Y. Maletin , N. Stryzhakova , S. Zelinskiy , S. Chernukhin , D . Tretyakov , S. Tychina

25
Y. Maletin , N. Stryzhakova, S. Zelinskiy, S. Chernukhin, D. Tretyakov, S. Tychina How Electrochemical Science Can Improve the EDLC Performance AABC Europe 2013, Strasbourg, June 24-28

description

How Electrochemical Science Can Improve the EDLC Performance . Y. Maletin , N. Stryzhakova , S. Zelinskiy , S. Chernukhin , D . Tretyakov , S. Tychina. AABC Europe 2013, Strasbourg, June 24-28 . How Electrochemical Science Can Improve the EDLC Performance . Yunasko key target s - PowerPoint PPT Presentation

Transcript of Y. Maletin , N. Stryzhakova , S. Zelinskiy , S. Chernukhin , D . Tretyakov , S. Tychina

Page 1: Y. Maletin , N.  Stryzhakova , S.  Zelinskiy ,  S.  Chernukhin , D .  Tretyakov , S.  Tychina

Y. Maletin, N. Stryzhakova, S. Zelinskiy, S. Chernukhin, D. Tretyakov, S. Tychina

How Electrochemical Science Can Improve the EDLC Performance

AABC Europe 2013, Strasbourg, June 24-28

Page 2: Y. Maletin , N.  Stryzhakova , S.  Zelinskiy ,  S.  Chernukhin , D .  Tretyakov , S.  Tychina

Presentation outline

1. Yunasko key targets2. CV and galvanostatic measurements3. Impedance measurements (EIS)4. In-pore diffusion measurements5. Recent test results: unit cells and modules6. Company development

2

How Electrochemical Science Can Improve the EDLC Performance

Page 3: Y. Maletin , N.  Stryzhakova , S.  Zelinskiy ,  S.  Chernukhin , D .  Tretyakov , S.  Tychina

3

How Electrochemical Science Can Improve the EDLC Performance

Why SC’s sometimes look like the Cinderella of energy storage market?

1. Billions were invested in Li-ion batteries over the last few decades resulting in a huge advance of this technology.

2. SC technology was developing rather slowly and was deemed to be rather complicated and expensive for many applications.

Hence, Yunasko approach: 3. SC’s must demonstrate by far the best

performance in areas where they can compete with batteries or complement them.

4. Low cost and commercially available components should preferably be used.

Page 4: Y. Maletin , N.  Stryzhakova , S.  Zelinskiy ,  S.  Chernukhin , D .  Tretyakov , S.  Tychina

Cell design for 3-electrode measurements

4

How Electrochemical Science Can Improve the EDLC Performance

Page 5: Y. Maletin , N.  Stryzhakova , S.  Zelinskiy ,  S.  Chernukhin , D .  Tretyakov , S.  Tychina

CV: scanning the electrode potential to (+)

5

How Electrochemical Science Can Improve the EDLC Performance

• 0V corresponds to the equilibrium potential• scan rate: 10 mV/s

NOTE: potential range with Faraday processes cannot be used for long

Page 6: Y. Maletin , N.  Stryzhakova , S.  Zelinskiy ,  S.  Chernukhin , D .  Tretyakov , S.  Tychina

6

CV curves: A - 3-electrode cell B - SC prototype

How Electrochemical Science Can Improve the EDLC Performance

A

B

Page 7: Y. Maletin , N.  Stryzhakova , S.  Zelinskiy ,  S.  Chernukhin , D .  Tretyakov , S.  Tychina

2.43.1

How Electrochemical Science Can Improve the EDLC Performance

Charge accumulated in (-) or (+) potential range

7

Page 8: Y. Maletin , N.  Stryzhakova , S.  Zelinskiy ,  S.  Chernukhin , D .  Tretyakov , S.  Tychina

Hybrid cell: CC charge-discharge curves

8

How Electrochemical Science Can Improve the EDLC Performance

Page 9: Y. Maletin , N.  Stryzhakova , S.  Zelinskiy ,  S.  Chernukhin , D .  Tretyakov , S.  Tychina

