Yang mills theory

76
Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 304 SOME CONTRIBUTIONS TO YANG MILLS THEORY FORTIFICATION DISSIPATION MODELS 1 DR K N PRASANNA KUMAR, 2 PROF B S KIRANAGI AND 3 PROF C S BAGEWADI ABSTRACT. We provide a series of Models for the problems that arise in Yang Mills Theory. No claim is made that the problem is solved. We do factorize the Yang Mills Theory and give a Model for the values of LHS and RHS of the yang Mills theory. We hope these forms the stepping stone for further factorizations and solutions to the subatomic denominations at Planck’s scale. Work also throws light on some important factors like mass acquisition by symmetry breaking, relation between strong interaction and weak interaction, Lagrangian Invariance despite transformations, Gauge field, Noncommutative symmetry group of Gauge Theory and Yang Mills Theory itself. Key Words: Acquisition of mass, Symmetry Breaking, Strong interaction ,Unified Electroweak interaction, Continuous group of local transformations, Lagrangian Variance, Group generator in Gauge Theory, Vector field or Gauge field, commutative symmetry group in Gauge Theory, Yang Mills Theory The outlay of the paper is as follows: I. INTRODUCTION II. FORMULATION OF THE PROBLEM III. STATEMENT OF GOVERNING EQUATIONS IV. THE SOLUTION-BODY FABRIC OF THE THESIS V. ACKNOWLEDGEMENTS VI. REFRENCES I. INTRODUCTION: We take in to consideration the following parameters, processes and concepts: (1) Acquisition of mass (2) Symmetry Breaking (3) Strong interaction (4) Unified Electroweak interaction (5) Continuous group of local transformations (6) Lagrangian Variance (7) Group generator in Gauge Theory (8) Vector field or Gauge field (9) Non commutative symmetry group in Gauge Theory (10) Yang Mills Theory (We repeat the same Bank’s example. Individual debits and Credits are conservative so also the holistic one. Generalized theories are applied to various systems which are parameterized. And we live in ‘measurement world’. Classification is done on the parameters of various systems to which the Theory is applied. ). (11) First Term of the Lagrangian of the Yang Mills Theory(LHS)

description

The International Institute for Science, Technology and Education (IISTE) Journals Call for paper http://www.iiste.org/Journals

Transcript of Yang mills theory

Page 1: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

304

SOME CONTRIBUTIONS TO YANG MILLS THEORY

FORTIFICATION –DISSIPATION MODELS

1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI AND 3 PROF C S BAGEWADI

ABSTRACT. We provide a series of Models for the problems that arise in Yang Mills Theory. No claim

is made that the problem is solved. We do factorize the Yang Mills Theory and give a Model for the

values of LHS and RHS of the yang Mills theory. We hope these forms the stepping stone for further

factorizations and solutions to the subatomic denominations at Planck’s scale. Work also throws light on

some important factors like mass acquisition by symmetry breaking, relation between strong interaction

and weak interaction, Lagrangian Invariance despite transformations, Gauge field, Noncommutative

symmetry group of Gauge Theory and Yang Mills Theory itself.

Key Words: Acquisition of mass, Symmetry Breaking, Strong interaction ,Unified Electroweak interaction,

Continuous group of local transformations, Lagrangian Variance, Group generator in Gauge Theory, Vector field or

Gauge field, commutative symmetry group in Gauge Theory, Yang Mills Theory

The outlay of the paper is as follows:

I. INTRODUCTION

II. FORMULATION OF THE PROBLEM

III. STATEMENT OF GOVERNING EQUATIONS

IV. THE SOLUTION-BODY FABRIC OF THE THESIS

V. ACKNOWLEDGEMENTS

VI. REFRENCES

I. INTRODUCTION:

We take in to consideration the following parameters, processes and concepts:

(1) Acquisition of mass

(2) Symmetry Breaking

(3) Strong interaction

(4) Unified Electroweak interaction

(5) Continuous group of local transformations

(6) Lagrangian Variance

(7) Group generator in Gauge Theory

(8) Vector field or Gauge field

(9) Non commutative symmetry group in Gauge Theory

(10) Yang Mills Theory (We repeat the same Bank’s example. Individual

debits and Credits are conservative so also the holistic one. Generalized

theories are applied to various systems which are parameterized. And we live

in ‘measurement world’. Classification is done on the parameters of various

systems to which the Theory is applied. ).

(11) First Term of the Lagrangian of the Yang Mills Theory(LHS)

Page 2: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

305

(12) RHS of the Yang Mills Theory

II. FORMULATION OF THE PROBLEM

SYMMETRY BREAKING AND ACQUISITION OF MASS:

MODULE NUMBERED ONE

NOTATION :

: CATEGORY ONE OF SYMMETRY BREAKING

: CATEGORY TWO OF SYMMETRY BREAKING

: CATEGORY THREE OF SYMMETRY BREAKING

: CATEGORY ONE OF ACQUISITION OF MASS

: CATEGORY TWO OF ACQUISITION OF MASS

:CATEGORY THREE OF ACQUISITION OF MASS

UNIFIED ELECTROWEAK INTERACTION AND STRONG INTERACTION:

MODULE NUMBERED TWO:

==========================================================================

===

: CATEGORY ONE OF UNIFIED ELECTROWEAK INTERACTION

: CATEGORY TWO OFUNIFIED ELECTROWEAK INTERACTION

: CATEGORY THREE OFUNIFIED ELECTROWEAK IONTERACTION

:CATEGORY ONE OF STRONG INTERACTION

: CATEGORY TWO OF STRONG INTERACTION

: CATEGORY THREE OF STRONG INTERACTION

LAGRANGIAN INVARIANCE AND CONTINOUS GROUP OF LOCAL

TRANSFORMATIONS:

Page 3: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

306

MODULE NUMBERED THREE:

==========================================================================

===

: CATEGORY ONE OF CONTINUOUS GROUP OF LOCAL TRANSFORMATIONS

:CATEGORY TWO OFCONTINUOUS GROUP OF LOCAL TRANSFORMATIONS

: CATEGORY THREE OF CONTINUOUS GROUP OF LOCAL TRANSFORMATION

: CATEGORY ONE OF LAGRANGIAN INVARIANCE

:CATEGORY TWO OF LAGRANGIAN INVARIANCE

: CATEGORY THREE OF LAGRANGIAN INVARIANCE

GROUP GENERATOR OF GAUGE THEORY AND VECTOR FIELD(GAUGE FIELD):

: MODULE NUMBERED FOUR:

==========================================================================

==

: CATEGORY ONE OF GROUP GENERATOR OF GAUGE THEORY

: CATEGORY TWO OF GROUP GENERATOR OF GAUGE THEORY

: CATEGORY THREE OF GROUP GENERATOR OF GAUGE THEORY

:CATEGORY ONE OF VECTOR FIELD NAMELY GAUGE FIELD

:CATEGORY TWO OF GAUGE FIELD

: CATEGORY THREE OFGAUGE FIELD

YANG MILLS THEORYAND NON COMMUTATIVE SYMMETRY GROUP IN GAUGE

THEORY:

MODULE NUMBERED FIVE:

==========================================================================

===

: CATEGORY ONE OF NON COMMUTATIVE SYMMETRY GROUP OF GAUGE

THEORY

: CATEGORY TWO OF NON COMMUTATIVE SYMMETRY GROUP OPF GAUGE

THEORY

:CATEGORY THREE OFNON COMMUTATIVE SYMMETRY GROUP OF GAUGE

Page 4: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

307

THEORY

: CATEGORY ONE OFYANG MILLS THEORY (Theory is applied to various subatomic

particle systems and the classification is done based on the parametricization of these systems.

There is not a single system known which is not characterized by some properties)

:CATEGORY TWO OF YANG MILLS THEORY

:CATEGORY THREE OF YANG MILLS THEORY

LHS OF THE YANG MILLS THEORY AND RHS OF THE YANG MILLS THEORY.TAKEN

TO THE OTHER SIDE THE LHS WOULD DISSIPATE THE RHS WITH OR WITHOUT TIME

LAG :

MODULE NUMBERED SIX:

==========================================================================

===

: CATEGORY ONE OF LHS OF YANG MILLS THEORY

: CATEGORY TWO OF LHS OF YANG MILLS THEORY

: CATEGORY THREE OF LHS OF YANG MILLS THEORY

: CATEGORY ONE OF RHS OF YANG MILLS THEORY

: CATEGORY TWO OF RHS OF YANG MILLS THEORY

: CATEGORY THREE OF RHS OF YANG MILLS THEORY (Theory applied to various

characterized systems and the systemic characterizations form the basis for the formulation of the

classification).

==========================================================================

=====

( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( )

( )( ) ( )

( ) ( )( ): ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( )

( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ),

( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( )

are Accentuation coefficients

( )( ) (

)( ) ( )( ) (

)( ) ( )( ) (

)( ) ( )( ) (

)( ) ( )( )

( )( ) (

)( ) ( )( ) (

)( ) ( )( ) (

)( ) ( )( ) (

)( ) ( )( )

( )( ) (

)( ) ( )( ) (

)( ) ( )( ) (

)( ) ( )( ) (

)( ) ( )( )

( )( ) (

)( ) ( )( ) , (

)( ) ( )( ) (

)( ) ( )( ) (

)( ) ( )( )

Page 5: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

308

are Dissipation coefficients

III. STATEMENT OF GOVERNING EQUATIONS:

SYMMETRY BREAKING AND ACQUISITION OF MASS:

MODULE NUMBERED ONE

The differential system of this model is now (Module Numbered one)

1

( )

( ) [( )( ) (

)( )( )] 2

( )

( ) [( )( ) (

)( )( )] 3

( )

( ) [( )( ) (

)( )( )] 4

( )

( ) [( )( ) (

)( )( )] 5

( )

( ) [( )( ) (

)( )( )] 6

( )

( ) [( )( ) (

)( )( )] 7

( )( )( ) First augmentation factor 8

( )( )( ) First detritions factor

UNIFIED ELECTROWEAK INTERACTION AND STRONG INTERACTION:

MODULE NUMBERED TWO

The differential system of this model is now ( Module numbered two)

9

( )

( ) [( )( ) (

)( )( )] 10

( )

( ) [( )( ) (

)( )( )] 11

( )

( ) [( )( ) (

)( )( )] 12

( )

( ) [( )( ) (

)( )(( ) )] 13

( )

( ) [( )( ) (

)( )(( ) )] 14

( )

( ) [( )( ) (

)( )(( ) )] 15

( )( )( ) First augmentation factor 16

( )( )(( ) ) First detritions factor 17

Page 6: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

309

LAGRANGIAN INVARIANCE AND CONTINOUS GROUP OF LOCAL

TRANSFORMATIONS:

MODULE NUMBERED THREE

The differential system of this model is now (Module numbered three)

18

( )

( ) [( )( ) (

)( )( )] 19

( )

( ) [( )( ) (

)( )( )] 20

( )

( ) [( )( ) (

)( )( )] 21

( )

( ) [( )( ) (

)( )( )] 22

( )

( ) [( )( ) (

)( )( )] 23

( )

( ) [( )( ) (

)( )( )] 24

( )( )( ) First augmentation factor

( )( )( ) First detritions factor 25

GROUP GENERATOR OF GAUGE THEORY AND VECTOR FIELD(GAUGE FIELD):

: MODULE NUMBERED FOUR:

==========================================================================

==

The differential system of this model is now (Module numbered Four)

26

( )

( ) [( )( ) (

)( )( )] 27

( )

( ) [( )( ) (

)( )( )] 28

( )

( ) [( )( ) (

)( )( )] 29

( )

( ) [( )( ) (

)( )(( ) )] 30

( )

( ) [( )( ) (

)( )(( ) )] 31

( )

( ) [( )( ) (

)( )(( ) )] 32

( )( )( ) First augmentation factor 33

( )( )(( ) ) First detritions factor 34

Page 7: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

310

YANG MILLS THEORYAND NON COMMUTATIVE SYMMETRY GROUP IN GAUGE

THEORY:

MODULE NUMBERED FIVE

The differential system of this model is now (Module number five)

35

( )

( ) [( )( ) (

)( )( )] 36

( )

( ) [( )( ) (

)( )( )] 37

( )

( ) [( )( ) (

)( )( )] 38

( )

( ) [( )( ) (

)( )(( ) )] 39

( )

( ) [( )( ) (

)( )(( ) )] 40

( )

( ) [( )( ) (

)( )(( ) )] 41

( )( )( ) First augmentation factor 42

( )( )(( ) ) First detritions factor 43

LHS OF THE YANG MILLS THEORY AND RHS OF THE YANG MILLS THEORY.TAKEN

TO THE OTHER SIDE THE LHS WOULD DISSIPATE THE RHS WITH OR WITHOUT TIME

LAG :

MODULE NUMBERED SIX

:

The differential system of this model is now (Module numbered Six)

44

45

( )

( ) [( )( ) (

)( )( )] 46

( )

( ) [( )( ) (

)( )( )] 47

( )

( ) [( )( ) (

)( )( )] 48

( )

( ) [( )( ) (

)( )(( ) )] 49

( )

( ) [( )( ) (

)( )(( ) )] 50

Page 8: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

311

( )

( ) [( )( ) (

)( )(( ) )] 51

( )( )( ) First augmentation factor 52

( )( )(( ) ) First detritions factor 53

HOLISTIC CONCATENATE SYTEMAL EQUATIONS HENCEFORTH REFERRED TO AS “GLOBAL EQUATIONS”

We take in to consideration the following parameters, processes and concepts:

(1) Acquisition of mass

(2) Symmetry Breaking

(3) Strong interaction

(4) Unified Electroweak interaction

(5) Continuous group of local transformations

(6) Lagrangian Variance

(7) Group generator in Gauge Theory

(8) Vector field or Gauge field

(9) Non commutative symmetry group in Gauge Theory

(10) Yang Mills Theory (We repeat the same Bank’s example. Individual

debits and Credits are conservative so also the holistic one. Generalized

theories are applied to various systems which are parameterized. And we live

in ‘measurement world’. Classification is done on the parameters of various

systems to which the Theory is applied. ).

(11) First Term of the Lagrangian of the Yang Mills Theory(LHS)

(12) RHS of the Yang Mills Theory

54

( )

( ) [ (

)( ) ( )( )( ) (

)( )( ) ( )( )( )

( )( )( ) (

)( )( ) ( )( )( )

]

55

( )

( ) [ (

)( ) ( )( )( ) (

)( )( ) ( )( )( )

( )( )( ) (

)( )( ) ( )( )( )

]

56

( )

( ) [ (

)( ) ( )( )( ) (

)( )( ) ( )( )( )

( )( )( ) (

)( )( ) ( )( )( )

]

57

Page 9: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

312

Where ( )( )( ) (

)( )( ) ( )( )( ) are first augmentation coefficients for category 1, 2 and 3

( )( )( ) , (

)( )( ) , ( )( )( ) are second augmentation coefficient for category 1, 2 and 3

( )( )( ) (

)( )( ) ( )( )( ) are third augmentation coefficient for category 1, 2 and 3

( )( )( ) , (

)( )( ) , ( )( )( ) are fourth augmentation coefficient for category 1, 2 and

3

( )( )( ) (

)( )( ) ( )( )( ) are fifth augmentation coefficient for category 1, 2 and 3

( )( )( ) , (

)( )( ) , ( )( )( ) are sixth augmentation coefficient for category 1, 2 and 3

58

59

60

( )

( ) [

( )( ) (

)( )( ) ( )( )( ) – (

)( )( )

( )( )( ) (

)( )( ) ( )( )( )

]

61

( )

( ) [ (

)( ) ( )( )( ) (

)( )( ) – ( )( )( )

( )( )( ) (

)( )( ) ( )( )( )

]

62

( )

( ) [ (

)( ) ( )( )( ) (

)( )( ) – ( )( )( )

( )( )( ) (

)( )( ) ( )( )( )

]

63

Where ( )( )( ) (

)( )( ) ( )( )( ) are first detrition coefficients for category 1, 2 and 3

( )( )( ) (

)( )( ) ( )( )( ) are second detritions coefficients for category 1, 2 and 3

( )( )( ) (

)( )( ) ( )( )( ) are third detritions coefficients for category 1, 2 and 3

( )( )( ) (

)( )( ) ( )( )( ) are fourth detritions coefficients for category 1, 2 and 3

( )( )( ) , (

)( )( ) , ( )( )( ) are fifth detritions coefficients for category 1, 2 and 3

( )( )( ) , (

)( )( ) , ( )( )( ) are sixth detritions coefficients for category 1, 2 and 3

64

65

( )

( ) [ (

)( ) ( )( )( ) (

)( )( ) ( )( )( )

( )( )( ) (

)( )( ) ( )( )( )

]

66

( )

( ) [ (

)( ) ( )( )( ) (

)( )( ) ( )( )( )

( )( )( ) (

)( )( ) ( )( )( )

]

67

( )

( ) [ (

)( ) ( )( )( ) (

)( )( ) ( )( )( )

( )( )( ) (

)( )( ) ( )( )( )

]

68

Where ( )( )( ) (

)( )( ) ( )( )( ) are first augmentation coefficients for category 1, 2 and 3 69

Page 10: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

313

( )( )( ) , (

)( )( ) , ( )( )( ) are second augmentation coefficient for category 1, 2 and 3

( )( )( ) (

)( )( ) ( )( )( ) are third augmentation coefficient for category 1, 2 and 3

( )( )( ) (

)( )( ) ( )( )( ) are fourth augmentation coefficient for category 1, 2 and

3

( )( )( ) , (

)( )( ) , ( )( )( ) are fifth augmentation coefficient for category 1, 2 and

3

( )( )( ) , (

)( )( ) , ( )( )( ) are sixth augmentation coefficient for category 1, 2 and

3

70

71

( )

