’โˆ’2๐‘› = ๐‘ ๐‘’โˆ’2 ๐‘›

=๐‘ง

๐‘งโˆ’๐‘’โˆ’2 โˆต ๐‘ ๐‘Ž๐‘› = ๐‘ง

๐‘งโˆ’๐‘Ž

=๐‘ง๐‘’2

๐‘ง๐‘’2โˆ’1

iv. ๐‘Ž ๐‘› = ๐‘Žโˆ’๐‘› , ๐‘› < 0๐‘Ž๐‘› , ๐‘› โ‰ฅ 0

Taking two sided ๐‘โ€“ transform: ๐‘ ๐‘Ž ๐‘› = ๐‘Ž ๐‘› ๐‘งโˆ’๐‘›โˆž๐‘›=โˆ’โˆž

โˆด ๐‘ ๐‘Ž ๐‘› = ๐‘Žโˆ’๐‘›๐‘งโˆ’๐‘› + ๐‘Ž๐‘›๐‘งโˆ’๐‘›โˆž0

โˆ’1โˆ’โˆž

= โ€ฆ +๐‘Ž3๐‘ง3 + ๐‘Ž2๐‘ง2 + ๐‘Ž๐‘ง + 1 +๐‘Ž

๐‘ง+

๐‘Ž2

๐‘ง2+

๐‘Ž3

๐‘ง3+ โ‹ฏ

=๐‘Ž๐‘ง

1โˆ’๐‘Ž๐‘ง+

1

1โˆ’๐‘Ž๐‘ง

, ๐‘Ž๐‘ง < 1 and ๐‘Ž

๐‘ง < 1

=๐‘Ž๐‘ง

1โˆ’๐‘Ž๐‘ง+ ๐‘ง

๐‘งโˆ’๐‘Ž , ๐‘ง <

1

๐‘Ž and ๐‘Ž < ๐‘ง

=๐‘ง 1โˆ’๐‘Ž๐‘ง

1โˆ’๐‘Ž๐‘ง ๐‘งโˆ’๐‘Ž , ๐‘Ž < ๐‘ง <

1

๐‘Ž

โ‡’ ๐‘ ๐‘Ž ๐‘› =๐‘ง

๐‘งโˆ’๐‘Ž , ๐‘Ž < ๐‘ง <

1

๐‘Ž

Example5 Find the ๐‘โ€“transform of ๐‘ข๐‘› = 2๐‘› , ๐‘› < 03๐‘› , ๐‘› โ‰ฅ 0

Taking two sided ๐‘โ€“ transform: ๐‘ ๐‘ข๐‘› = ๐‘ข๐‘›๐‘งโˆ’๐‘›โˆž๐‘›=โˆ’โˆž

โˆด ๐‘ ๐‘ข๐‘› = 2๐‘›๐‘งโˆ’๐‘› + 3๐‘›๐‘งโˆ’๐‘›โˆž0

โˆ’1โˆ’โˆž

= โ€ฆ +๐‘ง3

23+

๐‘ง2

22+

๐‘ง

2 + 1 +

3

๐‘ง+

32

๐‘ง2+

33

๐‘ง3+ โ‹ฏ

=๐‘ง2

1โˆ’๐‘ง2

+1

1โˆ’3๐‘ง

, ๐‘ง

2 < 1 and

3

๐‘ง < 1

=๐‘ง

2โˆ’๐‘ง+

๐‘ง

๐‘งโˆ’3 , ๐‘ง < 2 and 3 < ๐‘ง

=๐‘ง ๐‘งโˆ’3 +๐‘ง 2โˆ’๐‘ง

2โˆ’๐‘ง ๐‘งโˆ’3 , 3 < ๐‘ง < 2

โ‡’ ๐‘ ๐‘ข๐‘› =๐‘ง

๐‘ง2โˆ’5๐‘ง+6 , 3 < ๐‘ง < 2

โˆด ๐‘โ€“transform does not exist for ๐‘ข๐‘› = 2๐‘› , ๐‘› < 03๐‘› , ๐‘› โ‰ฅ 0

as the set 3 < ๐‘ง < 2 is infeasible.

Example6 Find the ๐‘โ€“transform of

i. ๐‘›๐ถ๐‘Ÿ 0 โ‰ค ๐‘Ÿ โ‰ค ๐‘› ii. ๐‘›+๐‘Ÿ๐ถ๐‘Ÿ iii. 1

๐‘›+๐‘Ÿ ! iv.

1

๐‘›โˆ’๐‘Ÿ !

Solution: i. ๐‘ ๐‘›๐ถ๐‘Ÿ = ๐‘›๐ถ๐‘Ÿ ๐‘งโˆ’๐‘Ÿ๐‘›๐‘Ÿ=0

= 1 + ๐‘›๐ถ1 ๐‘งโˆ’1 + ๐‘›๐ถ2 ๐‘งโˆ’2 + โ‹ฏ + ๐‘›๐ถ๐‘› ๐‘งโˆ’๐‘›

= 1 + ๐‘งโˆ’1 ๐‘›

ii. ๐‘ ๐‘›+๐‘Ÿ๐ถ๐‘Ÿ = ๐‘›+๐‘Ÿ๐ถ๐‘Ÿ ๐‘งโˆ’๐‘Ÿโˆž๐‘Ÿ=0

= 1 + ๐‘›+1๐ถ1 ๐‘งโˆ’1 + ๐‘›+2๐ถ2 ๐‘งโˆ’2 + ๐‘›+3๐ถ3 ๐‘งโˆ’3 + โ‹ฏ

= 1 + (๐‘› + 1) ๐‘งโˆ’1 +(๐‘›+2)(๐‘›+1)

2! ๐‘งโˆ’2 +

(๐‘›+3)(๐‘›+2)(๐‘›+1)

