Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna

40
Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna D ubna JINR Experimental activities and main results of the researche at FLNR (JINR) Theme: Synthesis of new nuclei and study of nuclea properties and heavy-ion reaction mechani 03-05-1004-1994/2009

description

Theme: Synthesis of new nuclei and study of nuclear properties and heavy-ion reaction mechanism 03-05-1004- 1994/2009. Experimental activities and main results of the researches at FLNR (JINR). Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna. INFN. - PowerPoint PPT Presentation

Transcript of Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna

Page 1: Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna

Yu. Oganessian

FLNR (JINR)

PAC–meeting, June 22, 2009, Dubna

Dubna

JINR

Experimental activities and main results of the researches at FLNR (JINR)

Theme: Synthesis of new nuclei and study of nuclear properties and heavy-ion reaction mechanism 03-05-1004-1994/2009

Page 2: Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna

A&MA&M

ANLANL ORNLORNL IPNIPN INFN

Heavy ion accelerators

RIKENRIKEN

GANILGANILGSIGSI

MSUMSU

INFNINFN

Heavy Ion National Laboratories

Pioneers

LBLLBL

JINRJINR

BNLBNL CERNCERN

GSIGSI

Heavy Ion Colliders

Heavy ion physics: from the beginning to now…

RIB-FactoryRIB-FactoryRIBRIB

RIBRIB RIBRIB

RIBRIB

RIBRIB

Page 3: Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna

Nuclei close to and beyond the border line

Page 4: Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna

Light nuclei

neutrons

prot

ons

Heaviest nuclei

p/n - transfer & fragmentation p/n - transfer & fragmentation 2

50

50

50

82

28

28

20

208

82

/radioactive ion beams

beams of the neutron-rich projectiles: 3H(12.3y), 6He(0.8s) and 8He(0.12s)...

& target nuclei: 1,2H,3H(12.3y),3,4He

Page 5: Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna

n

B

0

0

5

5

10

10

15

15

20

20 25 30 35

Z=2

Z=20

Z=2

Z=8Z=8

N=

2

N=

8

S ta b le Iso to p es

D ou b le M a g ic N uc le i

K no w n Iso to pe s

U nkn ow n Iso to p es

Pro

ton

Nu

mb

er

Neutron Num ber

N=

20

N=

28

36

N=

20

N=

28

28O

10He

n

B

0

0

5

5

10

10

15

15

20

20 25 30 35

Z=2

Z=20

Z=2

N=

28

N=

26

Z=8Z=8

N=

2

N=

8

N=

20

N=

16

S ta b le Iso to p es

D ou b le M a g ic N uc le i

K no w n Iso to pe s

U nkn ow n Iso to p es

Pro

ton

Nu

mb

er

Neutron Num ber

N=

20

N=

28

36

?

?

?

?

Shells in the light nucleiShells in the light nuclei

beams0.8s 0.1s

Radioactive ion beams

Page 6: Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna

DIRECT

10m

0

R IB

400-cm cyclotron

400-cm cyclotron

low energy beam line

stable ion beams now 7Li

radioactive ion beams

DubnaRadioactive IonBeams

now 6He

Electronaccelerator

ISOL

now 8He

DIRECT

Page 7: Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna

8He

d4H

6 8He + tHe and , d, p reactions

4n

n4

8He

t

t

7H

5H

5H

2n

2n

2nn

nn4

6He

tt

4He

4He

6He

d

t

4H

4H

t

tt

t

3H - target

t -

pro

jec

tile

s6

He

- p

roje

cti

les

8He

- p

roje

cti

les

2H - target H - target

d

p pt t

6He

8He

p

6He

p

tp

pt

t

t

4He

4He

2n

6He4He

4He

Neutron correlationsNeutron correlations

Page 8: Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna

Strangely enough, but all the combinations:

3H, 6He, 8He (beams) + 1H, 2H, 3H (targets)

have been studied.