( ) [ (

)( ) ( )( )( ) (

)( )( ) – ( )( )( )

( )( )( ) (

)( )( ) ( )( )( )

]

72

( )

( ) [ (

)( ) ( )( )( ) (

)( )( ) – ( )( )( )

( )( )( ) (

)( )( ) ( )( )( )

]

73

( )

( ) [ (

)( ) ( )( )( ) (

)( )( ) – ( )( )( )

( )( )( ) (

)( )( ) ( )( )( )

]

74

( )( )( ) , (

)( )( ) , ( )( )( ) are first detrition coefficients for category 1, 2 and 3

( )( )( ) (

)( )( ) , ( )( )( ) are second detrition coefficients for category 1,2 and 3

( )( )( ) (

)( )( ) ( )( )( ) are third detrition coefficients for category 1,2 and 3

( )( )( ) (

)( )( ) ( )( )( ) are fourth detritions coefficients for category 1,2 and 3

( )( )( ) , (

)( )( ) , ( )( )( ) are fifth detritions coefficients for category 1,2 and 3

( )( )( ) (

)( )( ) , ( )( )( ) are sixth detritions coefficients for category 1,2 and 3

75

( )( ) [

( )( ) (

)( )( ) ( )( )( ) (

)( )( )

( )( )( ) (

)( )( ) ( )( )( )

]

76

( )( ) [

( )( ) (

)( )( ) ( )( )( ) (

)( )( )

( )( )( ) (

)( )( ) ( )( )( )

]

77

78

Page 11: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

314

( )( ) [

( )( ) (

)( )( ) ( )( )( ) (

)( )( )

( )( )( ) (

)( )( ) ( )( )( )

]

( )( )( ) , (

)( )( ) , ( )( )( ) are first augmentation coefficients for category 1, 2 and 3

( )( )( ) (

)( )( ) , ( )( )( ) are second augmentation coefficients for category 1, 2 and 3

( )( )( ) (

)( )( ) ( )( )( ) are third augmentation coefficients for category 1, 2 and 3

( )( )( ) , (

)( )( ) ( )( )( ) are fourth augmentation coefficients for category 1,

2 and 3

( )( )( ) (

)( )( ) ( )( )( ) are fifth augmentation coefficients for category 1, 2

and 3

( )( )( ) (

)( )( ) ( )( )( ) are sixth augmentation coefficients for category 1, 2

and 3

79

80

81

( )( ) [

( )( ) (

)( )( ) – ( )( )( ) – (

)( )( )

( )( )( ) (

)( )( ) ( )( )( )

]

82

( )( ) [

( )( ) (

)( )( ) – ( )( )( ) – (

)( )( )

( )( )( ) (

)( )( ) ( )( )( )

]

83

( )( ) [

( )( ) (

)( )( ) – ( )( )( ) – (

)( )( )

( )( )( ) (

)( )( ) ( )( )( )

]

84

( )( )( ) (

)( )( ) ( )( )( ) are first detritions coefficients for category 1, 2 and 3

( )( )( ) , (

)( )( ) , ( )( )( ) are second detritions coefficients for category 1, 2 and 3

( )( )( ) (

)( )( ) , ( )( )( ) are third detrition coefficients for category 1,2 and 3

( )( )( ) (

)( )( ) ( )( )( ) are fourth detritions coefficients for category 1,

2 and 3

( )( )( ) (

)( )( ) ( )( )( ) are fifth detritions coefficients for category 1, 2

and 3

( )( )( ) (

)( )( ) ( )( )( ) are sixth detritions coefficients for category 1, 2

and 3

85

86

Page 12: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

315

( )

( ) [ (

)( ) ( )( )( ) (

)( )( ) ( )( )( )

( )( )( ) (

)( )( ) ( )( )( )

]

87

( )

( ) [ (

)( ) ( )( )( ) (

)( )( ) ( )( )( )

( )( )( ) (

)( )( ) ( )( )( )

]

88

( )

( ) [ (

)( ) ( )( )( ) (

)( )( ) ( )( )( )

( )( )( ) (

)( )( ) ( )( )( )

]

89

( )( )( ) (

)( )( ) ( )( )( )

( )( )( ) (

)( )( ) ( )( )( )

( )( )( ) (

)( )( ) ( )( )( )

( )( )( ) (

)( )( ) ( )( )( ) are fourth augmentation coefficients for category 1, 2,and

3

( )( )( ) , (

)( )( ) ( )( )( ) are fifth augmentation coefficients for category 1, 2,and 3

( )( )( ) , (

)( )( ) , ( )( )( ) are sixth augmentation coefficients for category 1, 2,and 3

90

91

92

( )

( ) [(

)( ) ( )( )( ) (

)( )( ) – ( )( )( )

( )( )( ) (

)( )( ) – ( )( )( )

]

93

( )

( ) [(

)( ) ( )( )( ) (

)( )( ) – ( )( )( )

( )( )( ) (

)( )( ) – ( )( )( )

]

94

( )

( ) [ (

)( ) ( )( )( ) (

)( )( ) – ( )( )( )

( )( )( ) (

)( )( ) – ( )( )( )

]

95

( )( )( ) (

)( )( ) ( )( )( )

( )( )( ) (

)( )( ) ( )( )( )

( )( )( ) (

)( )( ) ( )( )( )

( )( )( ) (

)( )( ) , ( )( )( )

( )( )( ) , (

)( )( ) , ( )( )( )

– ( )( )( ) – (

)( )( ) – ( )( )( )

96

Page 13: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

316

97

98

( )

( ) [ (

)( ) ( )( )( ) (

)( )( ) ( )( )( )

( )( )( ) (

)( )( ) ( )( )( )

]

99

( )

( ) [ (

)( ) ( )( )( ) (

)( )( ) ( )( )( )

( )( )( ) (

)( )( ) ( )( )( )

]

100

( )

( ) [

( )( ) (

)( )( ) ( )( )( ) (

)( )( )

( )( )( ) (

)( )( ) ( )( )( )

]

101

( )( )( ) (

)( )( ) ( )( )( )

( )( )( ) (

)( )( ) ( )( )( )

( )( )( ) (

)( )( ) ( )( )( )

( )( )( ) (

)( )( ) ( )( )( ) are fourth augmentation coefficients for category 1,2,

and 3

( )( )( ) (

)( )( ) ( )( )( ) are fifth augmentation coefficients for category 1,2,and

3

( )( )( ) (

)( )( ) ( )( )( ) are sixth augmentation coefficients for category 1,2, 3

102

103

( )

( ) [ (

)( ) ( )( )( ) (

)( )( ) – ( )( )( )

( )( )( ) (

)( )( ) – ( )( )( )

]

104

( )

( ) [ (

)( ) ( )( )( ) (

)( )( ) – ( )( )( )

( )( )( ) (

)( )( ) – ( )( )( )

]

105

( )

( ) [ (

)( ) ( )( )( ) (

)( )( ) – ( )( )( )

( )( )( ) (

)( )( ) – ( )( )( )

]

106

– ( )( )( ) (

)( )( ) ( )( )( )

( )( )( ) (

)( )( ) ( )( )( )

( )( )( ) (

)( )( ) ( )( )( )

( )( )( ) (

)( )( ) ( )( )( ) are fourth detrition coefficients for category 1,2, and 3

( )( )( ) (

)( )( ) ( )( )( ) are fifth detrition coefficients for category 1,2, and 3

107

Page 14: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

317

– ( )( )( ) , – (

)( )( ) – ( )( )( ) are sixth detrition coefficients for category 1,2, and 3

108

( )

( )

[(

)( ) ( )( )( ) (

)( )( ) ( )( )( )

( )( )( ) (

)( )( ) ( )( )( )

]

109

( )

( )

[(

)( ) ( )( )( ) (

)( )( ) ( )( )( )

( )( )( ) (

)( )( ) ( )( )( )

]

110

( )

( )

[(

)( ) ( )( )( ) (

)( )( ) ( )( )( )

( )( )( ) (

)( )( ) ( )( )( )

]

111

( )( )( ) (

)( )( ) ( )( )( )

( )( )( ) (

)( )( ) ( )( )( )

( )( )( ) (

)( )( ) ( )( )( )

( )( )( ) (

)( )( ) ( )( )( ) - are fourth augmentation coefficients

( )( )( ) (

)( )( ) ( )( )( ) - fifth augmentation coefficients

( )( )( ) , (

)( )( ) ( )( )( ) sixth augmentation coefficients

112

113

( )

( ) [(

)( ) ( )( )( ) – (

)( )( ) – ( )( )( )

( )( )( ) (

)( )( ) – ( )( )( )

]

114

( )

( ) [(

)( ) ( )( )( ) – (

)( )( ) – ( )( )( )

( )( )( ) (

)( )( ) – ( )( )( )

]

115

( )

( ) [(

)( ) ( )( )( ) – (

)( )( ) – ( )( )( )

( )( )( ) (

)( )( ) – ( )( )( )

]

116

( )( )( ) (

)( )( ) ( )( )( )

( )( )( ) (

)( )( ) ( )( )( )

( )( )( ) (

)( )( ) ( )( )( )

( )( )( ) (

)( )( ) ( )( )( ) are fourth detrition coefficients for category 1, 2, and 3

117

Page 15: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

318

( )( )( ) , (

)( )( ) ( )( )( ) are fifth detrition coefficients for category 1, 2, and

3

– ( )( )( ) , – (

)( )( ) – ( )( )( ) are sixth detrition coefficients for category 1, 2, and

3

118

Where we suppose 119

(A) ( )( ) (

)( ) ( )( ) ( )

( ) ( )( ) (

)( )

(B) The functions ( )( ) (

)( ) are positive continuous increasing and bounded.

Definition of ( )( ) ( )

( ):

( )( )( ) ( )

( ) ( )( )

( )( )( ) ( )

( ) ( )( ) ( )

( )

120

121

(C) ( )( ) ( ) ( )

( )

( )( ) ( ) ( )

( )

Definition of ( )( ) ( )

( ) :

Where ( )( ) ( )

( ) ( )( ) ( )

( ) are positive constants and

122

They satisfy Lipschitz condition:

( )( )(

) ( )( )( ) ( )

( ) ( )( )

( )( )( ) (

)( )( ) ( )( ) ( )( )

123

124

125

With the Lipschitz condition, we place a restriction on the behavior of functions

( )( )(

) and( )( )( ) (

) and ( ) are points belonging to the interval

[( )( ) ( )

( )] . It is to be noted that ( )( )( ) is uniformly continuous. In the eventuality of

the fact, that if ( )( ) then the function (

)( )( ) , the first augmentation coefficient

WOULD be absolutely continuous.

126

Definition of ( )( ) ( )

( ) :

(D) ( )( ) ( )

( ) are positive constants

( )

( )

( )( ) ( )

( )

( )( )

127

Definition of ( )( ) ( )

( ) :

(E) There exists two constants ( )( ) and ( )

( ) which together

with ( )( ) ( )

( ) ( )( ) and ( )

( ) and the constants

( )( ) (

)( ) ( )( ) (

)( ) ( )( ) ( )

( )

satisfy the inequalities

128

129

130

131

Page 16: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

319

( )( ) ( )( ) (

)( ) ( )( ) ( )

( ) ( )( )

( )( ) ( )( ) (

)( ) ( )( ) ( )

( ) ( )( )

132

Where we suppose 134

(F) ( )( ) (

)( ) ( )( ) ( )

( ) ( )( ) (

)( ) 135

(G) The functions ( )( ) (

)( ) are positive continuous increasing and bounded. 136

Definition of ( )( ) ( )

( ): 137

( )( )( ) ( )

( ) ( )( )

138

( )( )( ) ( )

( ) ( )( ) ( )

( ) 139

(H) ( )( ) ( ) ( )

( ) 140

( )( ) (( ) ) ( )

( ) 141

Definition of ( )( ) ( )

( ) :

Where ( )( ) ( )

( ) ( )( ) ( )

( ) are positive constants and

142

They satisfy Lipschitz condition: 143

( )( )(

) ( )( )( ) ( )

( ) ( )( ) 144

( )( )(( )

) ( )( )(( ) ) ( )

( ) ( ) ( ) ( )( ) 145

With the Lipschitz condition, we place a restriction on the behavior of functions ( )( )(

)

and( )( )( ) . (

) And ( ) are points belonging to the interval [( )( ) ( )

( )] . It is

to be noted that ( )( )( ) is uniformly continuous. In the eventuality of the fact, that if ( )

( )

then the function ( )( )( ) , the SECOND augmentation coefficient would be absolutely

continuous.

146

Definition of ( )( ) ( )

( ) : 147

(I) ( )( ) ( )

( ) are positive constants

( )

( )

( )( ) ( )

( )

( )( )

148

Definition of ( )( ) ( )

( ) :

There exists two constants ( )( ) and ( )

( ) which together

with ( )( ) ( )

( ) ( )( ) ( )

( ) and the constants

( )( ) (

)( ) ( )( ) (

)( ) ( )( ) ( )

( )

satisfy the inequalities

149

( )( ) ( )( ) (

)( ) ( )( ) ( )

( ) ( )( ) 150

( )( ) ( )( ) (

)( ) ( )( ) ( )

( ) ( )( ) 151

Page 17: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

320

Where we suppose 152

(J) ( )( ) (

)( ) ( )( ) ( )

( ) ( )( ) (

)( )

The functions ( )( ) (

)( ) are positive continuous increasing and bounded.

Definition of ( )( ) ( )

( ):

( )( )( ) ( )

( ) ( )( )

( )( )( ) ( )

( ) ( )( ) ( )

( )

153

( )( ) ( ) ( )

( )

( )( ) ( ) ( )

( )

Definition of ( )( ) ( )

( ) :

Where ( )( ) ( )

( ) ( )( ) ( )

( ) are positive constants and

154

155

156

They satisfy Lipschitz condition:

( )( )(

) ( )( )( ) ( )

( ) ( )( )

( )( )(

) ( )( )( ) ( )

( ) ( )( )

157

158

159

With the Lipschitz condition, we place a restriction on the behavior of functions ( )( )(

)

and( )( )( ) . (

) And ( ) are points belonging to the interval [( )( ) ( )

( )] . It is

to be noted that ( )( )( ) is uniformly continuous. In the eventuality of the fact, that if ( )

( )

then the function ( )( )( ) , the THIRD augmentation coefficient, would be absolutely

continuous.

160

Definition of ( )( ) ( )

( ) :

(K) ( )( ) ( )

( ) are positive constants

( )

( )

( )( ) ( )

( )

( )( )

161

There exists two constants There exists two constants ( )( ) and ( )

( ) which together with

( )( ) ( )

( ) ( )( ) ( )

( ) and the constants

( )( ) (

)( ) ( )( ) (

)( ) ( )( ) ( )

( ) satisfy the inequalities

( )( ) ( )( ) (

)( ) ( )( ) ( )

( ) ( )( )

( )( ) ( )( ) (

)( ) ( )( ) ( )

( ) ( )( )

162

163

164

165

166

167

Where we suppose 168

(L) ( )( ) (

)( ) ( )( ) ( )

( ) ( )( ) (

)( )

(M) The functions ( )( ) (

)( ) are positive continuous increasing and bounded.

169

Page 18: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

321

Definition of ( )( ) ( )

( ):

( )( )( ) ( )

( ) ( )( )

( )( )(( ) ) ( )

( ) ( )( ) ( )

( )

(N) ( )( ) ( ) ( )

( )

( )( ) (( ) ) ( )

( )

Definition of ( )( ) ( )

( ) :

Where ( )( ) ( )

( ) ( )( ) ( )

( ) are positive constants and

170

They satisfy Lipschitz condition:

( )( )(

) ( )( )( ) ( )

( ) ( )( )

( )( )(( )

) ( )( )(( ) ) ( )

( ) ( ) ( ) ( )( )

171

With the Lipschitz condition, we place a restriction on the behavior of functions ( )( )(

)

and( )( )( ) . (

) And ( ) are points belonging to the interval [( )( ) ( )

( )] . It

is to be noted that ( )( )( ) is uniformly continuous. In the eventuality of the fact, that if

( )( ) then the function (

)( )( ) , the FOURTH augmentation coefficient WOULD be

absolutely continuous.

172

173

Defi174nition of ( )( ) ( )

( ) :

(O) ( ) ( ) ( )( ) are positive constants

(P) ( )

( )

( )( ) ( )

( )

( )( )

174

Definition of ( )( ) ( )

( ) :

(Q) There exists two constants ( )( ) and ( )

( ) which together with

( )( ) ( )

( ) ( )( ) ( )

( ) and the constants

( )( ) (

)( ) ( )( ) (

)( ) ( )( ) ( )

( ) satisfy the inequalities

( )( ) ( )( ) (

)( ) ( )( ) ( )

( ) ( )( )

( )( ) ( )( ) (

)( ) ( )( ) ( )

( ) ( )( )

175

Where we suppose 176

(R) ( )( ) (

)( ) ( )( ) ( )

( ) ( )( ) (

)( )

(S) The functions ( )( ) (

)( ) are positive continuous increasing and bounded.