3! ๐‘งโˆ’3 + โ‹ฏ

Page 8: Z-TRANSFORMS - Engineering Mathematics fileZ-TRANSFORMS 4.1 Introduction โ€“ Transform plays an important role in discrete analysis and may be seen as discrete analogue of Laplace

Page | 8

= 1 + โˆ’๐‘› โˆ’ 1 (โˆ’ ๐‘งโˆ’1) + โˆ’๐‘›โˆ’1 โˆ’๐‘›โˆ’2

2! โˆ’๐‘งโˆ’1 โˆ’2

+(โˆ’๐‘›โˆ’1)(โˆ’๐‘›โˆ’2)(โˆ’๐‘›โˆ’3)

3! โˆ’๐‘งโˆ’1 โˆ’3 + โ‹ฏ

= 1 โˆ’ ๐‘งโˆ’1 โˆ’๐‘›โˆ’1

Example 7 Find the ๐‘โ€“transform of

i. 1

๐‘› ! ii.

1

๐‘›+๐‘Ÿ ! iii.

1

๐‘›โˆ’๐‘Ÿ !

i. ๐‘ 1

๐‘› ! =

1

๐‘› ! ๐‘งโˆ’๐‘›โˆž

๐‘›=0 = 1 +1

1! ๐‘งโˆ’1 +

1

2! ๐‘งโˆ’2 +

1

3! ๐‘งโˆ’3 + โ‹ฏ

= 1 +1

1!

1

๐‘ง+

1

2!

1

๐‘ง2+

1

3!

1

๐‘ง3+ โ‹ฏ = ๐‘’

1

๐‘ง

โ‡’ ๐‘ 1

๐‘› ! = ๐‘’

1

๐‘ง

ii. ๐‘ 1

๐‘›+๐‘Ÿ ! =

1

๐‘›+๐‘Ÿ ! ๐‘งโˆ’๐‘›โˆž

๐‘›=0

Now ๐‘ 1

๐‘› ! = ๐‘’

1

๐‘ง

Also from left shifting property ๐‘ ๐‘ข๐‘›+๐‘˜ = ๐‘ง๐‘˜ ๐‘ ๐‘ข๐‘› โˆ’ ๐‘ข0 โˆ’๐‘ข1

๐‘งโˆ’

๐‘ข2

๐‘ง2โˆ’ โ‹ฏ โˆ’

๐‘ข๐‘˜โˆ’1

๐‘ง๐‘˜โˆ’1

โˆด ๐‘ 1

๐‘›+๐‘Ÿ ! = ๐‘ง๐‘Ÿ ๐‘’

1

๐‘ง โˆ’ 1 โˆ’1

๐‘งโˆ’

1

2! ๐‘ง2โˆ’ โ‹ฏ โˆ’

1

๐‘Ÿโˆ’1 !๐‘ง๐‘Ÿโˆ’1

In particular 1

๐‘›+1 ! = ๐‘ง1 ๐‘’

1

๐‘ง โˆ’ 1

1

๐‘›+2 ! = ๐‘ง2 ๐‘’

1

๐‘ง โˆ’ 1 โˆ’1

๐‘ง

โ‹ฎ

iii. ๐‘ 1

๐‘›โˆ’๐‘Ÿ ! =

1

๐‘›โˆ’๐‘Ÿ ! ๐‘งโˆ’๐‘›โˆž

๐‘›=0

Now ๐‘ 1

๐‘› ! = ๐‘’

1

๐‘ง

Also from right shifting property, ๐‘ ๐‘ข๐‘›โˆ’๐‘˜ = ๐‘งโˆ’๐‘˜๐‘ ๐‘ข๐‘› , ๐‘˜ is positive integer

โˆด ๐‘ 1

๐‘›โˆ’๐‘Ÿ ! = ๐‘งโˆ’๐‘Ÿ๐‘’

1

๐‘ง

In particular 1

๐‘›โˆ’1 ! = ๐‘งโˆ’1๐‘’

1

๐‘ง

1

๐‘›+2 ! = ๐‘งโˆ’2๐‘’

1

๐‘ง

โ‹ฎ

Example8 Find ๐‘ ๐‘ข๐‘›+2 if ๐‘ ๐‘ข๐‘› =๐‘ง

๐‘งโˆ’1+

๐‘ง

๐‘ง2+1

Solution: Given ๐‘ ๐‘ข๐‘› = ๐‘ˆ ๐‘ง =๐‘ง

๐‘งโˆ’1+

๐‘ง

๐‘ง2+1

From left shifting property ๐‘ ๐‘ข๐‘›+2 = ๐‘ง2 ๐‘ ๐‘ข๐‘› โˆ’ ๐‘ข0 โˆ’๐‘ข1

๐‘ง โ€ฆโ‘ 

Now from initial value theorem ๐‘ข0 = lim ๐‘งโ†’โˆž

๐‘ˆ ๐‘ง

= lim ๐‘งโ†’โˆž

๐‘ง

๐‘งโˆ’1+

๐‘ง

๐‘ง2+1

Page 9: Z-TRANSFORMS - Engineering Mathematics fileZ-TRANSFORMS 4.1 Introduction โ€“ Transform plays an important role in discrete analysis and may be seen as discrete analogue of Laplace