40 50 60 70 80 90 100 110 120-10

010203040506070

DC=2.7V AC= 5mV Freq --> 0.1Hz to 10 kHz

1- poor2- typical3- optimized

SC design:

Impedance spectroscopy (Nyquist plots)

1

2

3

23

How Electrochemical Science Can Improve the EDLC Performance

1

9

Page 10: Y. Maletin , N.  Stryzhakova , S.  Zelinskiy ,  S.  Chernukhin , D .  Tretyakov , S.  Tychina

10

100 101 102 103 104

0.6

0.7

0.8

0.9

1.0

frequency, Hz

R, O

hm. c

m2

-10

-5

0

5

10

15

C, F

/cc

How Electrochemical Science Can Improve the EDLC Performance

Impedance spectroscopy (capacitance and resistance vs. frequency)

Page 11: Y. Maletin , N.  Stryzhakova , S.  Zelinskiy ,  S.  Chernukhin , D .  Tretyakov , S.  Tychina

rAl-C ≤ 0.01 (in Yunasko technology)

rC ~ 0.05

Thus: rEl ~ 0.75

“pore resistance” ~ 0.6

SC resistivity (in W.cm2)

total ~ 0.8

Though: rEl-in-bulk ~ 0.15 (electrode+separator thickness)

Yunasko approach to reduce R and RC

11

How Electrochemical Science Can Improve the EDLC Performance

Page 12: Y. Maletin , N.  Stryzhakova , S.  Zelinskiy ,  S.  Chernukhin , D .  Tretyakov , S.  Tychina

TEM image of carbon powder

12

Slit-shaped pores or just shear cracks of graphene layers

How Electrochemical Science Can Improve the EDLC Performance

Page 13: Y. Maletin , N.  Stryzhakova , S.  Zelinskiy ,  S.  Chernukhin , D .  Tretyakov , S.  Tychina

Why the in-pore electrolyte mobility is slow?

13

• Pore width is mostly within 1 ÷ 3 nm (is comparable with the Debye length).

• There is no potential gradient in narrow pores, and therefore, diffusion is the only driving force for ions to move. (Y.Maletin et al., 7th EDLC Seminar, FL, Dec.1997)

• Diffusion can be slow due to strong interaction between the charged electrolyte species and conductive pore walls.

How Electrochemical Science Can Improve the EDLC Performance

Page 14: Y. Maletin , N.  Stryzhakova , S.  Zelinskiy ,  S.  Chernukhin , D .  Tretyakov , S.  Tychina

14

Correlation of in-pore diffusion coefficients with EDLC resistance

Diffusion coefficients of Fc+ cations in various NP carbons (Rotating Disc Electrode measurements, see: A.J.Bard, L.R.Faulkner; Electrochemical

Methods. Fundamentals and Applications (2nd ed.); Wiley, 2001, p.335 )

NOTE: in bulk solution

Deff = 10.1×10-10 m2/s

How Electrochemical Science Can Improve the EDLC Performance

Page 15: Y. Maletin , N.  Stryzhakova , S.  Zelinskiy ,  S.  Chernukhin , D .  Tretyakov , S.  Tychina

Test results

15

a) Also tested in ITS, UC Davis, CA; b) Also tested in JME, Cleveland, OH;c) Also tested in Wayne State University, Detroit, MI;d) Equipped with a proprietary voltage balancing system (patent pending).