Page 9: Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna

n

Be

B

C

B

N

F

Ne

10

12

6

6

4

4

2

20

8

8

O

He

Li

no shell effectwas observed

Unbound

strong shell effect in the “doubly-magic” nucleus

structure

discovery “di-neutron”

in halo-nucleus 6HeFLNR 2001

core

2n- halo

superheavyhydrogen

Be2p-emission

evidence of shell structure

5730y

Page 10: Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna

n

Be

B

C

B

N

F

Ne

10

12

6

6

4

4

2

20

8

8

O

He

Li

discovery “di-neutron”

in halo-nucleus 6HeFLNR 2001

core

2n- halo

Be2p-emission

core

2p- halo?

Neβ+-2p emission

15O2p- halo?

0.11s

Page 11: Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna

4He

PbSub-barrier fusion of halo nucleusSub-barrier fusion of halo nucleus

6He

6He

neutrontransfer

Pb

Page 12: Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna

targets: Au, Pb

ECM - EB (MeV)

Cro

ss s

ectio

ns (

mb)

6He-neutrontransfer

4He-neutrontransfer6He-fusion

4He-fusion

Nuclear reactions induced by halo nucleiNuclear reactions induced by halo nuclei “of-line” gammameasurements

Page 13: Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna

Experimental scheme & conditions “in-beam” gammaspectroscopy

Ю.Ц. Оганесян. «Тяжелые ионы в ЛЯР». Семинар, ЛЯР ОИЯИ, Дубна, 28 апреля 2008г.

Page 14: Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna

Heaviest nuclei

Page 15: Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna

Light nuclei

neutrons

prot

ons

Heaviest nuclei

Pb-based fusion Pb-based fusion

48Ca-beam& actinide

target nuclei

search for magic numbers

82

126

152

162184

108

100

114

Page 16: Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna

Island of Stability

shoal

peninsula

continent

New landsNew lands

Neutron number

Pro

ton

nu

mb

er

100 110 120 130 140 150 160 170 180 190

120

110

100

90

80

70

Island of Stability

New landsNew lands Microscopic theory

cold fusionPb + HI

hot fusion Act.+ 48Ca

Page 17: Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna

Reaction of Synthesis

Fusion & fission

Page 18: Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna

Cold fusion

208Pb+48Ca

+58Fe

+86Kr

238U+48Ca 33MeV

26MeV

21MeV

Act.+48Ca

Page 19: Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna

touchingpoint

fission from the excited state

quasifissionFLNR 1998►

FLNR 1963►

neutrons

fission isomers

spontaneous fission

β-delay fission

fission modes

FLNR 1962

FLNR 1962

γ-rays

1940►

Page 20: Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna

10-30

10-32

10-34

10-36

10-38

102 104 106

1n

4n

108 110 112 114 116 118 120

Atom ic num ber

Cro

ss s

ectio

ns (

cm)2

C old fus ion

H ot fus ion

208 209 48 50 70Pb, B i + C a, Ti,... Zn

Actin ides + N e , M g,... S 22 26 34

4n-3nActin ides + C a 48

SHE

Cold & hot fusion cross sectionsCold & hot fusion cross sections

fusion

survival

Page 21: Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna

90

100

110

120

1 2 3 4 5 6 7 8

120 130 140 150 160 170 180 190Neutron num ber N

Calculated Barriers Heights (M eV)

P. Moller et al., Phys. Rev., C79, 064304 (2009)

Bf (MeV)

Pro

ton

num

ber

Z

226Ra

232Th238U

248Cf

252Fm

Z=120

Page 22: Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna

0.20 s

SF~90%

3n

1

2 26 m s+32-9

10.74 MeV

114

120

N =179

N =177

118

287

299

295

10.03 MeV

1.1 s+1.3-0.4

9.55 MeV 7.0 s+8.3

-2.5

110

279

112

283

244 58Pu + Fe

3

116

291

3

4n

116

290 11.65 MeV 0.89 m s+1.07

-0.31

1

112

282

10.84 MeV 7.1 ms +3.2

-1.7

10.19 MeV

0.13 s +0.04-0.02

SF

2

205 MeV

120

N =178

118

298

294

114

286

The sensitivity of experiment corresponds to σ=0.4 pb for detection of one event.