Page | 9

= lim ๐‘งโ†’โˆž

1

1โˆ’1

๐‘ง

+ 1

๐‘ง

1+1

๐‘ง2

= 1 + 0

โˆด ๐‘ข0 = 1 โ€ฆโ‘ก

Also from initial value theorem ๐‘ข1 = lim ๐‘งโ†’โˆž

๐‘ง ๐‘ˆ ๐‘ง โˆ’๐‘ข0

= lim ๐‘งโ†’โˆž

๐‘ง ๐‘ง

๐‘งโˆ’1+

๐‘ง

๐‘ง2+1โˆ’ 1

= lim ๐‘งโ†’โˆž

๐‘ง 2๐‘ง2โˆ’๐‘ง+1

(๐‘ง2+1)(๐‘งโˆ’1) = 2

โˆด ๐‘ข1 = 2 โ€ฆ โ‘ข

Using โ‘กand โ‘ข in โ‘ , we get ๐‘ ๐‘ข๐‘›+2 = ๐‘ง2 ๐‘ง

๐‘งโˆ’1+

๐‘ง

๐‘ง2+1โˆ’ 1 โˆ’

2

๐‘ง

โ‡’ ๐‘ ๐‘ข๐‘›+2 =๐‘ง ๐‘ง2โ€“๐‘ง+2

๐‘งโˆ’1 ๐‘ง2+1

Example9 Verify convolution theorem for ๐‘ข๐‘› = ๐‘› and ๐‘ฃ๐‘› = 1

Solution: Convolution theorem states that ๐‘ ๐‘ข๐‘› โˆ— ๐‘ฃ๐‘› = ๐‘ˆ ๐‘ง . ๐‘‰ ๐‘ง

We know that ๐‘ข๐‘› โˆ— ๐‘ฃ๐‘› = ๐‘ข๐‘š๐‘ฃ๐‘›โˆ’๐‘š๐‘›๐‘š=0

= ๐‘š๐‘›๐‘š=0 . 1

= 0 + 1 + 2 + 3 + โ‹ฏ + ๐‘› =๐‘› ๐‘›+1

2

โ‡’ ๐‘ ๐‘ข๐‘› โˆ— ๐‘ฃ๐‘› = ๐‘› ๐‘›+1

2

โˆž๐‘›=0 ๐‘งโˆ’๐‘› =

1

2 ๐‘›2โˆž

๐‘›=0 ๐‘งโˆ’๐‘› + ๐‘›โˆž๐‘›=0 ๐‘งโˆ’๐‘›

=1

2 ๐‘ ๐‘›2 + ๐‘ ๐‘›

=1

2 ๐‘ง ๐‘ง+1

๐‘งโˆ’1 3+

๐‘ง

๐‘งโˆ’1 2 =

1

2 ๐‘ง ๐‘ง+1 +๐‘ง(๐‘งโˆ’1)

๐‘งโˆ’1 3 =

1

2

2๐‘ง2

๐‘งโˆ’1 3

โˆด ๐‘ ๐‘ข๐‘› โˆ— ๐‘ฃ๐‘› =๐‘ง2

๐‘งโˆ’1 3 โ€ฆโ‘ 

Also ๐‘ˆ ๐‘ง = ๐‘ ๐‘› =๐’›

๐’›โˆ’๐Ÿ ๐Ÿ and ๐‘‰ ๐‘ง = ๐‘ 1 =

๐‘ง

๐‘งโˆ’1

โ‡’ ๐‘ˆ ๐‘ง . ๐‘‰ ๐‘ง =๐‘ง2

๐‘งโˆ’1 3 โ€ฆ โ‘ก

From โ‘ and โ‘ก ๐‘ ๐‘ข๐‘› โˆ— ๐‘ฃ๐‘› = ๐‘ˆ ๐‘ง . ๐‘‰ ๐‘ง

Example10 If ๐‘ข๐‘› = ๐›ฟ ๐‘› โˆ’ ๐›ฟ ๐‘› โˆ’ 1 , ๐‘ฃ๐‘› = 2๐›ฟ ๐‘› + ๐›ฟ ๐‘› โˆ’ 1 , Find the ๐‘ -transform of

their convolution.

Solution: ๐‘ˆ ๐‘ง = ๐‘ ๐›ฟ ๐‘› โˆ’ ๐›ฟ ๐‘› โˆ’ 1 , ๐‘‰ ๐‘ง = ๐‘ 2๐›ฟ ๐‘› + ๐›ฟ ๐‘› โˆ’ 1

Now ๐‘ ๐›ฟ ๐‘› = 1 and ๐‘ ๐›ฟ ๐‘› โˆ’ 1 = ๐‘งโˆ’1 โˆต ๐‘ ๐‘ข๐‘›โˆ’๐‘˜ = ๐‘งโˆ’๐‘˜๐‘ ๐‘ข๐‘›

โˆด ๐‘ˆ ๐‘ง = 1 โˆ’ ๐‘งโˆ’1 and ๐‘‰ ๐‘ง = 2 + ๐‘งโˆ’1

Also ๐‘ ๐‘ข๐‘› โˆ— ๐‘ฃ๐‘› = ๐‘ˆ ๐‘ง . ๐‘‰ ๐‘ง

โ‡’ ๐‘ ๐‘ข๐‘› โˆ— ๐‘ฃ๐‘› = 1 โˆ’ ๐‘งโˆ’1 2 + ๐‘งโˆ’1 = 2 โˆ’ ๐‘งโˆ’1 โˆ’ ๐‘งโˆ’2

4.3 Inverse Z-Transform

Given a function ๐‘ˆ ๐‘ง , we can find the sequence ๐‘ข๐‘› by one of the following methods

Inspection (Direct inversion)

Direct division

Partial fractions

Page 10: Z-TRANSFORMS - Engineering Mathematics fileZ-TRANSFORMS 4.1 Introduction โ€“ Transform plays an important role in discrete analysis and may be seen as discrete analogue of Laplace

Page | 10

Residues (Inverse integral)

Power-Series

Convolution theorem

4.3.1 Inspection (Direct inversion) method

Sometimes by observing the coefficients in the given series ๐‘ˆ ๐‘ง , it is possible to find

the sequence ๐‘ข๐‘› as illustrated in the given examples.