Definition of ( )( ) ( )

( ):

177

Page 19: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

322

( )( )( ) ( )

( ) ( )( )

( )( )(( ) ) ( )

( ) ( )( ) ( )

( )

(T) ( )( ) ( ) ( )

( )

( )( ) ( ) ( )

( )

Definition of ( )( ) ( )

( ) :

Where ( )( ) ( )

( ) ( )( ) ( )

( ) are positive constants and

178

They satisfy Lipschitz condition:

( )( )(

) ( )( )( ) ( )

( ) ( )( )

( )( )(( )

) ( )( )(( ) ) ( )

( ) ( ) ( ) ( )( )

179

With the Lipschitz condition, we place a restriction on the behavior of functions ( )( )(

)

and( )( )( ) . (

) and ( ) are points belonging to the interval [( )( ) ( )

( )] . It is

to be noted that ( )( )( ) is uniformly continuous. In the eventuality of the fact, that if

( )( ) then the function (

)( )( ) , theFIFTH augmentation coefficient attributable

would be absolutely continuous.

180

Definition of ( )( ) ( )

( ) :

(U) ( )( ) ( )

( ) are positive constants

( )

( )

( )( ) ( )

( )

( )( )

181

Definition of ( )( ) ( )

( ) :

(V) There exists two constants ( )( ) and ( )

( ) which together with

( )( ) ( )

( ) ( )( ) ( )

( ) and the constants

( )( ) (

)( ) ( )( ) (

)( ) ( )( ) ( )

( ) satisfy the inequalities

( )( ) ( )( ) (

)( ) ( )( ) ( )

( ) ( )( )

( )( ) ( )( ) (

)( ) ( )( ) ( )

( ) ( )( )

182

Where we suppose 183

( )( ) (

)( ) ( )( ) ( )

( ) ( )( ) (

)( )

(W) The functions ( )( ) (

)( ) are positive continuous increasing and bounded.

Definition of ( )( ) ( )

( ):

( )( )( ) ( )

( ) ( )( )

( )( )(( ) ) ( )

( ) ( )( ) ( )

( )

184

Page 20: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

323

(X) ( )( ) ( ) ( )

( )

( )( ) (( ) ) ( )

( )

Definition of ( )( ) ( )

( ) :

Where ( )( ) ( )

( ) ( )( ) ( )

( ) are positive constants and

185

They satisfy Lipschitz condition:

( )( )(

) ( )( )( ) ( )

( ) ( )( )

( )( )(( )

) ( )( )(( ) ) ( )

( ) ( ) ( ) ( )( )

186

With the Lipschitz condition, we place a restriction on the behavior of functions ( )( )(

)

and( )( )( ) . (

) and ( ) are points belonging to the interval [( )( ) ( )

( )] . It is

to be noted that ( )( )( ) is uniformly continuous. In the eventuality of the fact, that if

( )( ) then the function (

)( )( ) , the SIXTH augmentation coefficient would be

absolutely continuous.

187

Definition of ( )( ) ( )

( ) :

( )( ) ( )

( ) are positive constants

( )

( )

( )( ) ( )

( )

( )( )

188

Definition of ( )( ) ( )

( ) :

There exists two constants ( )( ) and ( )

( ) which together with

( )( ) ( )

( ) ( )( ) ( )

( ) and the constants

( )( ) (

)( ) ( )( ) (

)( ) ( )( ) ( )

( ) satisfy the inequalities

( )( ) ( )( ) (

)( ) ( )( ) ( )

( ) ( )( )

( )( ) ( )( ) (

)( ) ( )( ) ( )

( ) ( )( )

189

190

Theorem 1: if the conditions IN THE FOREGOING above are fulfilled, there exists a solution

satisfying the conditions

Definition of ( ) ( ) :

( ) ( )( )

( )( ) , ( )

( ) ( )( ) ( )( ) , ( )

191

192

193

Page 21: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

324

Definition of ( ) ( )

( ) ( )( ) ( )( ) , ( )

( ) ( )( ) ( )( ) , ( )

194

( ) ( )( ) ( )( ) , ( )

( ) ( )( ) ( )( ) , ( )

195

Definition of ( ) ( ) :

( ) ( )( )

( )( ) , ( )

( ) ( )( ) ( )( ) , ( )

196

Definition of ( ) ( ) :

( ) ( )( )

( )( ) , ( )

( ) ( )( ) ( )( ) , ( )

197

198

Definition of ( ) ( ) :

( ) ( )( )

( )( ) , ( )

( ) ( )( ) ( )( ) , ( )

199

Proof: Consider operator ( ) defined on the space of sextuples of continuous functions

which satisfy

200

( ) ( )

( )

( ) ( )

( ) 201

( ) ( )

( ) ( )( ) 202

( ) ( )

( ) ( )( ) 203

By

( ) ∫ [( )

( ) ( ( )) (( )( )

)( )( ( ( )) ( ))) ( ( ))] ( )

204

( ) ∫ [( )

( ) ( ( )) (( )( ) (

)( )( ( ( )) ( ))) ( ( ))] ( )

205

Page 22: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

325

( ) ∫ [( )

( ) ( ( )) (( )( ) (

)( )( ( ( )) ( ))) ( ( ))] ( )

206

( ) ∫ [( )

( ) ( ( )) (( )( ) (

)( )( ( ( )) ( ))) ( ( ))] ( )

207

( ) ∫ [( )

( ) ( ( )) (( )( ) (

)( )( ( ( )) ( ))) ( ( ))] ( )

208

( ) ∫ [( )

( ) ( ( )) (( )( ) (

)( )( ( ( )) ( ))) ( ( ))] ( )

Where ( ) is the integrand that is integrated over an interval ( )

209

210

Proof:

Consider operator ( ) defined on the space of sextuples of continuous functions

which satisfy

211

( ) ( )

( )

( ) ( )

( ) 212

( ) ( )

( ) ( )( ) 213

( ) ( )

( ) ( )( ) 214

By

( ) ∫ [( )

( ) ( ( )) (( )( )

)( )( ( ( )) ( ))) ( ( ))] ( )

215

( ) ∫ [( )

( ) ( ( )) (( )( ) (

)( )( ( ( )) ( ))) ( ( ))] ( )

216

( ) ∫ [( )

( ) ( ( )) (( )( ) (

)( )( ( ( )) ( ))) ( ( ))] ( )

217

( ) ∫ [( )

( ) ( ( )) (( )( ) (

)( )( ( ( )) ( ))) ( ( ))] ( )

218

( ) ∫ [( )

( ) ( ( )) (( )( ) (

)( )( ( ( )) ( ))) ( ( ))] ( )

219

( ) ∫ [( )

( ) ( ( )) (( )( ) (

)( )( ( ( )) ( ))) ( ( ))] ( )

Where ( ) is the integrand that is integrated over an interval ( )

220

Proof:

Consider operator ( ) defined on the space of sextuples of continuous functions

which satisfy

221

( ) ( )

( )

( ) ( )

( ) 222

( ) ( )

( ) ( )( ) 223

( ) ( )

( ) ( )( ) 224

By 225

Page 23: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

326

( ) ∫ [( )

( ) ( ( )) (( )( )

)( )( ( ( )) ( ))) ( ( ))] ( )

( ) ∫ [( )

( ) ( ( )) (( )( ) (

)( )( ( ( )) ( ))) ( ( ))] ( )

226

( ) ∫ [( )

( ) ( ( )) (( )( ) (

)( )( ( ( )) ( ))) ( ( ))] ( )

227

( ) ∫ [( )

( ) ( ( )) (( )( ) (

)( )( ( ( )) ( ))) ( ( ))] ( )

228

( ) ∫ [( )

( ) ( ( )) (( )( ) (

)( )( ( ( )) ( ))) ( ( ))] ( )

229

( ) ∫ [( )

( ) ( ( )) (( )( ) (

)( )( ( ( )) ( ))) ( ( ))] ( )

Where ( ) is the integrand that is integrated over an interval ( )

230

Consider operator ( ) defined on the space of sextuples of continuous functions

which satisfy

231

( ) ( )

( )

( ) ( )

( ) 232

( ) ( )

( ) ( )( ) 233

( ) ( )

( ) ( )( ) 234

By

( ) ∫ [( )

( ) ( ( )) (( )( )

)( )( ( ( )) ( ))) ( ( ))] ( )

235

( ) ∫ [( )

( ) ( ( )) (( )( ) (

)( )( ( ( )) ( ))) ( ( ))] ( )

236

( ) ∫ [( )

( ) ( ( )) (( )( ) (

)( )( ( ( )) ( ))) ( ( ))] ( )

237

( ) ∫ [( )

( ) ( ( )) (( )( ) (

)( )( ( ( )) ( ))) ( ( ))] ( )

238

( ) ∫ [( )

( ) ( ( )) (( )( ) (

)( )( ( ( )) ( ))) ( ( ))] ( )

239

( ) ∫ [( )

( ) ( ( )) (( )( ) (

)( )( ( ( )) ( ))) ( ( ))] ( )

Where ( ) is the integrand that is integrated over an interval ( )

240

Consider operator ( ) defined on the space of sextuples of continuous functions

which satisfy

241

242

( ) ( )

( )

( ) ( )

( ) 243

( ) ( )

( ) ( )( ) 244

( ) ( )

( ) ( )( ) 245

Page 24: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

327

By

( ) ∫ [( )

( ) ( ( )) (( )( )

)( )( ( ( )) ( ))) ( ( ))] ( )

246

( ) ∫ [( )

( ) ( ( )) (( )( ) (

)( )( ( ( )) ( ))) ( ( ))] ( )

247

( ) ∫ [( )

( ) ( ( )) (( )( ) (

)( )( ( ( )) ( ))) ( ( ))] ( )

248

( ) ∫ [( )

( ) ( ( )) (( )( ) (

)( )( ( ( )) ( ))) ( ( ))] ( )

249

( ) ∫ [( )

( ) ( ( )) (( )( ) (

)( )( ( ( )) ( ))) ( ( ))] ( )

250

( ) ∫ [( )

( ) ( ( )) (( )( ) (

)( )( ( ( )) ( ))) ( ( ))] ( )

Where ( ) is the integrand that is integrated over an interval ( )

251

Consider operator ( ) defined on the space of sextuples of continuous functions

which satisfy

252

( ) ( )

( )

( ) ( )

( ) 253

( ) ( )

( ) ( )( ) 254

( ) ( )

( ) ( )( ) 255

By

( ) ∫ [( )

( ) ( ( )) (( )( )

)( )( ( ( )) ( ))) ( ( ))] ( )

256

( ) ∫ [( )

( ) ( ( )) (( )( ) (

)( )( ( ( )) ( ))) ( ( ))] ( )

257

( ) ∫ [( )

( ) ( ( )) (( )( ) (

)( )( ( ( )) ( ))) ( ( ))] ( )

258

( ) ∫ [( )

( ) ( ( )) (( )( ) (

)( )( ( ( )) ( ))) ( ( ))] ( )

259

( ) ∫ [( )

( ) ( ( )) (( )( ) (

)( )( ( ( )) ( ))) ( ( ))] ( )

260

( ) ∫ [( )

( ) ( ( )) (( )( ) (

)( )( ( ( )) ( ))) ( ( ))] ( )

Where ( ) is the integrand that is integrated over an interval ( )

261

262

(a) The operator ( ) maps the space of functions satisfying GLOBAL EQUATIONS into itself

.Indeed it is obvious that

263

Page 25: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

328

( ) ∫ [( )

( ) ( ( )

( ) ( )( ) ( ))]

( )

( ( )( ) )

( )( )( )( )

( )( ) ( ( )( ) )

From which it follows that

( ( ) ) ( )( )

( )( )

( )( ) [(( )( )

) (

( )( )

)

( )( )]

( ) is as defined in the statement of theorem 1

264

Analogous inequalities hold also for 265

(b) The operator ( ) maps the space of functions satisfying GLOBAL EQUATIONS into itself

.Indeed it is obvious that

266

( ) ∫ [( )

( ) ( ( )

( ) ( )( ) ( ))]

( ) ( ( )

( ) )

( )( )( )( )

( )( ) ( ( )( ) )

267

From which it follows that

( ( ) ) ( )( )

( )( )

( )( ) [(( )( )

) (

( )( )

)

( )( )]

268

Analogous inequalities hold also for 269

(a) The operator ( ) maps the space of functions satisfying GLOBAL EQUATIONS into itself

.Indeed it is obvious that

( ) ∫ [( )

( ) ( ( )

( ) ( )( ) ( ))]

( )

( ( )( ) )

( )( )( )( )

( )( ) ( ( )( ) )

270

From which it follows that

( ( ) ) ( )( )

( )( )

( )( ) [(( )( )

) (

( )( )

)

( )( )]

271

Analogous inequalities hold also for 272

(b) The operator ( ) maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it is obvious that

( ) ∫ [( )

( ) ( ( )

( ) ( )( ) ( ))]

( )

( ( )( ) )

( )( )( )( )

( )( ) ( ( )( ) )

273

From which it follows that

( ( ) ) ( )( )

( )( )

( )( ) [(( )( )

) (

( )( )

)

( )( )]

274

Page 26: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

329

( ) is as defined in the statement of theorem 1

(c) The operator ( ) maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it is obvious that

( ) ∫ [( )

( ) ( ( )

( ) ( )( ) ( ))]

( )

( ( )( ) )

( )( )( )( )

( )( ) ( ( )( ) )

275

From which it follows that

( ( ) ) ( )( )

( )( )

( )( ) [(( )( )

) (

( )( )

)

( )( )]

( ) is as defined in the statement of theorem 1

276

(d) The operator ( ) maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it is obvious that

( ) ∫ [( )

( ) ( ( )

( ) ( )( ) ( ))]

( )

( ( )( ) )

( )( )( )( )

( )( ) ( ( )( ) )

277

From which it follows that

( ( ) ) ( )( )

( )( )

( )( ) [(( )( )

) (

( )( )

)

( )( )]

( ) is as defined in the statement of theorem 6

Analogous inequalities hold also for

278

279

280

It is now sufficient to take ( )

( )

( )( ) ( )

( )

( )( ) and to choose

( )( ) ( )

( ) large to have

281

282

( )( )

( )( ) [( )( ) (( )

( ) )

(( )( )

)

] ( )( )

283

( )( )

( )( ) [(( )( )

) (

( )( )

)

( )( )] ( )

( )

284

In order that the operator ( ) transforms the space of sextuples of functions satisfying 285

Page 27: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

330

GLOBAL EQUATIONS into itself

The operator ( ) is a contraction with respect to the metric

(( ( ) ( )) ( ( ) ( )))

| ( )( )

( )( )| ( )( )

| ( )( )

( )( )| ( )( )

286

Indeed if we denote

Definition of :

( ) ( )( )

It results

| ( )

( )

| ∫ ( )( )

|

( )

( )| ( )( ) ( ) ( )( ) ( ) ( )

∫ ( )( )|

( )

( )| ( )( ) ( ) ( )( ) ( )

( )( )(

( ) ( ))|

( )

( )| ( )( ) ( ) ( )( ) ( )

( )

( )( )(

( ) ( )) (

)( )( ( )

( )) ( )( ) ( ) ( )( ) ( ) ( )

Where ( ) represents integrand that is integrated over the interval

From the hypotheses it follows

287

| ( ) ( )| ( )( )

( )( ) (( )( ) (

)( ) ( )( ) ( )

( )( )( )) (( ( ) ( ) ( ) ( )))

And analogous inequalities for . Taking into account the hypothesis the result follows

288

Remark 1: The fact that we supposed ( )( ) (

)( ) depending also on can be considered as

not conformal with the reality, however we have put this hypothesis ,in order that we can postulate

condition necessary to prove the uniqueness of the solution bounded by

( )( ) ( )( ) ( )

( ) ( )( ) respectively of

If instead of proving the existence of the solution on , we have to prove it only on a compact then

it suffices to consider that ( )( ) (

)( ) depend only on and respectively on

( ) and hypothesis can replaced by a usual Lipschitz condition.

289

Remark 2: There does not exist any where ( ) ( )

From 19 to 24 it results

( ) [ ∫ {(

)( ) ( )( )( ( ( )) ( ))} ( )

]

( ) ( (

)( ) ) for

290

291

Definition of (( )( ))

(( )

( )) :

Remark 3: if is bounded, the same property have also . indeed if

292

Page 28: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

331

( )( ) it follows

(( )

( )) (

)( ) and by integrating

(( )( ))

( )( )(( )

( )) (

)( )

In the same way , one can obtain

(( )( ))

( )( )(( )

( )) (

)( )

If is bounded, the same property follows for and respectively.

Remark 4: If bounded, from below, the same property holds for The proof is

analogous with the preceding one. An analogous property is true if is bounded from below.