How Electrochemical Science Can Improve the EDLC Performance

Page 16: Y. Maletin , N.  Stryzhakova , S.  Zelinskiy ,  S.  Chernukhin , D .  Tretyakov , S.  Tychina

16

Recent Yunasko EDLC modules

How Electrochemical Science Can Improve the EDLC Performance

15 V, 200 F:max working voltage 16.2 V max surge voltage 18.0 V dc pulse resistance 0.5 mΩmass 2.5 kg

equipped with a proprietary voltage balancing system and temperature sensor

Page 17: Y. Maletin , N.  Stryzhakova , S.  Zelinskiy ,  S.  Chernukhin , D .  Tretyakov , S.  Tychina

17

Yunasko competitive advantage: low heat generation

Continuous cycling the module over 8 hours

basic city duty cycle

ΔT:cells in the centre

cells at the edge

How Electrochemical Science Can Improve the EDLC Performance

Time, s

V

A, charge

A, discharge

Page 18: Y. Maletin , N.  Stryzhakova , S.  Zelinskiy ,  S.  Chernukhin , D .  Tretyakov , S.  Tychina

18

Ragone plot: EDLC vs hybrid devices

1000 100000

5

10

15

20

25

30

35

40

Spec

ific

ener

gy, W

h/kg

Specific power, W/kg

Hybrid 2.7-1.35 V Hybrid 2.7-2.0 V Supercapacitor 650F 2.7-1.35 V

How Electrochemical Science Can Improve the EDLC Performance

As tested in ITS, UC Davis, CA

Page 19: Y. Maletin , N.  Stryzhakova , S.  Zelinskiy ,  S.  Chernukhin , D .  Tretyakov , S.  Tychina

19

Hybrid cell: cycle life(charge/discharge between 2.7 and 1.35 V)

How Electrochemical Science Can Improve the EDLC Performance

Page 20: Y. Maletin , N.  Stryzhakova , S.  Zelinskiy ,  S.  Chernukhin , D .  Tretyakov , S.  Tychina

20

Hybrid cell: temperature/rate performance

-40 -20 0 20 40 600

20

40

60

80

10050 0C25 0C

Dis

char

ge c

apac

ity, %

t, 0C

1 C 20 C 50 C

-30 0C

How Electrochemical Science Can Improve the EDLC Performance

Page 21: Y. Maletin , N.  Stryzhakova , S.  Zelinskiy ,  S.  Chernukhin , D .  Tretyakov , S.  Tychina

21

Company background and prospects

Principal researchers participate in various supercapacitor projects since 1989

YUNASKO Ltd: registered in the UK since 2010

Subsidiaries:YUNASKO-Ukraine: R&D, design bureau and pilot plant since 2010YUNASKO-Latvia: industrial scale production will start in 2014

How Electrochemical Science Can Improve the EDLC Performance

Page 22: Y. Maletin , N.  Stryzhakova , S.  Zelinskiy ,  S.  Chernukhin , D .  Tretyakov , S.  Tychina

R&D team: breakthrough story

22

How Electrochemical Science Can Improve the EDLC Performance

Page 23: Y. Maletin , N.  Stryzhakova , S.  Zelinskiy ,  S.  Chernukhin , D .  Tretyakov , S.  Tychina

Conclusions1. Electrochemical methods are a powerful

instrument to show a way to SC improvements.2. Yunasko technology* enables to significantly

reduce SC resistance and to achieve the power density up to 100 kW/kg.

3. Yunasko hybrid devices* demonstrate by far larger energy and power density than competing hybrids.

4. First industrial scale production will soon be launched.

5. Yunasko is open to cooperation with investors and industrial partners.

* US and EU patents pending

23

How Electrochemical Science Can Improve the EDLC Performance

Page 24: Y. Maletin , N.  Stryzhakova , S.  Zelinskiy ,  S.  Chernukhin , D .  Tretyakov , S.  Tychina

Acknowledgements

Many thanks to Dr. Andrew Burke (ITS) and Prof. John R. Miller (JME) for stimulating discussions and valuable help in testing

Special thanks to Dekarta Capital Fund for investing in the Yunasko project

Participation in EU FP7 Energy Caps projectis very much acknowledged

24

How Electrochemical Science Can Improve the EDLC Performance

Page 25: Y. Maletin , N.  Stryzhakova , S.  Zelinskiy ,  S.  Chernukhin , D .  Tretyakov , S.  Tychina

THANKS FOR YOUR ATTENTION! Please visit us at: www.yunasko.com

E-mail: [email protected]

25