Example 11 Find ๐‘ข๐‘› if ๐‘ˆ ๐‘ง = 1 +1

2๐‘งโˆ’1 +

1

4๐‘งโˆ’2 +

1

8๐‘งโˆ’3 + โ‹ฏ

Solution: Given that ๐‘ˆ ๐‘ง = 1

2

๐‘›

๐‘งโ€“๐‘›โˆž๐‘›=0 โ€ฆ โ‘ 

Also by the definition of Z-transform ๐‘ˆ(๐‘ง) = ๐‘ข๐‘›๐‘งโˆ’๐‘› โˆž๐‘›=0 โ€ฆโ‘ก

.Comparing โ‘ and โ‘ก, we get ๐‘ข๐‘› = 1

2

๐‘›

Example12 Find ๐‘ข๐‘› if ๐‘ˆ ๐‘ง =๐‘ง3

๐‘งโˆ’1 3

Solution: ๐‘ˆ ๐‘ง =๐‘ง3

๐‘งโˆ’1 3=

๐‘งโˆ’1

๐‘ง

โ€“3

= 1 โˆ’1

๐‘ง

โ€“3

โˆด ๐‘ˆ ๐‘ง = 1 + 3

๐‘ง+

6

๐‘ง2+

10

๐‘ง3+ โ‹ฏ

โˆต 1 โˆ’ ๐‘ฅ โ€“๐‘› = 1 + ๐‘›๐‘ฅ +๐‘› ๐‘›+1

2!๐‘ฅ2 +

๐‘›(๐‘›+1)(๐‘›+2)

3!๐‘ฅ3 + โ‹ฏ

โ‡’ ๐‘ˆ ๐‘ง = ๐‘›+1 (๐‘›+2)

2๐‘งโ€“๐‘›โˆž

๐‘›=0

Comparing with ๐‘ˆ(๐‘ง) = ๐‘ข๐‘›๐‘งโˆ’๐‘›โˆž๐‘›=0 , we get ๐‘ข๐‘› =

๐‘›+1 (๐‘›+2)

2

Example13 Find inverse ๐‘-transform of 3 +2๐‘ง

๐‘งโˆ’1โˆ’

๐‘ง

2๐‘งโˆ’1

Solution: Given that ๐‘ˆ ๐‘ง = 3 +2๐‘ง

๐‘งโˆ’1โˆ’

๐‘ง

2๐‘งโˆ’1

โˆด ๐‘ข๐‘› = 3๐‘โˆ’1 1 + 2๐‘โˆ’1 ๐‘ง

๐‘งโˆ’1 โˆ’

1

2๐‘โˆ’1

๐‘ง

๐‘งโˆ’1

2

โ‡’ ๐‘ข๐‘› = 3๐›ฟ ๐‘› + 2๐‘ข ๐‘› โˆ’1

2

1

2

๐‘›

= 3๐›ฟ ๐‘› + 2๐‘ข ๐‘› โˆ’ 1

2

๐‘›+1

โˆต ๐‘โˆ’1 1 = ๐›ฟ ๐‘› , ๐‘โˆ’1 ๐‘ง

๐‘งโˆ’1 = ๐‘ข(๐‘›) , ๐‘โˆ’1

๐‘ง

๐‘งโˆ’๐‘Ž = ๐‘Ž๐‘› where ๐›ฟ ๐‘› and

๐‘ข(๐‘›) are unit impulse and unit step sequences respectively.

Example14 Find inverse ๐‘-transform of 2๐‘งโˆ’2 โˆ’๐‘งโˆ’3

๐‘งโˆ’1+

2๐‘งโˆ’5

2๐‘งโˆ’1

Solution: Given that ๐‘ˆ ๐‘ง = 2๐‘งโˆ’2 โˆ’๐‘งโˆ’3

๐‘งโˆ’1+

2๐‘งโˆ’5

2๐‘งโˆ’1

โˆด ๐‘ข๐‘› = 2๐‘โˆ’1 ๐‘งโˆ’2. 1 โˆ’ ๐‘โˆ’1 ๐‘งโˆ’4.๐‘ง

๐‘งโˆ’1 + ๐‘โˆ’1 ๐‘งโˆ’6 ๐‘ง

๐‘งโˆ’1

2

โ‡’ ๐‘ข๐‘› = 2๐›ฟ ๐‘› โˆ’ 2 โˆ’ ๐‘ข ๐‘› โˆ’ 4 + 1

2

๐‘›โˆ’6

๐‘ข ๐‘› โˆ’ 6

โˆต From Right shifting property ๐‘โˆ’1 ๐‘งโˆ’๐‘˜๐‘ˆ(๐‘) = ๐‘ข๐‘›โˆ’๐‘˜

4.3.2 Direct division method

Direct division is one of the simplest methods for finding inverse ๐‘ -transform and can

be used for almost every type of expression given in fractional form.