293

Remark 5: If is bounded from below and (( )( ) ( ( ) )) (

)( ) then

Definition of ( )( ) :

Indeed let be so that for

( )( ) (

)( )( ( ) ) ( ) ( )( )

294

Then

( )

( )( )( ) which leads to

(( )( )( )( )

) ( )

If we take such that

it results

(( )( )( )( )

)

By taking now sufficiently small one sees that is

unbounded. The same property holds for if ( )( ) ( ( ) ) (

)( )

We now state a more precise theorem about the behaviors at infinity of the solutions

295

296

It is now sufficient to take ( )

( )

( )( ) ( )

( )

( )( ) and to choose

( )( ) ( )

( ) large to have

297

( )( )

( )( ) [( )( ) (( )

( ) )

(( )( )

)

] ( )( )

298

( )( )

( )( ) [(( )( )

) (

( )( )

)

( )( )] ( )

( )

299

In order that the operator ( ) transforms the space of sextuples of functions satisfying 300

The operator ( ) is a contraction with respect to the metric

((( )( ) ( )

( )) (( )( ) ( )

( )))

| ( )( )

( )( )| ( )( )

| ( )( )

( )( )| ( )( )

301

Page 29: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

332

Indeed if we denote

Definition of : ( ) ( )( )

302

It results

| ( )

( )

| ∫ ( )( )

|

( )

( )| ( )( ) ( ) ( )( ) ( ) ( )

∫ ( )( )|

( )

( )| ( )( ) ( ) ( )( ) ( )

( )( )(

( ) ( ))|

( )

( )| ( )( ) ( ) ( )( ) ( )

( )

( )( )(

( ) ( )) (

)( )( ( )

( )) ( )( ) ( ) ( )( ) ( ) ( )

303

Where ( ) represents integrand that is integrated over the interval

From the hypotheses it follows

304

|( )( ) ( )

( )| ( )( )

( )( ) (( )( ) (

)( ) ( )( )

( )( )( )

( )) ((( )( ) ( )

( ) ( )( ) ( )

( )))

305

And analogous inequalities for . Taking into account the hypothesis the result follows 306

Remark 1: The fact that we supposed ( )( ) (

)( ) depending also on can be considered as

not conformal with the reality, however we have put this hypothesis ,in order that we can postulate

condition necessary to prove the uniqueness of the solution bounded by

( )( ) ( )( ) ( )

( ) ( )( ) respectively of

If instead of proving the existence of the solution on , we have to prove it only on a compact then

it suffices to consider that ( )( ) (

)( ) depend only on and respectively on

( )( ) and hypothesis can replaced by a usual Lipschitz condition.

307

Remark 2: There does not exist any where ( ) ( )

From 19 to 24 it results

( ) [ ∫ {(

)( ) ( )( )( ( ( )) ( ))} ( )

]

( ) ( (

)( ) ) for

308

Definition of (( )( ))

(( )

( )) (( )

( )) :

Remark 3: if is bounded, the same property have also . indeed if

( )( ) it follows

(( )

( )) (

)( ) and by integrating

(( )( ))

( )( )(( )

( )) (

)( )

In the same way , one can obtain

(( )( ))

( )( )(( )

( )) (

)( )

If is bounded, the same property follows for and respectively.

309

310

Page 30: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

333

Remark 4: If bounded, from below, the same property holds for The proof is

analogous with the preceding one. An analogous property is true if is bounded from below.

311

Remark 5: If is bounded from below and (( )( ) (( )( ) )) (

)( ) then

Definition of ( )( ) :

Indeed let be so that for

( )( ) (

)( )(( )( ) ) ( ) ( )( )

312

Then

( )

( )( )( ) which leads to

(( )( )( )( )

) ( )

If we take such that

it results

313

(( )( )( )( )

)

By taking now sufficiently small one sees that is

unbounded. The same property holds for if ( )( ) (( )( ) ) (

)( )

We now state a more precise theorem about the behaviors at infinity of the solutions

314

315

It is now sufficient to take ( )

( )

( )( ) ( )

( )

( )( ) and to choose

( )( ) ( )

( ) large to have

316

( )( )

( )( ) [( )( ) (( )

( ) )

(( )( )

)

] ( )( )

317

( )( )

( )( ) [(( )( )

) (

( )( )

)

( )( )] ( )

( )

318

In order that the operator ( ) transforms the space of sextuples of functions into itself 319

The operator ( ) is a contraction with respect to the metric

((( )( ) ( )

( )) (( )( ) ( )

( )))

| ( )( )

( )( )| ( )( )

| ( )( )

( )( )| ( )( )

320

Indeed if we denote

Definition of :( ( ) ( ) ) ( )(( ) ( ))

321

It results

| ( )

( )

| ∫ ( )( )

|

( )

( )| ( )( ) ( ) ( )( ) ( ) ( )

∫ ( )( )|

( )

( )| ( )( ) ( ) ( )( ) ( )

322

Page 31: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

334

( )( )(

( ) ( ))|

( )

( )| ( )( ) ( ) ( )( ) ( )

( )

( )( )(

( ) ( )) (

)( )( ( )

( )) ( )( ) ( ) ( )( ) ( ) ( )

Where ( ) represents integrand that is integrated over the interval

From the hypotheses it follows

323

| ( ) ( )| ( )( )

( )( ) (( )( ) (

)( ) ( )( )

( )( )( )

( )) ((( )( ) ( )

( ) ( )( ) ( )

( )))

And analogous inequalities for . Taking into account the hypothesis the result follows

324

Remark 1: The fact that we supposed ( )( ) (

)( ) depending also on can be considered as

not conformal with the reality, however we have put this hypothesis ,in order that we can postulate

condition necessary to prove the uniqueness of the solution bounded by

( )( ) ( )( ) ( )

( ) ( )( ) respectively of

If instead of proving the existence of the solution on , we have to prove it only on a compact then

it suffices to consider that ( )( ) (

)( ) depend only on and respectively on

( )( ) and hypothesis can replaced by a usual Lipschitz condition.

325

Remark 2: There does not exist any where ( ) ( )

From 19 to 24 it results

( ) [ ∫ {(

)( ) ( )( )( ( ( )) ( ))} ( )

]

( ) ( (

)( ) ) for

326

Definition of (( )( ))

(( )

( )) (( )

( )) :

Remark 3: if is bounded, the same property have also . indeed if

( )( ) it follows

(( )

( )) (

)( ) and by integrating

(( )( ))

( )( )(( )

( )) (

)( )

In the same way , one can obtain

(( )( ))

( )( )(( )

( )) (

)( )

If is bounded, the same property follows for and respectively.

327

Remark 4: If bounded, from below, the same property holds for The proof is

analogous with the preceding one. An analogous property is true if is bounded from below.

328

Remark 5: If is bounded from below and (( )( ) (( )( ) )) (

)( ) then

Definition of ( )( ) :

Indeed let be so that for

329

330

Page 32: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

335

( )( ) (

)( )(( )( ) ) ( ) ( )( )

Then

( )

( )( )( ) which leads to

(( )( )( )( )

) ( )

If we take such that

it results

(( )( )( )( )

)

By taking now sufficiently small one sees that is

unbounded. The same property holds for if ( )( ) (( )( ) ) (

)( )

We now state a more precise theorem about the behaviors at infinity of the solutions

331

332

It is now sufficient to take ( )

( )

( )( ) ( )

( )

( )( ) and to choose

( )( ) ( )

( ) large to have

333

( )( )

( )( ) [( )( ) (( )

( ) )

(( )( )

)

] ( )( )

334

( )( )

( )( ) [(( )( )

) (

( )( )

)

( )( )] ( )

( )

335

In order that the operator ( ) transforms the space of sextuples of functions satisfying IN to

itself

336

The operator ( ) is a contraction with respect to the metric

((( )( ) ( )

( )) (( )( ) ( )

( )))

| ( )( )

( )( )| ( )( )

| ( )( )

( )( )| ( )( )

Indeed if we denote

Definition of ( ) ( ) : ( ( ) ( ) ) ( )(( ) ( ))

It results

| ( )

( )

| ∫ ( )( )

|

( )

( )| ( )( ) ( ) ( )( ) ( ) ( )

∫ ( )( )|

( )

( )| ( )( ) ( ) ( )( ) ( )

( )( )(

( ) ( ))|

( )

( )| ( )( ) ( ) ( )( ) ( )

( )

( )( )(

( ) ( )) (

)( )( ( )

( )) ( )( ) ( ) ( )( ) ( ) ( )

Where ( ) represents integrand that is integrated over the interval

337

Page 33: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

336

From the hypotheses it follows

338

|( )( ) ( )

( )| ( )( )

( )( ) (( )( ) (

)( ) ( )( )

( )( )( )

( )) ((( )( ) ( )

( ) ( )( ) ( )

( )))

And analogous inequalities for . Taking into account the hypothesis the result follows

339

Remark 1: The fact that we supposed ( )( ) (

)( ) depending also on can be considered

as not conformal with the reality, however we have put this hypothesis ,in order that we can

postulate condition necessary to prove the uniqueness of the solution bounded by

( )( ) ( )( ) ( )

( ) ( )( ) respectively of

If instead of proving the existence of the solution on , we have to prove it only on a compact then

it suffices to consider that ( )( ) (

)( ) depend only on and respectively on

( )( ) and hypothesis can replaced by a usual Lipschitz condition.

340

Remark 2: There does not exist any where ( ) ( )

From 19 to 24 it results

( ) [ ∫ {(

)( ) ( )( )( ( ( )) ( ))} ( )

]

( ) ( (

)( ) ) for

341

Definition of (( )( ))

(( )

( )) (( )

( )) :

Remark 3: if is bounded, the same property have also . indeed if

( )( ) it follows

(( )

( )) (

)( ) and by integrating

(( )( ))

( )( )(( )

( )) (

)( )

In the same way , one can obtain

(( )( ))

( )( )(( )

( )) (

)( )

If is bounded, the same property follows for and respectively.

342

Remark 4: If bounded, from below, the same property holds for The proof is

analogous with the preceding one. An analogous property is true if is bounded from below.

343

Remark 5: If is bounded from below and (( )( ) (( )( ) )) (

)( ) then

Definition of ( )( ) :

Indeed let be so that for

344

Page 34: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

337

( )( ) (

)( )(( )( ) ) ( ) ( )( )

Then

( )

( )( )( ) which leads to

(( )( )( )( )

) ( )

If we take such that

it results

(( )( )( )( )

)

By taking now sufficiently small one sees that is

unbounded. The same property holds for if ( )( ) (( )( ) ) (

)( )

We now state a more precise theorem about the behaviors at infinity of the solutions ANALOGOUS

inequalities hold also for

345

346

It is now sufficient to take ( )

( )

( )( ) ( )

( )

( )( ) and to choose

( )( ) ( )

( ) large to have

347

( )( )

( )( ) [( )( ) (( )

( ) )

(( )( )

)

] ( )( )

348

( )( )

( )( ) [(( )( )

) (

( )( )

)

( )( )] ( )

( )

349

In order that the operator ( ) transforms the space of sextuples of functions into itself 350

The operator ( ) is a contraction with respect to the metric

((( )( ) ( )

( )) (( )( ) ( )

( )))

| ( )( )

( )( )| ( )( )

| ( )( )

( )( )| ( )( )

Indeed if we denote

Definition of ( ) ( ) : ( ( ) ( ) ) ( )(( ) ( ))

It results

| ( )

( )

| ∫ ( )( )

|

( )

( )| ( )( ) ( ) ( )( ) ( ) ( )

∫ ( )( )|

( )

( )| ( )( ) ( ) ( )( ) ( )

( )( )(

( ) ( ))|

( )

( )| ( )( ) ( ) ( )( ) ( )

351

Page 35: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

338

( )

( )( )(

( ) ( )) (

)( )( ( )

( )) ( )( ) ( ) ( )( ) ( ) ( )

Where ( ) represents integrand that is integrated over the interval

From the hypotheses it follows

352

|( )( ) ( )

( )| ( )( )

( )( ) (( )( ) (

)( ) ( )( )

( )( )( )

( )) ((( )( ) ( )

( ) ( )( ) ( )

( )))

And analogous inequalities for . Taking into account the hypothesis (35,35,36) the result

follows

353

Remark 1: The fact that we supposed ( )( ) (

)( ) depending also on can be considered

as not conformal with the reality, however we have put this hypothesis ,in order that we can

postulate condition necessary to prove the uniqueness of the solution bounded by

( )( ) ( )( ) ( )

( ) ( )( ) respectively of

If instead of proving the existence of the solution on , we have to prove it only on a compact then

it suffices to consider that ( )( ) (

)( ) depend only on and respectively on

( )( ) and hypothesis can replaced by a usual Lipschitz condition.

354

Remark 2: There does not exist any where ( ) ( )

From GLOBAL EQUATIONS it results

( ) [ ∫ {(

)( ) ( )( )( ( ( )) ( ))} ( )

]

( ) ( (

)( ) ) for

355

Definition of (( )( ))

(( )

( )) (( )

( )) :

Remark 3: if is bounded, the same property have also . indeed if

( )( ) it follows

(( )

( )) (

)( ) and by integrating

(( )( ))

( )( )(( )

( )) (

)( )

In the same way , one can obtain

(( )( ))

( )( )(( )

( )) (

)( )

If is bounded, the same property follows for and respectively.

356

Remark 4: If bounded, from below, the same property holds for The proof is

analogous with the preceding one. An analogous property is true if is bounded from below.

357

Remark 5: If is bounded from below and (( )( ) (( )( ) )) (

)( ) then 358

Page 36: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

339

Definition of ( )( ) :

Indeed let be so that for

( )( ) (

)( )(( )( ) ) ( ) ( )( )

359

Then

( )

( )( )( ) which leads to

(( )( )( )( )

) ( )

If we take such that

it results

(( )( )( )( )

)

By taking now sufficiently small one sees that is

unbounded. The same property holds for if ( )( ) (( )( ) ) (

)( )

We now state a more precise theorem about the behaviors at infinity of the solutions

Analogous inequalities hold also for

360

361

It is now sufficient to take ( )

( )

( )( ) ( )

( )

( )( ) and to choose

( )( ) ( )

( ) large to have

362

( )( )

( )( ) [( )( ) (( )

( ) )

(( )( )

)

] ( )( )

363

( )( )

( )( ) [(( )( )

) (

( )( )

)

( )( )] ( )

( )

364

In order that the operator ( ) transforms the space of sextuples of functions into itself 365

The operator ( ) is a contraction with respect to the metric

((( )( ) ( )

( )) (( )( ) ( )

( )))

| ( )( )

( )( )| ( )( )

| ( )( )

( )( )| ( )( )

Indeed if we denote

Definition of ( ) ( ) : ( ( ) ( ) ) ( )(( ) ( ))

It results

366

Page 37: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

340

| ( )

( )

| ∫ ( )( )

|

( )

( )| ( )( ) ( ) ( )( ) ( ) ( )

∫ ( )( )|

( )

( )| ( )( ) ( ) ( )( ) ( )

( )( )(

( ) ( ))|

( )

( )| ( )( ) ( ) ( )( ) ( )

( )

( )( )(

( ) ( )) (

)( )( ( )

( )) ( )( ) ( ) ( )( ) ( ) ( )

Where ( ) represents integrand that is integrated over the interval

From the hypotheses it follows

367

|( )( ) ( )

( )| ( )( )

( )( ) (( )( ) (

)( ) ( )( )

( )( )( )

( )) ((( )( ) ( )

( ) ( )( ) ( )

( )))

And analogous inequalities for . Taking into account the hypothesis the result follows

368

Remark 1: The fact that we supposed ( )( ) (

)( ) depending also on can be considered

as not conformal with the reality, however we have put this hypothesis ,in order that we can

postulate condition necessary to prove the uniqueness of the solution bounded by

( )( ) ( )( ) ( )

( ) ( )( ) respectively of

If instead of proving the existence of the solution on , we have to prove it only on a compact then

it suffices to consider that ( )( ) (

)( ) depend only on and respectively on

( )( ) and hypothesis can replaced by a usual Lipschitz condition.

369

Remark 2: There does not exist any where ( ) ( )

From 69 to 32 it results

( ) [ ∫ {(

)( ) ( )( )( ( ( )) ( ))} ( )

]

( ) ( (

)( ) ) for

370

Definition of (( )( ))

(( )

( )) (( )

( )) :

Remark 3: if is bounded, the same property have also . indeed if

( )( ) it follows

(( )

( )) (

)( ) and by integrating

(( )( ))

( )( )(( )

( )) (

)( )

In the same way , one can obtain

(( )( ))

( )( )(( )

( )) (

)( )

If is bounded, the same property follows for and respectively.

371

Page 38: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

341

Remark 4: If bounded, from below, the same property holds for The proof is

analogous with the preceding one. An analogous property is true if is bounded from below.