Search for Element 120Search for Element 120

Page 23: Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna

0 50

Z .Z / (A +A )1 2 11/3

21/3

100

10 -6

10-2

10 -4

10-8

10 -10

100 150 200 250

no hindrance

350

26 248M g+ Cm

58 208Fe+ Pb

36 238S + Ufu

sion

pro

babi

lity

300

Fusion ProbabilityFusion Probability

48Ca+226Ra

136Xe+136Xe

132Sn+176Yb

Z=108Z=108

Page 24: Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna

Decay Properties

Page 25: Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna

115/287

10.59

3 ms2

113/283

10.12

0. s1

111/279

10.37

0.17 s

109/2 57

10.33

9.7 ms

107/2 17

105/267

1.2 h

109/276

9.71

0.72 s

107/272

9.02

9.8 s

113/284

10.00

0.48 s

115/288

10.46

87 ms

105/268

1.2 d

111/280

9.75

3 6. s

104/268

243Am242Pu, 245Cm

226Ra

Sg/266

0.2 s

Hs/270

10 s

9.06

σ4n≈10pb

237Np

244Pu, 248Cm249Cf

DecaychainsDecaychains

34 nuclides

48Ca +

T1/2= 320d

164

104/270

105/270

107/274

109/278

111/282

113/286

115/290

117/294

103/266

102/266

107/273

109/277

105/269

111/281

113/285

115/289

117/293

104/269

249Bk

+48Ca

2009-2010

Collaboration: FLNR (Dubna) ORNL (Oak-Ridge) LLNL (Livermore)IAR (Dmitrovgrad)Vanderbilt University (Nashville)

Page 26: Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna
Page 27: Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna

12.0

11 .0

10 .0

110

112

Z -even

T heory :

114

116

118

108

106

9.0

8.0

7.0260 270 280 2 09 300

A tom ic m ass num ber

Alp

ha d

eca

y en

erg

y (M

eV)

Z -even

E xp:

Page 28: Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna

-6

-8

-4

-2

0

2

4

6

8

10

12

14

16

18

Z=112

112

114110

106

Sg

Rf

No

Cf

N=152

N 6=1 2

N 5=1 2N 84=1

Fm

140 145 150 155 160 165 170 175 180 185N eu tron num ber

Log

T

(s)

SF

Exp.

Th.

H sD s112114

S gR fC f-N o

Spontaneous fission half-livesSpontaneous fission half-lives

Actinides

Trans-actinides Superheavy nuclei

Page 29: Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna

With Z >40% larger than that of Bi, the heaviest stable element, that is an impressive extension in nuclear survival.

Although the SHN are at the limits of Coulomb stability, shell stabilization lowers: the ground-state energy, creates a fission barrier, and thereby enables the SHN to exist.

The fundamentals of the modern theory concerning the mass limits of nuclear matter have obtained experimental verification

Page 30: Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna

0

bb20 R

E

40

60

0

E (

MeV

)

5 10 15 20 25 30 35r

-40

-20

R

b

[V (r) - ] d r1 /2

E1 / Log ~T1/2 V (r )N

V C

V C+ V N 238 U

212 P o

V = V + VN C

Size of SH-nucleiSize of SH-nuclei

Geiger–Nutall relation Log Tα = C + D/√Qα

based on invariable density of nuclear matter and nuclear size:

R = r0·A1/3

perfectly works in theRegion: 212Po- 238U,where alpha-decay half-lives changed more than 1025 times!