Example15 Find the inverse ๐‘-transform of ๐‘ง

๐‘ง2โˆ’3๐‘ง+2

Page 11: Z-TRANSFORMS - Engineering Mathematics fileZ-TRANSFORMS 4.1 Introduction โ€“ Transform plays an important role in discrete analysis and may be seen as discrete analogue of Laplace

Page | 11

Solution: Given that ๐‘ˆ ๐‘ง =๐‘ง

๐‘ง2โˆ’3๐‘ง+2

By actual division, we get

๐‘งโˆ’1 + 3๐‘งโˆ’2 + 7๐‘งโˆ’3

๐‘ง2 โˆ’ 3๐‘ง + 2 ๐‘ง

๐‘ง โˆ’ 3 + 2๐‘งโˆ’1

3 โˆ’ 2๐‘งโˆ’1 3 โˆ’ 9๐‘งโˆ’1 + 6๐‘งโˆ’2

7๐‘งโˆ’1 โˆ’ 6๐‘งโˆ’2

7๐‘งโˆ’1 โˆ’ 21๐‘งโˆ’2 + 14๐‘งโˆ’3

15๐‘งโˆ’2 โˆ’ 14๐‘งโˆ’3

โ‹ฎ โ‡’ ๐‘ˆ ๐‘ง = ๐‘งโˆ’1 + 3๐‘งโˆ’2 + 7๐‘งโˆ’3 + โ‹ฏ

= 2๐‘›โ€“ 1 ๐‘งโ€“๐‘›โˆž๐‘›=0

โˆด ๐‘ข๐‘› = 2๐‘› โˆ’ 1

Example16 Find the inverse ๐‘ -transform of 4๐‘ง2+2๐‘ง

2๐‘ง2โˆ’3๐‘ง+1

Solution: Given that ๐‘ˆ ๐‘ง =4๐‘ง2+2๐‘ง

2๐‘ง2โˆ’3๐‘ง+1 , by actual division, we get

2 + 4๐‘งโˆ’1 + 5๐‘งโˆ’2

2๐‘ง2 โˆ’ 3๐‘ง + 1 4๐‘ง2 + 2๐‘ง

4๐‘ง2 โˆ’ 6๐‘ง + 2

8๐‘ง โˆ’ 2 8๐‘ง โˆ’ 12 + 4๐‘งโˆ’1

10 โˆ’ 4๐‘งโˆ’1

10 โˆ’ 15๐‘งโˆ’1 + 5๐‘งโˆ’2

11๐‘งโˆ’1 โˆ’ 5๐‘งโˆ’2

โ‹ฎ โ‡’ ๐‘ˆ ๐‘ง = 2 + 4๐‘งโˆ’1 + 5๐‘งโˆ’2 + โ‹ฏ

= 6 โˆ’ 22โˆ’๐‘› ๐‘งโ€“๐‘›โˆž๐‘›=0

โˆด ๐‘ข๐‘› = 6 โˆ’ 22โˆ’๐‘›

โˆด ๐‘ข๐‘› = 6โˆ’4 1

2

๐‘›

4.3.3 Partial fractions method

Partial fractions method can be used only if order of expression in the numerator is less

than or equal to that in the denominator. If order of expression in the numerator is

greater, then the fraction may be brought to desired form by direct division. Partial

fractions are formed of the expression ๐‘ˆ(๐‘ง)

๐‘ง as demonstrated in the examples below.

Example17 Find the inverse ๐‘ -transform of ๐‘ง

6๐‘ง2โˆ’5๐‘ง+1

Solution: Given that ๐‘ˆ ๐‘ง =๐‘ง

6๐‘ง2โˆ’5๐‘ง+1

โˆด ๐‘ˆ(๐‘ง)

๐‘ง=

1

6๐‘ง2โ€“5๐‘ง+1=

1

2๐‘งโˆ’1 (3๐‘งโˆ’1)

โ‡’๐‘ˆ(๐‘ง)

๐‘ง=

2

2๐‘งโˆ’1โˆ’

3

3๐‘งโˆ’1

โ‡’ ๐‘ˆ ๐‘ง =๐‘ง

๐‘งโ€“ 1

2

โ€“๐‘ง

๐‘งโ€“ 1

3

โˆด ๐‘ข๐‘› = 1

2

๐‘›

โ€“ 1

3

๐‘›

โˆต ๐‘ ๐‘Ž๐‘› =๐‘ง

๐‘งโˆ’๐‘Ž or ๐‘โˆ’1

๐‘ง

๐‘งโˆ’๐‘Ž = ๐‘Ž๐‘›

Page 12: Z-TRANSFORMS - Engineering Mathematics fileZ-TRANSFORMS 4.1 Introduction โ€“ Transform plays an important role in discrete analysis and may be seen as discrete analogue of Laplace

Page | 12

i.e. ๐‘ข๐‘›= 2โ€“๐‘›โ€“ 3โ€“๐‘›

Example18 Find the inverse ๐‘ -transform of 4๐‘ง2+2๐‘ง

2๐‘ง2โˆ’3๐‘ง+1

Solution: Given that ๐‘ˆ ๐‘ง =4๐‘ง2โˆ’2๐‘ง

2๐‘ง2โˆ’3๐‘ง+1=

2๐‘ง(2๐‘งโˆ’1)

2๐‘งโˆ’1 (๐‘งโˆ’1)

โˆด ๐‘ˆ(๐‘ง)

๐‘ง=

2(2๐‘ง+1)

2๐‘งโˆ’1 (๐‘งโˆ’1)

By partial fractions, we get

๐‘ˆ(๐‘ง)

๐‘ง=

โˆ’8

2๐‘งโˆ’1+

6

๐‘งโˆ’1

โ‡’ ๐‘ˆ ๐‘ง =โˆ’8๐‘ง

2๐‘งโˆ’1+

6๐‘ง

๐‘งโˆ’1

โˆด ๐‘ข๐‘› = โˆ’4๐‘โˆ’1 ๐‘ง

๐‘งโˆ’1

2

+ 6๐‘โˆ’1 ๐‘ง

๐‘งโˆ’1

โ‡’ ๐‘ข๐‘› = โˆ’4 1

2

๐‘›

+ 6 1 ๐‘› โˆต ๐‘โˆ’1 ๐‘ง

๐‘งโˆ’๐‘Ž = ๐‘Ž๐‘›

i.e. ๐‘ข๐‘›= โˆ’4 1

2

๐‘›

+ 6

Example19 Find the inverse ๐‘ -transform of 1

1โˆ’๐‘งโˆ’1 (2โˆ’๐‘งโˆ’1)