372

Remark 5: If is bounded from below and (( )( ) (( )( ) )) (

)( ) then

Definition of ( )( ) :

Indeed let be so that for

( )( ) (

)( )(( )( ) ) ( ) ( )( )

373

374

Then

( )

( )( )( ) which leads to

(( )( )( )( )

) ( )

If we take such that

it results

(( )( )( )( )

)

By taking now sufficiently small one sees that is

unbounded. The same property holds for if ( )( ) (( )( ) ( ) ) (

)( )

We now state a more precise theorem about the behaviors at infinity of the solutions

375

376

Behavior of the solutions

If we denote and define

Definition of ( )( ) ( )

( ) ( )( ) ( )

( ) :

(a) )( ) ( )

( ) ( )( ) ( )

( ) four constants satisfying

( )( ) (

)( ) ( )( ) (

)( )( ) ( )( )( ) ( )

( )

( )( ) (

)( ) ( )( ) (

)( )( ) ( )( )( ) ( )

( )

377

Definition of ( )( ) ( )

( ) ( )( ) ( )

( ) ( ) ( ) :

(b) By ( )( ) ( )

( ) and respectively ( )( ) ( )

( ) the roots of the

equations ( )( )( ( ))

( )

( ) ( ) ( )( ) and ( )

( )( ( )) ( )

( ) ( )

( )( )

378

Definition of ( )( ) ( )

( ) ( )( ) ( )

( ) :

By ( )( ) ( )

( ) and respectively ( )( ) ( )

( ) the roots of the equations

( )( )( ( ))

( )

( ) ( ) ( )( ) and ( )

( )( ( )) ( )

( ) ( ) ( )( )

379

Definition of ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) :-

(c) If we define ( )( ) ( )

( ) ( )( ) ( )

( ) by

380

Page 39: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

342

( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( )

( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( )

and ( )( )

( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( )

and analogously

( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( )

( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( )

and ( )( )

( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) where ( )( ) ( )

( )

are defined respectively

381

382

Then the solution satisfies the inequalities

(( )( ) ( )( )) ( )

( )( )

where ( )( ) is defined

( )( ) (( )( ) ( )( )) ( )

( )( ) ( )( )

383

( ( )( )

( )( )(( )( ) ( )( ) ( )( ))[ (( )( ) ( )( )) ( )( ) ]

( )( ) ( )

( )( )

( )( )(( )( ) ( )( ))

( )( ) ( )( )

( )( ) )

384

( )( ) ( )

(( )( ) ( )( )) 385

( )( ) ( )( ) ( )

( )( ) (( )( ) ( )( )) 386

( )( )

( )( )(( )( ) ( )( ))

[ ( )( ) ( )( ) ]

( )( ) ( )

( )( )

( )( )(( )( ) ( )( ) ( )( ))[ (( )( ) ( )( )) ( )( ) ]

( )( )

387

Definition of ( )( ) ( )

( ) ( )( ) ( )

( ):-

Where ( )( ) ( )

( )( )( ) (

)( )

( )( ) ( )

( ) ( )( )

( )( ) ( )

( )( )( ) (

)( )

( )( ) (

)( ) ( )( )

388

Page 40: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

343

Behavior of the solutions

If we denote and define

389

Definition of ( )( ) ( )

( ) ( )( ) ( )

( ) :

(d) )( ) ( )

( ) ( )( ) ( )

( ) four constants satisfying

390

( )( ) (

)( ) ( )( ) (

)( )( ) ( )( )( ) ( )

( ) 391

( )( ) (

)( ) ( )( ) (

)( )(( ) ) ( )( )(( ) ) ( )

( ) 392

Definition of ( )( ) ( )

( ) ( )( ) ( )

( ) : 393

By ( )( ) ( )

( ) and respectively ( )( ) ( )

( ) the roots 394

(e) of the equations ( )( )( ( ))

( )

( ) ( ) ( )( ) 395

and ( )( )( ( ))

( )

( ) ( ) ( )( ) and 396

Definition of ( )( ) ( )

( ) ( )( ) ( )

( ) : 397

By ( )( ) ( )

( ) and respectively ( )( ) ( )

( ) the 398

roots of the equations ( )( )( ( ))

( )

( ) ( ) ( )( ) 399

and ( )( )( ( ))

( )

( ) ( ) ( )( ) 400

Definition of ( )( ) ( )

( ) ( )( ) ( )

( ) :- 401

(f) If we define ( )( ) ( )

( ) ( )( ) ( )

( ) by 402

( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) 403

( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( )

and ( )( )

404

( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) 405

and analogously

( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( )

( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( )

and ( )( )

406

( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) 407

Then the solution satisfies the inequalities

(( )( ) ( )( )) ( )

( )( )

408

( )( ) is defined 409

Page 41: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

344

( )( ) (( )( ) ( )( )) ( )

( )( ) ( )( ) 410

( ( )( )

( )( )(( )( ) ( )( ) ( )( ))[ (( )( ) ( )( )) ( )( ) ]

( )( ) ( )

( )( )

( )( )(( )( ) ( )( ))

( )( ) ( )( )

( )( ) )

411

( )( ) ( )

(( )( ) ( )( )) 412

( )( ) ( )( ) ( )

( )( ) (( )( ) ( )( )) 413

( )( )

( )( )(( )( ) ( )( ))

[ ( )( ) ( )( ) ]

( )( ) ( )

( )( )

( )( )(( )( ) ( )( ) ( )( ))[ (( )( ) ( )( )) ( )( ) ]

( )( )

414

Definition of ( )( ) ( )

( ) ( )( ) ( )

( ):- 415

Where ( )( ) ( )

( )( )( ) (

)( )

( )( ) ( )

( ) ( )( )

416

( )( ) ( )

( )( )( ) (

)( )

( )( ) (

)( ) ( )( )

417

418

Behavior of the solutions

If we denote and define

Definition of ( )( ) ( )

( ) ( )( ) ( )

( ) :

(a) )( ) ( )

( ) ( )( ) ( )

( ) four constants satisfying

( )( ) (

)( ) ( )( ) (

)( )( ) ( )( )( ) ( )

( )

( )( ) (

)( ) ( )( ) (

)( )( ) ( )( )(( ) ) ( )

( )

419

Definition of ( )( ) ( )

( ) ( )( ) ( )

( ) :

(b) By ( )( ) ( )

( ) and respectively ( )( ) ( )

( ) the roots of the

equations ( )( )( ( ))

( )

( ) ( ) ( )( )

and ( )( )( ( ))

( )

( ) ( ) ( )( ) and

By ( )( ) ( )

( ) and respectively ( )( ) ( )

( ) the

roots of the equations ( )( )( ( ))

( )

( ) ( ) ( )( )

and ( )( )( ( ))

( )

( ) ( ) ( )( )

420

Definition of ( )( ) ( )

( ) ( )( ) ( )

( ) :- 421

Page 42: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

345

(c) If we define ( )( ) ( )

( ) ( )( ) ( )

( ) by

( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( )

( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( )

and ( )( )

( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( )

and analogously

( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( )

( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) and ( )

( )

( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( )

Then the solution satisfies the inequalities

(( )( ) ( )( )) ( )

( )( )

( )( ) is defined

422

423

( )( ) (( )( ) ( )( )) ( )

( )( ) ( )( ) 424

( ( )( )

( )( )(( )( ) ( )( ) ( )( ))[ (( )( ) ( )( )) ( )( ) ]

( )( ) ( )

( )( )

( )( )(( )( ) ( )( ))

( )( ) ( )( )

( )( ) )

425

( )( ) ( )

(( )( ) ( )( )) 426

( )( ) ( )( ) ( )

( )( ) (( )( ) ( )( )) 427

( )( )

( )( )(( )( ) ( )( ))

[ ( )( ) ( )( ) ]

( )( ) ( )

( )( )

( )( )(( )( ) ( )( ) ( )( ))[ (( )( ) ( )( )) ( )( ) ]

( )( )

428

Definition of ( )( ) ( )

( ) ( )( ) ( )

( ):-

Where ( )( ) ( )

( )( )( ) (

)( )

( )( ) ( )

( ) ( )( )

( )( ) ( )

( )( )( ) (

)( )

( )( ) (

)( ) ( )( )

429

430

431

Behavior of the solutions 432

Page 43: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

346

If we denote and define

Definition of ( )( ) ( )

( ) ( )( ) ( )

( ) :

(d) ( )( ) ( )

( ) ( )( ) ( )

( ) four constants satisfying

( )( ) (

)( ) ( )( ) (

)( )( ) ( )( )( ) ( )

( )

( )( ) (

)( ) ( )( ) (

)( )(( ) ) ( )( )(( ) ) ( )

( )

Definition of ( )( ) ( )

( ) ( )( ) ( )

( ) ( ) ( ) :

(e) By ( )( ) ( )

( ) and respectively ( )( ) ( )

( ) the roots of the

equations ( )( )( ( ))

( )

( ) ( ) ( )( )

and ( )( )( ( ))

( )

( ) ( ) ( )( ) and

433

Definition of ( )( ) ( )

( ) ( )( ) ( )

( ) :

By ( )( ) ( )

( ) and respectively ( )( ) ( )

( ) the

roots of the equations ( )( )( ( ))

( )

( ) ( ) ( )( )

and ( )( )( ( ))

( )

( ) ( ) ( )( )

Definition of ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) :-

(f) If we define ( )( ) ( )

( ) ( )( ) ( )

( ) by

( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( )

( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( )

and ( )( )

( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( )

434 435 436

and analogously

( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( )

( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( )

and ( )( )

( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) where ( )( ) ( )

( ) are defined by 59 and 64 respectively

437 438

Then the solution satisfies the inequalities

(( )( ) ( )( )) ( )

( )( )

where ( )( ) is defined

439 440 441 442 443 444 445

Page 44: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

347

( )( ) (( )( ) ( )( )) ( )

( )( ) ( )( )

446 447

(( )( )

( )( )(( )( ) ( )( ) ( )( ))[ (( )( ) ( )( )) ( )( ) ]

( )( ) ( )

( )( )

( )( )(( )( ) ( )( ))

[ ( )( ) ( )( ) ]

( )( ) )

448

( )( ) ( )

(( )( ) ( )( ))

449

( )( ) ( )( ) ( )

( )( ) (( )( ) ( )( ))

450

( )( )

( )( )(( )( ) ( )( ))

[ ( )( ) ( )( ) ]

( )( ) ( )

( )( )

( )( )(( )( ) ( )( ) ( )( ))[ (( )( ) ( )( )) ( )( ) ]

( )( )

451

Definition of ( )( ) ( )

( ) ( )( ) ( )

( ):-

Where ( )( ) ( )

( )( )( ) (

)( )

( )( ) ( )

( ) ( )( )

( )( ) ( )

( )( )( ) (

)( )

( )( ) (

)( ) ( )( )

452 453

Behavior of the solutions If we denote and define

Definition of ( )( ) ( )

( ) ( )( ) ( )

( ) :

(g) ( )( ) ( )

( ) ( )( ) ( )

( ) four constants satisfying

( )( ) (

)( ) ( )( ) (

)( )( ) ( )( )( ) ( )

( )

( )( ) (

)( ) ( )( ) (

)( )(( ) ) ( )( )(( ) ) ( )

( )

454

Definition of ( )( ) ( )

( ) ( )( ) ( )

( ) ( ) ( ) :

(h) By ( )( ) ( )

( ) and respectively ( )( ) ( )

( ) the roots of the

equations ( )( )( ( ))

( )

( ) ( ) ( )( )

and ( )( )( ( ))

( )

( ) ( ) ( )( ) and

455

Definition of ( )( ) ( )

( ) ( )( ) ( )

( ) :

By ( )( ) ( )

( ) and respectively ( )( ) ( )

( ) the

roots of the equations ( )( )( ( ))

( )

( ) ( ) ( )( )

and ( )( )( ( ))

( )

( ) ( ) ( )( )

Definition of ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) :-

(i) If we define ( )( ) ( )

( ) ( )( ) ( )

( ) by

456

Page 45: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

348

( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( )

( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( )

and ( )( )

( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) and analogously

( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( )

( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( )

and ( )( )

( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) where ( )( ) ( )

( ) are defined respectively

457

Then the solution satisfies the inequalities

(( )( ) ( )( )) ( )

( )( )

where ( )( ) is defined

458

( )( ) (( )( ) ( )( )) ( )

( )( ) ( )( )

459 460

(( )( )

( )( )(( )( ) ( )( ) ( )( ))[ (( )( ) ( )( )) ( )( ) ]

( )( ) ( )

( )( )

( )( )(( )( ) ( )( ))

[ ( )( ) ( )( ) ]

( )( ) )

461

( )( ) ( )

(( )( ) ( )( ))

462

( )( ) ( )( ) ( )

( )( ) (( )( ) ( )( ))

463

( )( )

( )( )(( )( ) ( )( ))

[ ( )( ) ( )( ) ]

( )( ) ( )

( )( )

( )( )(( )( ) ( )( ) ( )( ))[ (( )( ) ( )( )) ( )( ) ]

( )( )

464

Definition of ( )( ) ( )

( ) ( )( ) ( )

( ):-

Where ( )( ) ( )

( )( )( ) (

)( )

( )( ) ( )

( ) ( )( )

( )( ) ( )

( )( )( ) (

)( )

( )( ) (

)( ) ( )( )

465

Behavior of the solutions 466

Page 46: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

349

If we denote and define

Definition of ( )( ) ( )

( ) ( )( ) ( )

( ) :

(j) ( )( ) ( )

( ) ( )( ) ( )

( ) four constants satisfying

( )( ) (

)( ) ( )( ) (

)( )( ) ( )( )( ) ( )

( )

( )( ) (

)( ) ( )( ) (

)( )(( ) ) ( )( )(( ) ) ( )

( )

Definition of ( )( ) ( )

( ) ( )( ) ( )

( ) ( ) ( ) :

(k) By ( )( ) ( )

( ) and respectively ( )( ) ( )

( ) the roots of the

equations ( )( )( ( ))

( )

( ) ( ) ( )( )

and ( )( )( ( ))

( )

( ) ( ) ( )( ) and

467

Definition of ( )( ) ( )

( ) ( )( ) ( )

( ) :

By ( )( ) ( )

( ) and respectively ( )( ) ( )

( ) the

roots of the equations ( )( )( ( ))

( )

( ) ( ) ( )( )

and ( )( )( ( ))

( )

( ) ( ) ( )( )

Definition of ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) :-

(l) If we define ( )( ) ( )

( ) ( )( ) ( )

( ) by

( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( )

( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( )

and ( )( )

( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( )

468 470

and analogously

( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( )

( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( )

and ( )( )

( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) where ( )( ) ( )

( ) are defined respectively

471

Then the solution satisfies the inequalities

(( )( ) ( )( )) ( )

( )( )

where ( )( ) is defined

472

( )( ) (( )( ) ( )( )) ( )

( )( ) ( )( )

473

Page 47: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

350

(( )( )

( )( )(( )( ) ( )( ) ( )( ))[ (( )( ) ( )( )) ( )( ) ]

( )( ) ( )

( )( )

( )( )(( )( ) ( )( ))

[ ( )( ) ( )( ) ]

( )( ) )

474

( )( ) ( )

(( )( ) ( )( ))

475

( )( ) ( )( ) ( )

( )( ) (( )( ) ( )( ))

476

( )( )

( )( )(( )( ) ( )( ))

[ ( )( ) ( )( ) ]

( )( ) ( )

( )( )

( )( )(( )( ) ( )( ) ( )( ))[ (( )( ) ( )( )) ( )( ) ]

( )( )

477

Definition of ( )( ) ( )

( ) ( )( ) ( )

( ):-

Where ( )( ) ( )

( )( )( ) (

)( )

( )( ) ( )

( ) ( )( )

( )( ) ( )

( )( )( ) (

)( )

( )( ) (

)( ) ( )( )

478

479

Proof : From GLOBAL EQUATIONS we obtain

( )

( )

( ) (( )( ) (

)( ) ( )( )( )) (

)( )( ) ( ) ( )

( ) ( )

Definition of ( ) :- ( )

It follows

(( )( )( ( ))

( )

( ) ( ) ( )( ))

( )

(( )

( )( ( )) ( )

( ) ( ) ( )( ))

From which one obtains

Definition of ( )( ) ( )

( ) :-

(a) For ( )( )

( )

( ) ( )( )

( )( ) ( )( ) ( )( )( )( )

[ ( )( )(( )( ) ( )( )) ]

( )( ) [ ( )( )(( )( ) ( )( )) ]

, ( )( ) ( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( ) ( )

( )

480

481

In the same manner , we get 482

Page 48: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

351

( )( ) ( )( ) ( )( )( )( )

[ ( )( )(( )( ) ( )( )) ]

( )( ) [ ( )( )(( )( ) ( )( )) ]

, ( )( ) ( )( ) ( )( )

( )( ) ( )( )

From which we deduce ( )( ) ( )( ) ( )

( )

(b) If ( )( ) ( )

( )

( )

( ) we find like in the previous case,

( )( )

( )( ) ( )( )( )( ) [ ( )( )(( )( ) ( )( )) ]

( )( ) [ ( )( )(( )( ) ( )( )) ]

( )( )

( )( ) ( )( )( )( )

[ ( )( )(( )( ) ( )( )) ]

( )( ) [ ( )( )(( )( ) ( )( )) ]

( )( )

483

(c) If ( )( ) ( )

( ) ( )( )

, we obtain

( )( ) ( )( )

( )( ) ( )( )( )( ) [ ( )( )(( )( ) ( )( )) ]

( )( ) [ ( )( )(( )( ) ( )( )) ]

( )( )

And so with the notation of the first part of condition (c) , we have

Definition of ( )( ) :-

( )( ) ( )( ) ( )

( ), ( )( ) ( )

( )

In a completely analogous way, we obtain

Definition of ( )( ) :-

( )( ) ( )( ) ( )

( ), ( )( ) ( )

( )

Now, using this result and replacing it in GLOBAL E486QUATIONS we get easily the result stated

in the theorem.