Page 31: Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna

7 8Alpha decay energy, Q (M eV)

Ha

lf-lif

e,

T (

s)

9

LogT =(a .Z+b).Q +c .Z+d-1 /2

1 0 11 1 2

106

106104

102

102Z = 100

1 0 -5

1 0 -3

1 0 -1

1 01

1 03

1 0 5

118

116

114

11 2

110

1 08

110

108106

100 -104

Cold fusion

Act.+48Ca

11 4

118

116

11 2

even

odd

available for chemical studies

Superheavy nuclei aren't exception to this rule

Page 32: Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna

Chemical properties

Page 33: Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna

7s

6s

5s

5d

4d4s3s2s

5fr max

rel /r

max

non-

rel

4f

Relativistic Contraction

non-

relativistic

7s

6s

5s

5d

4d4s3s2s

5f

4f

0,80

0,75

0,85

0,90

0,95

1,00

1,05

7s

6s

5s

6p5p4p

5d

4d

3p

4s3s2s

5f

0 20 40 60 80 100 120Z

1s 2p3d

4f

rm ax : principal maximum of the wave function of the outermost orbital

J.P. Desclaux, At. Data Nucl. Data Tables 12 , 311 (1973)J.P. Desclaux, At. Data . Data Tables 12 , 311 (1973)J.P. Desclaux, At. Data . Data Tables 12 , 311 (1973)

-

relativistic

SHE

112

114114

113

Atomic propertiesAtomic properties

~ Z2

Hg

PbTl

Bi

Page 34: Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna

8119

121

120? ?

?

121 122 123 135

more and more inert?

H

1

Li

3

Be

4

Na

11

M g

12

K

19

Ca

20

Sc

21

104

Ti

22

V

23

Cr

24

M n

25

Fe

26

Co

27

Ni

28

Cu

29

Zn

30

1

2

3 4 6 7 8 9 10 11 12

13 14 15 16 17

18

1

2

3

4

5

6

He

B

Al Si P S

ONC F

Cl Ar

Ne

7105 106 107 108 109 110 111 112 113 115114 116 117 118

72 74 75 76 77 78 79 80 81 82 83 84 85 8655 56

87 88

37 38 39 40 42 43 44 45 46 47 48 49 50 51 52 53 54

31 32 33 34 35 36

Rf Db Sg Bh Hs M t

Rb Sr Y Zr M oNb Tc Ru Rh Pd Ag Cd In Sn Sb Tc I Xe

Cs Ba Hf WTa Re O s Ir Pt Au Hg Ti Pb Bi Po At Rn

Fr Ra

G a G e As Se Br Kr

Dar

ms-

tad

tiu

m

Ds Rg

5

73

41

?

Periodic Table of ElementsPeriodic Table of ElementsElement 112 is a noble metal – like Hg

room temperature

Page 35: Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna

transport & on-line chemistry

transport & off-line chemistry

Page 36: Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna

155

Neutron num ber

Hal

f-lif

e,

T

(s)

160 165 170 175

118

116114

112

112

113

113

110

110

111

111115

1801 0 -6

1 0 -4

1 0 -2

1 0 -4

1 0 0 1 s

1 m in

1 m s

102

Half-lives of nuclei with Z ≥

110

Half-lives of nuclei with Z ≥

110

Act. + 48Ca

N=162

“in

fli

gh

t”

available for chemistry & mass separation

“on

lin

e”

“gas

cat

cher

Page 37: Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna

rotatingtarget

entrancewindow

beam

beam

RECOILS q=q eq

pumping

pumping

acceleratio

n

RF

RF+ERF

q=1+ He

H 2+B

stopping

volume

E

separatingwindow

GAS CATCHERGAS CATCHER

Guy Savardfrom Argonne National Laboratory

beam of high quality

Page 38: Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna
Page 39: Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna

1. Experiments on synthesis of the isotopes of element 117

in the reaction 249Bk + 48Ca. a) Gas-filled separator b) Chemistry: on-line Z=113 / off-line Z=105

up to July 2010 Cyclotron U-400

2009 / 2010

2. Studies of 2p-emission from 6Be in the charge – exchange reaction 6Li → 6Be with ACCULINA – separator

Cyclotron U-400M3. First experiments with on-line MASHA separator

Low energy beam line on Cyclotron U-400M

Page 40: Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna

110 scientist

(16 doctors of science and 48 PhD) 

during next 6 years will take part in the new theme

“Synthesis and properties of nuclei at the stability limits”

(2010 / 2016)