Solution: Given that ๐‘ˆ ๐‘ง = 1

1โˆ’๐‘งโˆ’1 (2โˆ’๐‘งโˆ’1)

Multiplying and dividing by ๐‘ง2, we get

๐‘ˆ ๐‘ง =๐‘ง2

๐‘ง 1โˆ’๐‘งโˆ’1 ๐‘ง(2โˆ’๐‘งโˆ’1)=

๐‘ง2

๐‘งโˆ’1 (2๐‘งโˆ’1)

โˆด ๐‘ˆ(๐‘ง)

๐‘ง=

๐‘ง

๐‘งโˆ’1 (2๐‘งโˆ’1)

By partial fractions, we get

๐‘ˆ(๐‘ง)

๐‘ง=

1

๐‘งโˆ’1 โˆ’

1

(2๐‘งโˆ’1)

โ‡’ ๐‘ˆ ๐‘ง =๐‘ง

๐‘งโˆ’1 โˆ’

๐‘ง

(2๐‘งโˆ’1)

โˆด ๐‘ข๐‘› = ๐‘โˆ’1 ๐‘ง

๐‘งโˆ’1 โˆ’

1

2๐‘โˆ’1

๐‘ง

๐‘งโˆ’1

2

โ‡’ ๐‘ข๐‘› = 1 ๐‘› โˆ’1

2

1

2

๐‘›

โˆต ๐‘โˆ’1 ๐‘ง

๐‘งโˆ’๐‘Ž = ๐‘Ž๐‘›

i.e. ๐‘ข๐‘›= 1 โˆ’ 1

2

๐‘›+1

Example20 Find the inverse ๐‘ -transform of 4๐‘ง2โˆ’2๐‘ง

๐‘ง3โˆ’5๐‘ง2+8๐‘งโˆ’4

Solution: Given that ๐‘ˆ ๐‘ง =4๐‘ง2โˆ’2๐‘ง

๐‘ง3โˆ’5๐‘ง2+8๐‘งโˆ’4=

2๐‘ง(2๐‘งโˆ’1)

๐‘งโˆ’1 (๐‘งโˆ’2)2

โˆด ๐‘ˆ(๐‘ง)

๐‘ง=

2(2๐‘งโˆ’1)

๐‘งโˆ’1 (๐‘งโˆ’2)2

By partial fractions, we get

๐‘ˆ(๐‘ง)

๐‘ง=

2

๐‘งโˆ’1โˆ’

2

๐‘งโˆ’2+

6

๐‘งโˆ’2 2

โ‡’ ๐‘ˆ ๐‘ง =2๐‘ง

๐‘งโˆ’1โˆ’

2๐‘ง

๐‘งโˆ’2+

6๐‘ง

๐‘งโˆ’2 2

Page 13: Z-TRANSFORMS - Engineering Mathematics fileZ-TRANSFORMS 4.1 Introduction โ€“ Transform plays an important role in discrete analysis and may be seen as discrete analogue of Laplace

Page | 13

โˆด ๐‘ข๐‘› = 2๐‘โˆ’1 ๐‘ง

๐‘งโˆ’1 โˆ’ 2๐‘โˆ’1

๐‘ง

๐‘งโˆ’2 + 3๐‘โˆ’1

2๐‘ง

๐‘งโˆ’2 2

โ‡’ ๐‘ข๐‘› = 2 1 ๐‘›โ€“ 2 2 ๐‘› + 3๐‘› 2 ๐‘› โˆต ๐‘โˆ’1 ๐‘ง

๐‘งโˆ’๐‘Ž = ๐‘Ž๐‘› and ๐‘โˆ’1

๐‘Ž๐‘ง

๐‘งโˆ’๐‘Ž 2 = ๐‘›๐‘Ž๐‘›

i.e. ๐‘ข๐‘›= 2โ€“ 2๐‘›+1 + 3๐‘›. 2๐‘›

4.3.4 Method of residues (Inverse integral)

By using the theory of complex variables, it can be shown that the inverse ๐‘-transform

is given by ๐‘ข๐‘› =1

2๐œ‹๐‘– ๐‘ˆ ๐‘ง ๐‘ง๐‘›โ€“1๐‘‘๐‘ง =๐‘

sum of residues of ๐‘ˆ ๐‘ง

where c is the closed contour which contains all the insolated singularities of ๐‘ˆ ๐‘ง in

the region of convergence.

Method of residues is one of the most efficient methods and can be used to find the

inverse ๐‘- transform where partial fractions are tedious to find.

Example21 Find the inverse z-transform of ๐‘ง

๐‘ง2+7๐‘ง+10

Solution: ๐‘ˆ ๐‘ง =๐‘ง

๐‘ง2+7๐‘ง+10

Now ๐‘ข๐‘› =1

2๐œ‹๐‘– ๐‘ˆ ๐‘ง ๐‘ง๐‘›โ€“1๐‘‘๐‘ง๐‘

โ‡’ ๐‘ข๐‘› =1

2๐œ‹๐‘–

๐‘ง

๐‘ง2+7๐‘ง+10๐‘ง๐‘›โ€“1๐‘‘๐‘ง

๐‘

=1

2๐œ‹๐‘–

๐‘ง๐‘›

๐‘ง2+7๐‘ง+10๐‘‘๐‘ง

๐‘

=1

2๐œ‹๐‘–

๐‘ง๐‘›

๐‘ง+2 (๐‘ง+5)๐‘‘๐‘ง

๐‘

There are two simple poles at ๐‘ง = โˆ’2 and ๐‘ง = โˆ’5

Residue at ๐‘ง = โˆ’2 is given by lim๐‘งโ†’โˆ’2

๐‘ง + 2 ๐‘ง๐‘›

๐‘ง+2 (๐‘ง+5)=

โ€“2 ๐‘›

3

Residue at ๐‘ง = โˆ’5 is given by lim๐‘งโ†’โˆ’5

๐‘ง + 5 ๐‘ง๐‘›

๐‘ง+2 (๐‘ง+5)=

โ€“5 ๐‘›

โˆ’3

โˆด ๐‘ข๐‘›= sum of residues = โ€“2

๐‘›

3+

โ€“5 ๐‘›

โ€“3=

1

3 โ€“ 2

๐‘›โ€“ โ€“ 5

๐‘›

Example22 Find the inverse z-transform of ๐‘ง2+๐‘ง

๐‘งโˆ’1 (๐‘ง2+1)