Particular case :

If ( )( ) (

)( ) ( )( ) ( )

( ) and in this case ( )( ) ( )

( ) if in addition

( )( ) ( )

( ) then ( )( ) ( )( ) and as a consequence ( ) ( )

( ) ( ) this also

defines ( )( ) for the special case

Analogously if ( )( ) (

)( ) ( )( ) ( )

( ) and then

( )( ) ( )

( )if in addition ( )( ) ( )

( ) then ( ) ( )( ) ( ) This is an important

consequence of the relation between ( )( ) and ( )

( ) and definition of ( )( )

484

485

486

we obtain 487

Page 49: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

352

( )

( )

( ) (( )( ) (

)( ) ( )( )( )) (

)( )( ) ( ) ( )

( ) ( )

Definition of ( ) :- ( )

488

It follows

(( )( )( ( ))

( )

( ) ( ) ( )( ))

( )

(( )

( )( ( )) ( )

( ) ( )

( )( ))

489

From which one obtains

Definition of ( )( ) ( )

( ) :-

(d) For ( )( )

( )

( ) ( )( )

( )( ) ( )( ) ( )( )( )( )

[ ( )( )(( )( ) ( )( )) ]

( )( ) [ ( )( )(( )( ) ( )( )) ]

, ( )( ) ( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( ) ( )

( )

490

In the same manner , we get

( )( ) ( )( ) ( )( )( )( )

[ ( )( )(( )( ) ( )( )) ]

( )( ) [ ( )( )(( )( ) ( )( )) ]

, ( )( ) ( )( ) ( )( )

( )( ) ( )( )

491

From which we deduce ( )( ) ( )( ) ( )

( ) 492

(e) If ( )( ) ( )

( )

( )

( ) we find like in the previous case,

( )( )

( )( ) ( )( )( )( ) [ ( )( )(( )( ) ( )( )) ]

( )( ) [ ( )( )(( )( ) ( )( )) ]

( )( )

( )( ) ( )( )( )( )

[ ( )( )(( )( ) ( )( )) ]

( )( ) [ ( )( )(( )( ) ( )( )) ]

( )( )

493

(f) If ( )( ) ( )

( ) ( )( )

, we obtain

( )( ) ( )( )

( )( ) ( )( )( )( ) [ ( )( )(( )( ) ( )( )) ]

( )( ) [ ( )( )(( )( ) ( )( )) ]

( )( )

And so with the notation of the first part of condition (c) , we have

494

Definition of ( )( ) :-

( )( ) ( )( ) ( )

( ), ( )( ) ( )

( )

495

In a completely analogous way, we obtain

Definition of ( )( ) :-

496

Page 50: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

353

( )( ) ( )( ) ( )

( ), ( )( ) ( )

( )

. 497

Particular case :

If ( )( ) (

)( ) ( )( ) ( )

( ) and in this case ( )( ) ( )

( ) if in addition

( )( ) ( )

( ) then ( )( ) ( )( ) and as a consequence ( ) ( )

( ) ( )

Analogously if ( )( ) (

)( ) ( )( ) ( )

( ) and then

( )( ) ( )

( )if in addition ( )( ) ( )

( ) then ( ) ( )( ) ( ) This is an important

consequence of the relation between ( )( ) and ( )

( )

498

499

From GLOBAL EQUATIONS we obtain

( )

( )

( ) (( )( ) (

)( ) ( )( )( )) (

)( )( ) ( ) ( )

( ) ( )

500

Definition of ( ) :- ( )

It follows

(( )( )( ( ))

( )

( ) ( ) ( )( ))

( )

(( )

( )( ( )) ( )

( ) ( )

( )( ))

501

From which one obtains

(a) For ( )( )

( )

( ) ( )( )

( )( ) ( )( ) ( )( )( )( )

[ ( )( )(( )( ) ( )( )) ]

( )( ) [ ( )( )(( )( ) ( )( )) ]

, ( )( ) ( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( ) ( )

( )

502

In the same manner , we get

( )( ) ( )( ) ( )( )( )( )

[ ( )( )(( )( ) ( )( )) ]

( )( ) [ ( )( )(( )( ) ( )( )) ]

, ( )( ) ( )( ) ( )( )

( )( ) ( )( )

Definition of ( )( ) :-

From which we deduce ( )( ) ( )( ) ( )

( )

503

(b) If ( )( ) ( )

( )

( )

( ) we find like in the previous case,

( )( )

( )( ) ( )( )( )( ) [ ( )( )(( )( ) ( )( )) ]

( )( ) [ ( )( )(( )( ) ( )( )) ]

( )( )

504

Page 51: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

354

( )( ) ( )( )( )( )

[ ( )( )(( )( ) ( )( )) ]

( )( ) [ ( )( )(( )( ) ( )( )) ]

( )( )

(c) If ( )( ) ( )

( ) ( )( )

, we obtain

( )( ) ( )( )

( )( ) ( )( )( )( ) [ ( )( )(( )( ) ( )( )) ]

( )( ) [ ( )( )(( )( ) ( )( )) ]

( )( )

And so with the notation of the first part of condition (c) , we have

Definition of ( )( ) :-

( )( ) ( )( ) ( )

( ), ( )( ) ( )

( )

In a completely analogous way, we obtain

Definition of ( )( ) :-

( )( ) ( )( ) ( )

( ), ( )( ) ( )

( )

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in

the theorem.

Particular case :

If ( )( ) (

)( ) ( )( ) ( )

( ) and in this case ( )( ) ( )

( ) if in addition

( )( ) ( )

( ) then ( )( ) ( )( ) and as a consequence ( ) ( )

( ) ( )

Analogously if ( )( ) (

)( ) ( )( ) ( )

( ) and then

( )( ) ( )

( )if in addition ( )( ) ( )

( ) then ( ) ( )( ) ( ) This is an important

consequence of the relation between ( )( ) and ( )

( )

505

506

: From GLOBAL EQUATIONS we obtain

( )

( )

( ) (( )( ) (

)( ) ( )( )( )) (

)( )( ) ( ) ( )

( ) ( )

Definition of ( ) :- ( )

It follows

(( )( )( ( ))

( )

( ) ( ) ( )( ))

( )

(( )

( )( ( )) ( )

( ) ( )

( )( ))

From which one obtains

Definition of ( )( ) ( )

( ) :-

(d) For ( )( )

( )

( ) ( )( )

507 508

Page 52: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

355

( )( ) ( )( ) ( )( )( )( )

[ ( )( )(( )( ) ( )( )) ]

( )( ) [ ( )( )(( )( ) ( )( )) ]

, ( )( ) ( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( ) ( )

( )

In the same manner , we get

( )( ) ( )( ) ( )( )( )( )

[ ( )( )(( )( ) ( )( )) ]

( )( ) [ ( )( )(( )( ) ( )( )) ]

, ( )( ) ( )( ) ( )( )

( )( ) ( )( )

From which we deduce ( )( ) ( )( ) ( )

( )

509

(e) If ( )( ) ( )

( )

( )

( ) we find like in the previous case,

( )( )

( )( ) ( )( )( )( ) [ ( )( )(( )( ) ( )( )) ]

( )( ) [ ( )( )(( )( ) ( )( )) ]

( )( )

( )( ) ( )( )( )( )

[ ( )( )(( )( ) ( )( )) ]

( )( ) [ ( )( )(( )( ) ( )( )) ]

( )( )

510

511

(f) If ( )( ) ( )

( ) ( )( )

, we obtain

( )( ) ( )( )

( )( ) ( )( )( )( ) [ ( )( )(( )( ) ( )( )) ]

( )( ) [ ( )( )(( )( ) ( )( )) ]

( )( )

And so with the notation of the first part of condition (c) , we have

Definition of ( )( ) :-

( )( ) ( )( ) ( )

( ), ( )( ) ( )

( )

In a completely analogous way, we obtain

Definition of ( )( ) :-

( )( ) ( )( ) ( )

( ), ( )( ) ( )

( )

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the theorem. Particular case :

If ( )( ) (

)( ) ( )( ) ( )

( ) and in this case ( )( ) ( )

( ) if in addition

( )( ) ( )

( ) then ( )( ) ( )( ) and as a consequence ( ) ( )

( ) ( ) this also

defines ( )( ) for the special case .

Analogously if ( )( ) (

)( ) ( )( ) ( )

( ) and then

( )( ) ( )

( )if in addition ( )( ) ( )

( ) then ( ) ( )( ) ( ) This is an important

consequence of the relation between ( )( ) and ( )

( ) and definition of ( )( )

512 513

514

Page 53: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

356

From GLOBAL EQUATIONS we obtain

( )

( )

( ) (( )( ) (

)( ) ( )( )( )) (

)( )( ) ( ) ( )

( ) ( )

Definition of ( ) :- ( )

It follows

(( )( )( ( ))

( )

( ) ( ) ( )( ))

( )

(( )

( )( ( )) ( )

( ) ( ) ( )( ))

From which one obtains

Definition of ( )( ) ( )

( ) :-

(g) For ( )( )

( )

( ) ( )( )

( )( ) ( )( ) ( )( )( )( )

[ ( )( )(( )( ) ( )( )) ]

( )( ) [ ( )( )(( )( ) ( )( )) ]

, ( )( ) ( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( ) ( )

( )

515

In the same manner , we get

( )( ) ( )( ) ( )( )( )( )

[ ( )( )(( )( ) ( )( )) ]

( )( ) [ ( )( )(( )( ) ( )( )) ]

, ( )( ) ( )( ) ( )( )

( )( ) ( )( )

From which we deduce ( )( ) ( )( ) ( )

( )

516

(h) If ( )( ) ( )

( )

( )

( ) we find like in the previous case,

( )( )

( )( ) ( )( )( )( ) [ ( )( )(( )( ) ( )( )) ]

( )( ) [ ( )( )(( )( ) ( )( )) ]

( )( )

( )( ) ( )( )( )( )

[ ( )( )(( )( ) ( )( )) ]

( )( ) [ ( )( )(( )( ) ( )( )) ]

( )( )

517

(i) If ( )( ) ( )

( ) ( )( )

, we obtain

( )( ) ( )( )

( )( ) ( )( )( )( ) [ ( )( )(( )( ) ( )( )) ]

( )( ) [ ( )( )(( )( ) ( )( )) ]

( )( )

And so with the notation of the first part of condition (c) , we have

Definition of ( )( ) :-

( )( ) ( )( ) ( )

( ), ( )( ) ( )

( )

In a completely analogous way, we obtain

Definition of ( )( ) :-

518 519

Page 54: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

357

( )( ) ( )( ) ( )

( ), ( )( ) ( )

( )

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the theorem. Particular case :

If ( )( ) (

)( ) ( )( ) ( )

( ) and in this case ( )( ) ( )

( ) if in addition

( )( ) ( )

( ) then ( )( ) ( )( ) and as a consequence ( ) ( )

( ) ( ) this also

defines ( )( ) for the special case .

Analogously if ( )( ) (

)( ) ( )( ) ( )

( ) and then

( )( ) ( )

( )if in addition ( )( ) ( )

( ) then ( ) ( )( ) ( ) This is an important

consequence of the relation between ( )( ) and ( )

( ) and definition of ( )( )

520

we obtain

( )

( )

( ) (( )( ) (

)( ) ( )( )( )) (

)( )( ) ( ) ( )

( ) ( )

Definition of ( ) :- ( )

It follows

(( )( )( ( ))

( )

( ) ( ) ( )( ))

( )

(( )

( )( ( )) ( )

( ) ( )

( )( ))

From which one obtains

Definition of ( )( ) ( )

( ) :-

(j) For ( )( )

( )

( ) ( )( )

( )( ) ( )( ) ( )( )( )( )

[ ( )( )(( )( ) ( )( )) ]

( )( ) [ ( )( )(( )( ) ( )( )) ]

, ( )( ) ( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( ) ( )

( )

521

In the same manner , we get

( )( ) ( )( ) ( )( )( )( )

[ ( )( )(( )( ) ( )( )) ]

( )( ) [ ( )( )(( )( ) ( )( )) ]

, ( )( ) ( )( ) ( )( )

( )( ) ( )( )

From which we deduce ( )( ) ( )( ) ( )

( )

522 523

(k) If ( )( ) ( )

( )

( )

( ) we find like in the previous case, 524

Page 55: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

358

( )( )

( )( ) ( )( )( )( ) [ ( )( )(( )( ) ( )( )) ]

( )( ) [ ( )( )(( )( ) ( )( )) ]

( )( )

( )( ) ( )( )( )( )

[ ( )( )(( )( ) ( )( )) ]

( )( ) [ ( )( )(( )( ) ( )( )) ]

( )( )

(l) If ( )( ) ( )

( ) ( )( )

, we obtain

( )( ) ( )( )

( )( ) ( )( )( )( ) [ ( )( )(( )( ) ( )( )) ]

( )( ) [ ( )( )(( )( ) ( )( )) ]

( )( )

And so with the notation of the first part of condition (c) , we have

Definition of ( )( ) :-

( )( ) ( )( ) ( )

( ), ( )( ) ( )

( )

In a completely analogous way, we obtain

Definition of ( )( ) :-

( )( ) ( )( ) ( )

( ), ( )( ) ( )

( )

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the theorem. Particular case :

If ( )( ) (

)( ) ( )( ) ( )

( ) and in this case ( )( ) ( )

( ) if in addition

( )( ) ( )

( ) then ( )( ) ( )( ) and as a consequence ( ) ( )

( ) ( ) this also

defines ( )( ) for the special case .

Analogously if ( )( ) (

)( ) ( )( ) ( )

( ) and then

( )( ) ( )

( )if in addition ( )( ) ( )

( ) then ( ) ( )( ) ( ) This is an important

consequence of the relation between ( )( ) and ( )

( ) and definition of ( )( )

525

526 527 527

We can prove the following

Theorem 3: If ( )( ) (

)( ) are independent on , and the conditions

( )( )(

)( ) ( )( )( )

( )

( )( )(

)( ) ( )( )( )

( ) ( )( )( )

( ) ( )( )( )

( ) ( )( )( )

( )

( )( )(

)( ) ( )( )( )

( ) ,

( )( )(

)( ) ( )( )( )

( ) ( )( )( )

( ) ( )( )( )

( ) ( )( )( )

( )

( )( ) ( )

( ) as defined, then the system

528

529

If ( )( ) (

)( ) are independent on , and the conditions 530.

Page 56: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

359

( )( )(

)( ) ( )( )( )

( ) 531

( )( )(

)( ) ( )( )( )

( ) ( )( )( )

( ) ( )( )( )

( ) ( )( )( )

( ) 532

( )( )(

)( ) ( )( )( )

( ) , 533

( )( )(

)( ) ( )( )( )

( ) ( )( )( )

( ) ( )( )( )

( ) ( )( )( )

( )

( )( ) ( )

( ) as defined are satisfied , then the system

534

If ( )( ) (

)( ) are independent on , and the conditions

( )( )(

)( ) ( )( )( )

( )

( )( )(

)( ) ( )( )( )

( ) ( )( )( )

( ) ( )( )( )

( ) ( )( )( )

( )

( )( )(

)( ) ( )( )( )

( ) ,

( )( )(

)( ) ( )( )( )

( ) ( )( )( )

( ) ( )( )( )

( ) ( )( )( )

( )

( )( ) ( )

( ) as defined are satisfied , then the system

535

If ( )( ) (

)( ) are independent on , and the conditions

( )( )(

)( ) ( )( )( )

( )

( )( )(

)( ) ( )( )( )

( ) ( )( )( )

( ) ( )( )( )

( ) ( )( )( )

( )

( )( )(

)( ) ( )( )( )

( ) ,

( )( )(

)( ) ( )( )( )

( ) ( )( )( )

( ) ( )( )( )

( ) ( )( )( )

( )

( )( ) ( )

( ) as defined are satisfied , then the system

536

If ( )( ) (

)( ) are independent on , and the conditions

( )( )(

)( ) ( )( )( )

( )

( )( )(

)( ) ( )( )( )

( ) ( )( )( )

( ) ( )( )( )

( ) ( )( )( )

( )

( )( )(

)( ) ( )( )( )

( ) ,

( )( )(

)( ) ( )( )( )

( ) ( )( )( )

( ) ( )( )( )

( ) ( )( )( )

( )

( )( ) ( )

( ) as defined satisfied , then the system

537

If ( )( ) (

)( ) are independent on , and the conditions

( )( )(

)( ) ( )( )( )

( )

( )( )(

)( ) ( )( )( )

( ) ( )( )( )

( ) ( )( )( )

( ) ( )( )( )

( )

( )( )(

)( ) ( )( )( )

( ) ,

( )( )(

)( ) ( )( )( )

( ) ( )( )( )

( ) ( )( )( )

( ) ( )( )( )

( )

538

539

Page 57: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

360

( )( ) ( )

( ) as defined are satisfied , then the system

( )( ) [(

)( ) ( )( )( )] 540

( )( ) [(

)( ) ( )( )( )] 541

( )( ) [(

)( ) ( )( )( )] 542

( )( ) (

)( ) ( )( )( ) 543

( )( ) (

)( ) ( )( )( ) 544

( )( ) (

)( ) ( )( )( ) 545

has a unique positive solution , which is an equilibrium solution for the system 546

( )( ) [(

)( ) ( )( )( )] 547

( )( ) [(

)( ) ( )( )( )] 548

( )( ) [(

)( ) ( )( )( )] 549

( )( ) (

)( ) ( )( )( ) 550

( )( ) (

)( ) ( )( )( ) 551

( )( ) (

)( ) ( )( )( ) 552

has a unique positive solution , which is an equilibrium solution for 553

( )( ) [(

)( ) ( )( )( )] 554

( )( ) [(

)( ) ( )( )( )] 555

( )( ) [(

)( ) ( )( )( )] 556

( )( ) (

)( ) ( )( )( ) 557

( )( ) (

)( ) ( )( )( ) 558

( )( ) (

)( ) ( )( )( ) 559

has a unique positive solution , which is an equilibrium solution 560

( )( ) [(

)( ) ( )( )( )]

561

( )( ) [(

)( ) ( )( )( )] 563

( )( ) [(

)( ) ( )( )( )]

564

( )( ) (

)( ) ( )( )(( ))

565

( )( ) (

)( ) ( )( )(( ))

566

( )( ) (

)( ) ( )( )(( )) 567

Page 58: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

361

has a unique positive solution , which is an equilibrium solution for the system 568

( )( ) [(

)( ) ( )( )( )]

569

( )( ) [(

)( ) ( )( )( )]

570

( )( ) [(

)( ) ( )( )( )]

571

( )( ) (

)( ) ( )( )( )

572

( )( ) (

)( ) ( )( )( )

573

( )( ) (

)( ) ( )( )( )

574

has a unique positive solution , which is an equilibrium solution for the system 575

( )( ) [(

)( ) ( )( )( )]

576

( )( ) [(

)( ) ( )( )( )]

577

( )( ) [(

)( ) ( )( )( )]

578

( )( ) (

)( ) ( )( )( )

579

( )( ) (

)( ) ( )( )( )

580

( )( ) (

)( ) ( )( )( )

584

has a unique positive solution , which is an equilibrium solution for the system 582

583

(a) Indeed the first two equations have a nontrivial solution if

( ) ( )( )(

)( ) ( )( )( )

( ) ( )( )(

)( )( ) ( )( )(

)( )( )

( )( )( )(

)( )( )

584

(a) Indeed the first two equations have a nontrivial solution if

( ) ( )( )(

)( ) ( )( )( )

( ) ( )( )(

)( )( ) ( )( )(

)( )( )

( )( )( )(

)( )( )

585

586

Page 59: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

362

(a) Indeed the first two equations have a nontrivial solution if

( ) ( )( )(

)( ) ( )( )( )

( ) ( )( )(

)( )( ) ( )( )(

)( )( )

( )( )( )(

)( )( )

587

(a) Indeed the first two equations have a nontrivial solution if

( ) ( )( )(

)( ) ( )( )( )

( ) ( )( )(

)( )( ) ( )( )(

)( )( )

( )( )( )(

)( )( )

588

(a) Indeed the first two equations have a nontrivial solution if

( )

( )( )(

)( ) ( )( )( )

( ) ( )( )(

)( )( ) ( )( )(

)( )( )

( )( )( )(

)( )( )

589

(a) Indeed the first two equations have a nontrivial solution if

( ) ( )( )(

)( ) ( )( )( )

( ) ( )( )(

)( )( ) ( )( )(

)( )( )

( )( )( )(

)( )( )

560

Definition and uniqueness of :-

After hypothesis ( ) ( ) and the functions ( )( )( ) being increasing, it follows

that there exists a unique for which (

) . With this value , we obtain from the three first

equations

( )( )

[( )( ) (

)( )( )]

, ( )( )

[( )( ) (

)( )( )]

561

Definition and uniqueness of :-

After hypothesis ( ) ( ) and the functions ( )( )( ) being increasing, it follows

that there exists a unique for which (

) . With this value , we obtain from the three first

equations

562

( )( )

[( )( ) (

)( )( )]

, ( )( )

[( )( ) (

)( )( )]

563

Definition and uniqueness of :-

After hypothesis ( ) ( ) and the functions ( )( )( ) being increasing, it follows that

there exists a unique for which (

) . With this value , we obtain from the three first

equations

( )( )

[( )( ) (

)( )( )]

, ( )( )

[( )( ) (

)( )( )]

564

Page 60: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

363

565

Definition and uniqueness of :-

After hypothesis ( ) ( ) and the functions ( )( )( ) being increasing, it follows

that there exists a unique for which (

) . With this value , we obtain from the three

first equations

( )( )

[( )( ) (

)( )( )]

, ( )( )

[( )( ) (

)( )( )]

566

Definition and uniqueness of :-

After hypothesis ( ) ( ) and the functions ( )( )( ) being increasing, it follows

that there exists a unique for which (

) . With this value , we obtain from the three

first equations

( )( )

[( )( ) (

)( )( )]

, ( )( )

[( )( ) (

)( )( )]

567

Definition and uniqueness of :-

After hypothesis ( ) ( ) and the functions ( )( )( ) being increasing, it follows

that there exists a unique for which (

) . With this value , we obtain from the three

first equations

( )( )

[( )( ) (

)( )( )]

, ( )( )

[( )( ) (

)( )( )]

568

(e) By the same argument, the equations 92,93 admit solutions if

( ) ( )( )(

)( ) ( )( )( )

( )

[( )( )(

)( )( ) ( )( )(

)( )( )] ( )( )( )(

)( )( )

Where in ( ) must be replaced by their values from 96. It is easy to see that

is a decreasing function in taking into account the hypothesis ( ) ( ) it follows

that there exists a unique such that ( )

569

(f) By the same argument, the equations 92,93 admit solutions if

( ) ( )( )(

)( ) ( )( )( )

( )

[( )( )(

)( )( ) ( )( )(

)( )( )] ( )( )( )(

)( )( )

570

Where in ( )( ) must be replaced by their values from 96. It is easy to see that

is a decreasing function in taking into account the hypothesis ( ) ( ) it follows

that there exists a unique such that (( )

)

571

(g) By the same argument, the concatenated equations admit solutions if

( ) ( )( )(

)( ) ( )( )( )

( )

[( )( )(

)( )( ) ( )( )(

)( )( )] ( )( )( )(

)( )( )

572

Page 61: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

364

Where in ( ) must be replaced by their values from 96. It is easy to see that

is a decreasing function in taking into account the hypothesis ( ) ( ) it follows

that there exists a unique such that (( )

)

573

(h) By the same argument, the equations of modules admit solutions if

( ) ( )( )(

)( ) ( )( )( )

( )

[( )( )(

)( )( ) ( )( )(

)( )( )] ( )( )( )(

)( )( )

Where in ( )( ) must be replaced by their values from 96. It is easy to see

that is a decreasing function in taking into account the hypothesis ( ) ( ) it

follows that there exists a unique such that (( )

)

574

(i) By the same argument, the equations (modules) admit solutions if

( ) ( )( )(

)( ) ( )( )( )

( )

[( )( )(

)( )( ) ( )( )(

)( )( )] ( )( )( )(

)( )( )

Where in ( )( ) must be replaced by their values from 96. It is easy to see

that is a decreasing function in taking into account the hypothesis ( ) ( ) it

follows that there exists a unique such that (( )

)

575

(j) By the same argument, the equations (modules) admit solutions if

( ) ( )( )(

)( ) ( )( )( )

( )

[( )( )(

)( )( ) ( )( )(

)( )( )] ( )( )( )(

)( )( )

Where in ( )( ) must be replaced by their values It is easy to see that is a

decreasing function in taking into account the hypothesis ( ) ( ) it follows that

there exists a unique such that ( )

578

579

580

581

Finally we obtain the unique solution of 89 to 94

( ) ,

( ) and

( )( )

[( )( ) (

)( )( )]

,

( )( )

[( )( ) (

)( )( )]

( )( )

[( )( ) (

)( )( )] ,

( )( )

[( )( ) (

)( )( )]

Obviously, these values represent an equilibrium solution

582

Finally we obtain the unique solution 583

(( )

) , (

) and 584

Page 62: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

365

( )( )

[( )( ) (

)( )( )]

,

( )( )

[( )( ) (

)( )( )]

585

( )( )

[( )( ) (

)( )(( ) )] ,

( )( )

[( )( ) (

)( )(( ) )]

586

Obviously, these values represent an equilibrium solution 587

Finally we obtain the unique solution

(( )

) , (

) and

( )( )

[( )( ) (

)( )( )]

,

( )( )

[( )( ) (

)( )( )]

( )( )

[( )( ) (

)( )( )]

,

( )( )

[( )( ) (

)( )( )]

Obviously, these values represent an equilibrium solution

588

Finally we obtain the unique solution

( ) ,

( ) and

( )( )

[( )( ) (

)( )( )]

,

( )( )

[( )( ) (

)( )( )]

589

( )( )

[( )( ) (

)( )(( ) )] ,

( )( )

[( )( ) (

)( )(( ) )]

Obviously, these values represent an equilibrium solution

590

Finally we obtain the unique solution

(( )

) , (

) and

( )( )

[( )( ) (

)( )( )]

,

( )( )

[( )( ) (

)( )( )]

591

( )( )

[( )( ) (

)( )(( ) )] ,

( )( )

[( )( ) (

)( )(( ) )]

Obviously, these values represent an equilibrium solution

592

Finally we obtain the unique solution

(( )

) , (

) and

( )( )

[( )( ) (

)( )( )]

,

( )( )

[( )( ) (

)( )( )]

593

( )( )

[( )( ) (

)( )(( ) )] ,

( )( )

[( )( ) (

)( )(( ) )]

Obviously, these values represent an equilibrium solution

594

ASYMPTOTIC STABILITY ANALYSIS 595

Page 63: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

366

Theorem 4: If the conditions of the previous theorem are satisfied and if the functions

( )( ) (

)( ) Belong to ( )( ) then the above equilibrium point is asymptotically stable.

Proof: Denote

Definition of :-

,

(

)( )

(

) ( )( ) ,

( )( )

( )

596

Then taking into account equations (global) and neglecting the terms of power 2, we obtain 597

((

)( ) ( )( )) ( )

( ) ( )( )

598

((

)( ) ( )( )) ( )

( ) ( )( )

599

((

)( ) ( )( )) ( )

( ) ( )( )

600

((

)( ) ( )( )) ( )

( ) ∑ ( ( )( ) )

601

((

)( ) ( )( )) ( )

( ) ∑ ( ( )( ) )

602

((

)( ) ( )( )) ( )

( ) ∑ ( ( )( ) )

603

If the conditions of the previous theorem are satisfied and if the functions ( )( ) (

)( )

Belong to ( )( ) then the above equilibrium point is asymptotically stable

604

Denote

Definition of :-

605

,

606

( )( )

(

) ( )( ) ,

( )( )

( ( )

) 607

taking into account equations (global)and neglecting the terms of power 2, we obtain 608

((

)( ) ( )( )) ( )

( ) ( )( )

609

((

)( ) ( )( )) ( )

( ) ( )( )

610

((

)( ) ( )( )) ( )

( ) ( )( )

611

((

)( ) ( )( )) ( )

( ) ∑ ( ( )( ) )

612

((

)( ) ( )( )) ( )

( ) ∑ ( ( )( ) )

613

((

)( ) ( )( )) ( )

( ) ∑ ( ( )( ) )

614

Page 64: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

367

If the conditions of the previous theorem are satisfied and if the functions ( )( ) (

)( )

Belong to ( )( ) then the above equilibrium point is asymptotically stabl

Denote

Definition of :-

,

(

)( )

(

) ( )( ) ,

( )( )

( ( )

)

615

616

Then taking into account equations (global) and neglecting the terms of power 2, we obtain 617

((

)( ) ( )( )) ( )

( ) ( )( )

618

((

)( ) ( )( )) ( )

( ) ( )( )

619

((

)( ) ( )( )) ( )

( ) ( )( )

6120

((

)( ) ( )( )) ( )

( ) ∑ ( ( )( ) )

621

((

)( ) ( )( )) ( )

( ) ∑ ( ( )( ) )

622

((

)( ) ( )( )) ( )

( ) ∑ ( ( )( ) )

623

If the conditions of the previous theorem are satisfied and if the functions ( )( ) (

)( )

Belong to ( )( ) then the above equilibrium point is asymptotically stabl

Denote

624

Definition of :-

,

(

)( )

(

) ( )( ) ,

( )( )

(( )

)

625

Then taking into account equations (global) and neglecting the terms of power 2, we obtain 626

((

)( ) ( )( )) ( )

( ) ( )( )

627

((

)( ) ( )( )) ( )

( ) ( )( )

628

((

)( ) ( )( )) ( )

( ) ( )( )

629

((

)( ) ( )( )) ( )

( ) ∑ ( ( )( ) )

630

Page 65: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

368

((

)( ) ( )( )) ( )

( ) ∑ ( ( )( ) )

631

((

)( ) ( )( )) ( )

( ) ∑ ( ( )( ) )

632

If the conditions of the previous theorem are satisfied and if the functions ( )( ) (

)( )

Belong to ( )( ) then the above equilibrium point is asymptotically stable

Denote

633

Definition of :-

,

(

)( )

(

) ( )( ) ,

( )( )

( ( )

)

634

Then taking into account equations (global) and neglecting the terms of power 2, we obtain 635

((

)( ) ( )( )) ( )

( ) ( )( )

636

((

)( ) ( )( )) ( )

( ) ( )( )

637

((

)( ) ( )( )) ( )

( ) ( )( )

638

((

)( ) ( )( )) ( )

( ) ∑ ( ( )( ) )

639

((

)( ) ( )( )) ( )

( ) ∑ ( ( )( ) )

640

((

)( ) ( )( )) ( )

( ) ∑ ( ( )( ) )

641

If the conditions of the previous theorem are satisfied and if the functions ( )( ) (

)( )

Belong to ( )( ) then the above equilibrium point is asymptotically stable

Denote

642

Definition of :-

,

(

)( )

(

) ( )( ) ,

( )( )

( ( )

)

643

Then taking into account equations(global) and neglecting the terms of power 2, we obtain 644

((

)( ) ( )( )) ( )

( ) ( )( )

645

((

)( ) ( )( )) ( )

( ) ( )( )

646

Page 66: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

369

((

)( ) ( )( )) ( )

( ) ( )( )

647

((

)( ) ( )( )) ( )

( ) ∑ ( ( )( ) )

648

((

)( ) ( )( )) ( )

( ) ∑ ( ( )( ) )

649

((

)( ) ( )( )) ( )

( ) ∑ ( ( )( ) )

650

651

The characteristic equation of this system is

(( )( ) ( )( ) ( )

( )) (( )( ) ( )( ) ( )

( ))

[((( )( ) ( )( ) ( )

( ))( )( )

( )( )( )

( ) )]

((( )( ) ( )( ) ( )

( )) ( ) ( ) ( )

( ) ( ) ( ) )

((( )( ) ( )( ) ( )

( ))( )( )

( )( )( )

( ) )

((( )( ) ( )( ) ( )

( )) ( ) ( ) ( )

( ) ( ) ( ) )

((( )( )) ( (

)( ) ( )( ) ( )

( ) ( )( )) ( )( ))

((( )( )) ( (

)( ) ( )( ) ( )

( ) ( )( )) ( )( ))

((( )( )) ( (

)( ) ( )( ) ( )

( ) ( )( )) ( )( )) ( )

( )

(( )( ) ( )( ) ( )

( )) (( )( )( )

( ) ( )

( )( )( )( )

( ) )

((( )( ) ( )( ) ( )

( )) ( ) ( ) ( )

( ) ( ) ( ) )

+

(( )( ) ( )( ) ( )

( )) (( )( ) ( )( ) ( )

( ))

[((( )( ) ( )( ) ( )

( ))( )( )

( )( )( )

( ) )]

((( )( ) ( )( ) ( )

( )) ( ) ( ) ( )

( ) ( ) ( ) )

((( )( ) ( )( ) ( )

( ))( )( )

( )( )( )

( ) )

((( )( ) ( )( ) ( )

( )) ( ) ( ) ( )

( ) ( ) ( ) )

((( )( )) ( (

)( ) ( )( ) ( )

( ) ( )( )) ( )( ))

652

653

Page 67: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

370

((( )( )) ( (

)( ) ( )( ) ( )

( ) ( )( )) ( )( ))

((( )( )) ( (

)( ) ( )( ) ( )

( ) ( )( )) ( )( )) ( )

( )

(( )( ) ( )( ) ( )

( )) (( )( )( )

( ) ( )

( )( )( )( )

( ) )

((( )( ) ( )( ) ( )

( )) ( ) ( ) ( )

( ) ( ) ( ) )

+

(( )( ) ( )( ) ( )

( )) (( )( ) ( )( ) ( )

( ))

[((( )( ) ( )( ) ( )

( ))( )( )

( )( )( )

( ) )]

((( )( ) ( )( ) ( )

( )) ( ) ( ) ( )

( ) ( ) ( ) )

((( )( ) ( )( ) ( )

( ))( )( )

( )( )( )

( ) )

((( )( ) ( )( ) ( )

( )) ( ) ( ) ( )

( ) ( ) ( ) )

((( )( )) ( (

)( ) ( )( ) ( )

( ) ( )( )) ( )( ))

((( )( )) ( (

)( ) ( )( ) ( )

( ) ( )( )) ( )( ))

((( )( )) ( (

)( ) ( )( ) ( )

( ) ( )( )) ( )( )) ( )

( )

(( )( ) ( )( ) ( )

( )) (( )( )( )

( ) ( )

( )( )( )( )

( ) )

((( )( ) ( )( ) ( )

( )) ( ) ( ) ( )

( ) ( ) ( ) )

+

(( )( ) ( )( ) ( )

( )) (( )( ) ( )( ) ( )

( ))

[((( )( ) ( )( ) ( )

( ))( )( )

( )( )( )

( ) )]

((( )( ) ( )( ) ( )

( )) ( ) ( ) ( )

( ) ( ) ( ) )

((( )( ) ( )( ) ( )

( ))( )( )

( )( )( )

( ) )

((( )( ) ( )( ) ( )

( )) ( ) ( ) ( )

( ) ( ) ( ) )

((( )( )) ( (

)( ) ( )( ) ( )

( ) ( )( )) ( )( ))

Page 68: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

371

((( )( )) ( (

)( ) ( )( ) ( )

( ) ( )( )) ( )( ))

((( )( )) ( (

)( ) ( )( ) ( )

( ) ( )( )) ( )( )) ( )

( )

(( )( ) ( )( ) ( )

( )) (( )( )( )

( ) ( )

( )( )( )( )

( ) )

((( )( ) ( )( ) ( )

( )) ( ) ( ) ( )

( ) ( ) ( ) )

+

(( )( ) ( )( ) ( )

( )) (( )( ) ( )( ) ( )

( ))

[((( )( ) ( )( ) ( )

( ))( )( )

( )( )( )

( ) )]

((( )( ) ( )( ) ( )

( )) ( ) ( ) ( )

( ) ( ) ( ) )

((( )( ) ( )( ) ( )

( ))( )( )

( )( )( )

( ) )

((( )( ) ( )( ) ( )

( )) ( ) ( ) ( )

( ) ( ) ( ) )

((( )( )) ( (

)( ) ( )( ) ( )

( ) ( )( )) ( )( ))

((( )( )) ( (

)( ) ( )( ) ( )

( ) ( )( )) ( )( ))

((( )( )) ( (

)( ) ( )( ) ( )

( ) ( )( )) ( )( )) ( )

( )

(( )( ) ( )( ) ( )

( )) (( )( )( )

( ) ( )

( )( )( )( )

( ) )

((( )( ) ( )( ) ( )

( )) ( ) ( ) ( )

( ) ( ) ( ) )

+

(( )( ) ( )( ) ( )

( )) (( )( ) ( )( ) ( )

( ))

[((( )( ) ( )( ) ( )

( ))( )( )

( )( )( )

( ) )]

((( )( ) ( )( ) ( )

( )) ( ) ( ) ( )

( ) ( ) ( ) )

((( )( ) ( )( ) ( )

( ))( )( )

( )( )( )

( ) )

((( )( ) ( )( ) ( )

( )) ( ) ( ) ( )

( ) ( ) ( ) )

((( )( )) ( (

)( ) ( )( ) ( )

( ) ( )( )) ( )( ))

Page 69: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

372

((( )( )) ( (

)( ) ( )( ) ( )

( ) ( )( )) ( )( ))

((( )( )) ( (

)( ) ( )( ) ( )

( ) ( )( )) ( )( )) ( )

( )

(( )( ) ( )( ) ( )

( )) (( )( )( )

( ) ( )

( )( )( )( )

( ) )

((( )( ) ( )( ) ( )

( )) ( ) ( ) ( )

( ) ( ) ( ) )

And as one sees, all the coefficients are positive. It follows that all the roots have negative real part,

and this proves the theorem.