Solution: ๐‘ˆ ๐‘ง =๐‘ง2+๐‘ง

๐‘งโˆ’1 (๐‘ง2+1)

Now ๐‘ข๐‘› =1

2๐œ‹๐‘– ๐‘ˆ ๐‘ง ๐‘ง๐‘›โ€“1๐‘‘๐‘ง๐‘

โ‡’ ๐‘ข๐‘› =1

2๐œ‹๐‘–

๐‘ง2+๐‘ง

๐‘งโˆ’1 (๐‘ง2+1)๐‘ง๐‘›โ€“1๐‘‘๐‘ง

๐‘

=1

2๐œ‹๐‘–

๐‘ง๐‘› (๐‘ง+1)

๐‘งโˆ’1 (๐‘ง+๐‘–)(๐‘งโˆ’๐‘–)๐‘‘๐‘ง

๐‘

There are three simple poles at ๐‘ง = 1, ๐‘ง = โˆ’๐‘– and ๐‘ง = ๐‘–

Residue at ๐‘ง = 1 is given by lim๐‘งโ†’1

๐‘ง โˆ’ 1 ๐‘ง๐‘› (๐‘ง+1)

๐‘งโˆ’1 (๐‘ง+๐‘–)(๐‘งโˆ’๐‘–)= 1

Residue at ๐‘ง = โˆ’๐‘– is given by lim๐‘งโ†’โˆ’๐‘–

๐‘ง + ๐‘– ๐‘ง๐‘› (๐‘ง+1)

๐‘งโˆ’1 (๐‘ง+๐‘–)(๐‘งโˆ’๐‘–)= โˆ’

1

2 โˆ’๐‘– ๐‘›

Residue at ๐‘ง = ๐‘– is given by lim๐‘งโ†’๐‘–

๐‘ง โˆ’ ๐‘– ๐‘ง๐‘› (๐‘ง+1)

๐‘งโˆ’1 (๐‘ง+๐‘–)(๐‘งโˆ’๐‘–)= โˆ’

1

2๐‘–๐‘›

โˆด ๐‘ข๐‘›= sum of residues = 1 โˆ’1

2 โˆ’๐‘– ๐‘› โˆ’

1

2๐‘–๐‘› = 1 โˆ’

1

2 โˆ’๐‘– ๐‘› + ๐‘–๐‘›

Page 14: Z-TRANSFORMS - Engineering Mathematics fileZ-TRANSFORMS 4.1 Introduction โ€“ Transform plays an important role in discrete analysis and may be seen as discrete analogue of Laplace

Page | 14

Example23 Find the inverse z-transform of ๐‘ง(๐‘ง+1)

(๐‘งโˆ’1)3

Solution: ๐‘ˆ ๐‘ง =๐‘ง(๐‘ง+1)

(๐‘งโˆ’1)3

Now ๐‘ข๐‘› =1

2๐œ‹๐‘– ๐‘ˆ ๐‘ง ๐‘ง๐‘›โ€“1๐‘‘๐‘ง๐‘

โ‡’ ๐‘ข๐‘› =1

2๐œ‹๐‘–

๐‘ง๐‘› (๐‘ง+1)

(๐‘งโˆ’1)3๐‘‘๐‘ง

๐‘

Here ๐‘ง = 1 is a pole of order 3

Residue at ๐‘ง = 1 is given by 1

2!lim๐‘งโ†’1

๐‘‘2

๐‘‘๐‘ง 2

(๐‘งโˆ’1)3๐‘ง๐‘› (๐‘ง+1)

(๐‘งโˆ’1)3

=1

2!lim๐‘งโ†’1

๐‘‘2

๐‘‘๐‘ง 2 ๐‘ง๐‘› (๐‘ง + 1)

=1

2!lim๐‘งโ†’1

๐‘‘

๐‘‘๐‘ง (๐‘› + 1)๐‘ง๐‘› + ๐‘›๐‘ง๐‘›โˆ’1

=1

2!lim๐‘งโ†’1

(๐‘› + 1)๐‘›๐‘ง๐‘›โˆ’1 + ๐‘›(๐‘› โˆ’ 1)๐‘ง๐‘›โˆ’2

= ๐‘›2 + ๐‘› + ๐‘›2 โˆ’ ๐‘› = ๐‘›2

โˆด ๐‘ข๐‘› = Sum of residues = ๐‘›2

4.3.5 Power series method

In this method, we find the inverse ๐‘ - transform by expanding ๐‘ˆ ๐‘ง in power series.