IV. Acknowledgments:

=======================================================================

The introduction is a collection of information from various articles, Books, News

Paper reports, Home Pages Of authors, Journal Reviews, Nature ‘s L:etters,Article

Abstracts, Research papers, Abstracts Of Research Papers, Stanford

Encyclopedia, Web Pages, Ask a Physicist Column, Deliberations with Professors,

the internet including Wikipedia. We acknowledge all authors who have contributed

to the same. In the eventuality of the fact that there has been any act of omission on

the part of the authors, we regret with great deal of compunction, contrition, regret,

trepidiation and remorse. As Newton said, it is only because erudite and eminent

people allowed one to piggy ride on their backs; probably an attempt has been made

to look slightly further. Once again, it is stated that the references are only

illustrative and not comprehensive

V. REFERENCES

================================================================

=========

1. Dr K N Prasanna Kumar, Prof B S Kiranagi, Prof C S Bagewadi - MEASUREMENT

DISTURBS EXPLANATION OF QUANTUM MECHANICAL STATES-A HIDDEN VARIABLE

THEORY - published at: "International Journal of Scientific and Research Publications, Volume 2,

Issue 5, May 2012 Edition".

2. DR K N PRASANNA KUMAR, PROF B S KIRANAGI and PROF C S BAGEWADI -

CLASSIC 2 FLAVOUR COLOR SUPERCONDUCTIVITY AND ORDINARY NUCLEAR

MATTER-A NEW PARADIGM STATEMENT - published at: "International Journal of Scientific

and Research Publications, Volume 2, Issue 5, May 2012 Edition".

3. A HAIMOVICI: “On the growth of a two species ecological system divided on age groups”.

Tensor, Vol 37 (1982),Commemoration volume dedicated to Professor Akitsugu Kawaguchi on

his 80th

birthday

4. FRTJOF CAPRA: “The web of life” Flamingo, Harper Collins See "Dissipative structures”

pages 172-188

Page 70: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

373

5. HEYLIGHEN F. (2001): "The Science of Self-organization and Adaptivity", in L. D. Kiel, (ed) .

Knowledge Management, Organizational Intelligence and Learning, and Complexity, in: The

Encyclopedia of Life Support Systems ((EOLSS), (Eolss Publishers, Oxford)

[http://www.eolss.net

6. MATSUI, T, H. Masunaga, S. M. Kreidenweis, R. A. Pielke Sr., W.-K. Tao, M. Chin, and Y. J

Kaufman (2006), “Satellite-based assessment of marine low cloud variability associated with

aerosol, atmospheric stability, and the diurnal cycle”, J. Geophys. Res., 111, D17204,

doi:10.1029/2005JD006097

7. STEVENS, B, G. Feingold, W.R. Cotton and R.L. Walko, “Elements of the microphysical

structure of numerically simulated nonprecipitating stratocumulus” J. Atmos. Sci., 53, 980-1006

8. FEINGOLD, G, Koren, I; Wang, HL; Xue, HW; Brewer, WA (2010), “Precipitation-generated

oscillations in open cellular cloud fields” Nature, 466 (7308) 849-852, doi: 10.1038/nature09314,

Published 12-Aug 2010

Page 71: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

374

(9)^ a b c Einstein, A. (1905), "Ist die Trägheit eines Körpers von seinem Energieinhalt

abhängig?", Annalen der Physik 18:

639 Bibcode 1905AnP...323..639E,DOI:10.1002/andp.19053231314. See also the English translation.

(10)^ a b Paul Allen Tipler, Ralph A. Llewellyn (2003-01), Modern Physics, W. H. Freeman and

Company, pp. 87–88, ISBN 0-7167-4345-0

(11)^ a b Rainville, S. et al. World Year of Physics: A direct test of E=mc2. Nature 438, 1096-1097

(22 December 2005) | doi: 10.1038/4381096a; Published online 21 December 2005.

(12)^ In F. Fernflores. The Equivalence of Mass and Energy. Stanford Encyclopedia of Philosophy

(13)^ Note that the relativistic mass, in contrast to the rest mass m0, is not a relativistic invariant, and

that the velocity is not a Minkowski four-vector, in contrast to the quantity , where is the differential

of the proper time. However, the energy-momentum four-vector is a genuine Minkowski four-vector,

and the intrinsic origin of the square-root in the definition of the relativistic mass is the distinction

between dτ and dt.

(14)^ Relativity DeMystified, D. McMahon, Mc Graw Hill (USA), 2006, ISBN 0-07-145545-0

(15)^ Dynamics and Relativity, J.R. Forshaw, A.G. Smith, Wiley, 2009, ISBN 978-0-470-01460-8

(16)^ Hans, H. S.; Puri, S. P. (2003). Mechanics (2 ed.). Tata McGraw-Hill. p. 433. ISBN 0-07-

047360-9., Chapter 12 page 433

(17)^ E. F. Taylor and J. A. Wheeler, Spacetime Physics, W.H. Freeman and Co., NY. 1992.ISBN

0-7167-2327-1, see pp. 248-9 for discussion of mass remaining constant after detonation of nuclear

bombs, until heat is allowed to escape.

(18)^ Mould, Richard A. (2002). Basic relativity (2 ed.). Springer. p. 126. ISBN 0-387-95210-

1., Chapter 5 page 126

(19)^ Chow, Tail L. (2006). Introduction to electromagnetic theory: a modern perspective. Jones &

Bartlett Learning. p. 392. ISBN 0-7637-3827-1., Chapter 10 page 392

(20)^ [2] Cockcroft-Walton experiment

(21)^ a b c Conversions used: 1956 International (Steam) Table (IT) values where one calorie

Page 72: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

375

≡ 4.1868 J and one BTU ≡ 1055.05585262 J. Weapons designers' conversion value of one gram TNT

≡ 1000 calories used.

(22)^ Assuming the dam is generating at its peak capacity of 6,809 MW.

(23)^ Assuming a 90/10 alloy of Pt/Ir by weight, a Cp of 25.9 for Pt and 25.1 for Ir, a Pt-dominated

average Cp of 25.8, 5.134 moles of metal, and 132 J.K-1

for the prototype. A variation of

±1.5 picograms is of course, much smaller than the actual uncertainty in the mass of the international

prototype, which are ±2 micrograms.

(24)^ [3] Article on Earth rotation energy. Divided by c^2.

(25)^ a b Earth's gravitational self-energy is 4.6 × 10

-10 that of Earth's total mass, or 2.7 trillion metric

tons. Citation: The Apache Point Observatory Lunar Laser-Ranging Operation (APOLLO), T. W.

Murphy, Jr. et al. University of Washington, Dept. of Physics (132 kB PDF, here.).

(26)^ There is usually more than one possible way to define a field energy, because any field can be

made to couple to gravity in many different ways. By general scaling arguments, the correct answer

at everyday distances, which are long compared to the quantum gravity scale, should be minimal

coupling, which means that no powers of the curvature tensor appear. Any non-minimal couplings,

along with other higher order terms, are presumably only determined by a theory of quantum gravity,

and within string theory, they only start to contribute to experiments at the string scale.

(27)^ G. 't Hooft, "Computation of the quantum effects due to a four-dimensional pseudoparticle",

Physical Review D14:3432–3450 (1976).

(28)^ A. Belavin, A. M. Polyakov, A. Schwarz, Yu. Tyupkin, "Pseudoparticle Solutions to Yang

Mills Equations", Physics Letters 59B:85 (1975).

(29)^ F. Klinkhammer, N. Manton, "A Saddle Point Solution in the Weinberg Salam Theory",

Physical Review D 30:2212.

(30)^ Rubakov V. A. "Monopole Catalysis of Proton Decay", Reports on Progress in Physics

51:189–241 (1988).

(31)^ S.W. Hawking "Black Holes Explosions?" Nature 248:30 (1974).

(32)^ Einstein, A. (1905), "Zur Elektrodynamik bewegter Körper." (PDF), Annalen der Physik 17:

891–921, Bibcode 1905AnP...322...891E,DOI:10.1002/andp.19053221004. English translation.

Page 73: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

376

(33)^ See e.g. Lev B.Okun, The concept of Mass, Physics Today 42 (6), June 1969, p. 31–

36, http://www.physicstoday.org/vol-42/iss-6/vol42no6p31_36.pdf

(34)^ Max Jammer (1999), Concepts of mass in contemporary physics and philosophy, Princeton

University Press, p. 51, ISBN 0-691-01017-X

(35)^ Eriksen, Erik; Vøyenli, Kjell (1976), "The classical and relativistic concepts of

mass",Foundations of Physics (Springer) 6: 115–

124, Bibcode 1976FoPh....6..115E,DOI:10.1007/BF00708670

(36)^ a b Jannsen, M., Mecklenburg, M. (2007), From classical to relativistic mechanics:

Electromagnetic models of the electron., in V. F. Hendricks, et al., , Interactions: Mathematics,

Physics and Philosophy (Dordrecht: Springer): 65–134

(37)^ a b Whittaker, E.T. (1951–1953), 2. Edition: A History of the theories of aether and electricity,

vol. 1: The classical theories / vol. 2: The modern theories 1900–1926, London: Nelson

(38)^ Miller, Arthur I. (1981), Albert Einstein's special theory of relativity. Emergence (1905) and

early interpretation (1905–1911), Reading: Addison–Wesley, ISBN 0-201-04679-2

(39)^ a b Darrigol, O. (2005), "The Genesis of the theory of relativity." (PDF), Séminaire Poincaré 1:

1–22

(40)^ Philip Ball (Aug 23, 2011). "Did Einstein discover E = mc2?” Physics World.

(41)^ Ives, Herbert E. (1952), "Derivation of the mass-energy relation", Journal of the Optical

Society of America 42 (8): 540–543, DOI:10.1364/JOSA.42.000540

(42)^ Jammer, Max (1961/1997). Concepts of Mass in Classical and Modern Physics. New York:

Dover. ISBN 0-486-29998-8.

(43)^ Stachel, John; Torretti, Roberto (1982), "Einstein's first derivation of mass-energy

equivalence", American Journal of Physics 50 (8): 760–

763, Bibcode1982AmJPh..50..760S, DOI:10.1119/1.12764

(44)^ Ohanian, Hans (2008), "Did Einstein prove E=mc2?", Studies In History and Philosophy of

Science Part B 40 (2): 167–173, arXiv:0805.1400,DOI:10.1016/j.shpsb.2009.03.002

Page 74: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

377

(45)^ Hecht, Eugene (2011), "How Einstein confirmed E0=mc2", American Journal of

Physics 79 (6): 591–600, Bibcode 2011AmJPh..79..591H, DOI:10.1119/1.3549223

(46)^ Rohrlich, Fritz (1990), "An elementary derivation of E=mc2", American Journal of

Physics 58 (4): 348–349, Bibcode 1990AmJPh..58..348R, DOI:10.1119/1.16168

(47) (1996). Lise Meitner: A Life in Physics. California Studies in the History of Science. 13.

Berkeley: University of California Press. pp. 236–237. ISBN 0-520-20860-

(48)^ UIBK.ac.at

(49)^ J. J. L. Morton; et al. (2008). "Solid-state quantum memory using the 31

P nuclear

spin". Nature 455 (7216): 1085–1088. Bibcode 2008Natur.455.1085M.DOI:10.1038/nature07295.

(50)^ S. Weisner (1983). "Conjugate coding". Association of Computing Machinery, Special Interest

Group in Algorithms and Computation Theory 15: 78–88.

(51)^ A. Zelinger, Dance of the Photons: From Einstein to Quantum Teleportation, Farrar, Straus &

Giroux, New York, 2010, pp. 189, 192, ISBN 0374239665

(52)^ B. Schumacher (1995). "Quantum coding". Physical Review A 51 (4): 2738–

2747. Bibcode 1995PhRvA..51.2738S. DOI:10.1103/PhysRevA.51.2738.

(53)^ a b Straumann, N (2000). "On Pauli's invention of non-abelian Kaluza-Klein Theory in

1953". ArXiv: gr-qc/0012054 [gr-qc].

(54)^ See Abraham Pais' account of this period as well as L. Susskind's "Superstrings, Physics World

on the first non-abelian gauge theory" where Susskind wrote that Yang–Mills was "rediscovered"

only because Pauli had chosen not to publish.

(55)^ Reifler, N (2007). "Conditions for exact equivalence of Kaluza-Klein and Yang-Mills

theories". ArXiv: gr-qc/0707.3790 [gr-qc].\

(56)^ Yang, C. N.; Mills, R. (1954). "Conservation of Isotopic Spin and Isotopic Gauge

Invariance". Physical Review 96 (1): 191–

Page 75: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

378

195. Bibcode 1954PhRv...96...191Y.DOI:10.1103/PhysRev.96.191.

(57)^ Caprini, I.; Colangelo, G.; Leutwyler, H. (2006). "Mass and width of the lowest resonance in

QCD". Physical Review Letters 96 (13): 132001. ArXiv: hep-

ph/0512364.Bibcode 2006PhRvL..96m2001C. DOI:10.1103/PhysRevLett.96.132001.

(58)^ Yndurain, F. J.; Garcia-Martin, R.; Pelaez, J. R. (2007). "Experimental status of the ππ

isoscalar S wave at low energy: f0 (600) pole and scattering length". Physical Review D76 (7):

074034. ArXiv:hep-

ph/0701025. Bibcode 2007PhRvD..76g4034G.DOI:10.1103/PhysRevD.76.074034.

(59)^ Novikov, V. A.; Shifman, M. A.; A. I. Vainshtein, A. I.; Zakharov, V. I. (1983). "Exact Gell-

Mann-Low Function of Supersymmetric Yang-Mills Theories From Instanton Calculus”.

Nuclear 229 (2): 381–393. Bibcode 1983NuPhB.229..381N.DOI:10.1016/0550-3213(83)90338-3.

(60)^ Ryttov, T.; Sannino, F. (2008). "Super symmetry Inspired QCD Beta Function". Physical

Review D 78 (6): 065001. Bibcode 2008PhRvD..78f5001R.DOI:10.1103/PhysRevD.78.065001

(61)^ Bogolubsky, I. L.; Ilgenfritz, E.-M.; A. I. Müller-Preussker, M.; Sternbeck, A. (2009). "Lattice

gluodynamics computation of Landau-gauge Green's functions in the deep infrared". Physics Letters

B 676 (1-3): 69–73. Bibcode 2009PhLB..676...69B.DOI:10.1016/j.physletb.2009.04.076.

Page 76: Yang mills theory

Advances in Physics Theories and Applications www.iiste.org

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)

Vol 7, 2012

379

First Author: 1Mr. K. N.Prasanna Kumar has three doctorates one each in Mathematics, Economics,

Political Science. Thesis was based on Mathematical Modeling. He was recently awarded D.litt. for his work on

‘Mathematical Models in Political Science’--- Department of studies in Mathematics, Kuvempu University,

Shimoga, Karnataka, India Corresponding Author:[email protected]

Second Author: 2Prof. B.S Kiranagi is the Former Chairman of the Department of Studies in Mathematics,

Manasa Gangotri and present Professor Emeritus of UGC in the Department. Professor Kiranagi has guided

over 25 students and he has received many encomiums and laurels for his contribution to Co homology Groups

and Mathematical Sciences. Known for his prolific writing, and one of the senior most Professors of the

country, he has over 150 publications to his credit. A prolific writer and a prodigious thinker, he has to his credit

several books on Lie Groups, Co Homology Groups, and other mathematical application topics, and excellent

publication history.-- UGC Emeritus Professor (Department of studies in Mathematics), Manasagangotri,

University of Mysore, Karnataka, India

Third Author: 3Prof. C.S. Bagewadi is the present Chairman of Department of Mathematics and Department

of Studies in Computer Science and has guided over 25 students. He has published articles in both national and

international journals. Professor Bagewadi specializes in Differential Geometry and its wide-ranging

ramifications. He has to his credit more than 159 research papers. Several Books on Differential Geometry,

Differential Equations are coauthored by him--- Chairman, Department of studies in Mathematics and Computer

science, Jnanasahyadri Kuvempu University, Shankarghatta, Shimoga district, Karnataka, India

==============================================================================