Example 24 Find ๐‘ข๐‘› if ๐‘ˆ ๐‘ง = log๐‘ง

๐‘ง+1

Solution: Given ๐‘ˆ ๐‘ง = log๐‘ง

๐‘ง+1= log

๐‘ง+1

๐‘ง

โˆ’1

= โˆ’ log๐‘ง+1

๐‘ง= โˆ’ log 1 +

1

๐‘ง

โˆด ๐‘ˆ ๐‘ง = โˆ’ log 1 + ๐‘ฆ Putting 1

๐‘ง= ๐‘ฆ

= โˆ’๐‘ฆ +๐‘ฆ2

2โˆ’

๐‘ฆ3

3+

๐‘ฆ4

4โˆ’ โ‹ฏ

โˆต log 1 + ๐‘ฅ = ๐‘ฅ โˆ’๐‘ฅ2

2+

๐‘ฅ3

3โˆ’

๐‘ฅ4

4+ โ‹ฏ

โ‡’ ๐‘ˆ ๐‘ง = โˆ’1

๐‘ง+

1

2๐‘ง2โˆ’

1

3๐‘ง3+

1

4๐‘ง4โˆ’ โ‹ฏ โˆต ๐‘ฆ =

1

๐‘ง

โ‡’ ๐‘ˆ ๐‘ง = 0 + (โˆ’1)๐‘›

๐‘›๐‘งโˆ’๐‘›โˆž

๐‘›=1

Comparing with ๐‘ˆ(๐‘ง) = ๐‘ข๐‘›๐‘งโˆ’๐‘›โˆž๐‘›=0 , we get

๐‘ข๐‘› = 0 for ๐‘› = 0

(โ€“1)๐‘›

๐‘›, ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’

4.3.6 Convolution theorem method

Convolution theorem for ๐‘-transforms states that:

If ๐‘ˆ ๐‘ง = ๐‘ ๐‘ข๐‘› and ๐‘‰ ๐‘ง = ๐‘ ๐‘ฃ๐‘› , then ๐‘ ๐‘ข๐‘› โˆ— ๐‘ฃ๐‘› = ๐‘ˆ ๐‘ง . ๐‘‰ ๐‘ง

โ‡’ ๐‘โˆ’1 ๐‘ˆ ๐‘ง . ๐‘‰ ๐‘ง = ๐‘ข๐‘› โˆ— ๐‘ฃ๐‘›

Example25 Find the inverse z-transform of ๐‘ง2

๐‘งโˆ’1 (2๐‘งโˆ’1) using convolution theorem.

Solution: Let ๐‘ˆ ๐‘ง = ๐‘ ๐‘ข๐‘› =๐‘ง

๐‘งโˆ’1 and ๐‘‰ ๐‘ง = ๐‘ ๐‘ฃ๐‘› =

๐‘ง

2๐‘งโˆ’1 =

1

2

๐‘ง

๐‘งโˆ’1

2

Clearly ๐‘ข๐‘› = 1 ๐‘› and ๐‘ข๐‘› =1

2

1

2

๐‘›

โˆต ๐‘โˆ’1 ๐‘ง

๐‘งโˆ’๐‘Ž = ๐‘Ž๐‘›

Now by convolution theorem ๐‘โˆ’1 ๐‘ˆ ๐‘ง . ๐‘‰ ๐‘ง = ๐‘ข๐‘› โˆ— ๐‘ฃ๐‘›

Page 15: Z-TRANSFORMS - Engineering Mathematics fileZ-TRANSFORMS 4.1 Introduction โ€“ Transform plays an important role in discrete analysis and may be seen as discrete analogue of Laplace

Page | 15

โ‡’ ๐‘โˆ’1 ๐‘ง2

๐‘งโˆ’1 (2๐‘งโˆ’1) = 1 ๐‘› โˆ—

1

2

๐‘›+1

We know that ๐‘ข๐‘› โˆ— ๐‘ฃ๐‘› = ๐‘ข๐‘š๐‘ฃ๐‘›โˆ’๐‘š๐‘›๐‘š=0

= 1 ๐‘š 1

2

๐‘›+1โˆ’๐‘š๐‘›๐‘š=0

= 1

2

๐‘›+1

+ 1

2

๐‘›

+ 1

2

๐‘›โˆ’1

+ โ‹ฏ +1

2

=1

2 1 +

1

2+

1

2

2

+ โ‹ฏ + 1

2

๐‘›

=1

2

1

1โˆ’1

2

1 โˆ’ 1

2

๐‘›+1

โˆต ๐‘†๐‘› =๐‘Ž

1โˆ’๐‘Ÿ 1 โˆ’ ๐‘Ÿ๐‘›

=1

2 2 1 โˆ’

1

2

๐‘›+1

= 1 โˆ’ 1

2

๐‘›+1

Exercise 4A

1. Find the ๐‘โ€“transform of ๐‘ข๐‘› = 2๐‘› , ๐‘› < 03๐‘› , ๐‘› โ‰ฅ 0

2. Find the ๐‘โ€“transform of ๐‘ข๐‘› =1

๐‘›โˆ’๐‘ !

3. Find the inverse ๐‘โ€“transform of ๐‘ข๐‘› =2๐‘ง

๐‘งโˆ’1 (๐‘ง2+1)

4. Solve the difference equation ๐‘ฆ๐‘ฅ+2 + 4๐‘ฆ๐‘ฅ+1 + 3๐‘ฆ๐‘ฅ = 3๐‘ฅ , ๐‘ฆ0 = 0, ๐‘ฆ1 = 1

using ๐‘โ€“transforms

Answers

1. 2๐‘ง

๐‘ง2โˆ’8๐‘ง+15 , 3 < ๐‘ง < 5

2. ๐‘งโˆ’๐‘๐‘’1

๐‘ง

3. 1 โˆ’ ๐‘๐‘œ๐‘ ๐‘›๐œ‹

2โˆ’ ๐‘–๐‘ ๐‘–๐‘›

๐‘›๐œ‹

2

4. ๐‘ฆ๐‘ฅ =1

243๐‘ฅ โˆ’

5

12(โˆ’3)๐‘ฅ +

3

8(โˆ’1)๐‘ฅ