(Xrisk 101): Existential Risk for Interstellar Advocates

49
(Xrisk 101): Existential Risk for Interstellar Advocates Heath Rezabek [email protected] [email protected] J. N. Nielsen [email protected] [email protected] Keywords Existential Risk, Xrisk, Resilience, Archival, Vessel, Future, Civilization Introduction This paper is based on a joint presentation given at Icarus Interstellar’s Starship Congress, August 1518, 2013. Though the concept of Existential Risk or Xrisk denotes risks to our very existence, it will be shown that Xrisk is far from intractable or imponderable. Because of the subtypes described in our session below (Permanent Stagnation and Flawed Realization), humanity can do much to improve the prospects for Earthoriginating intelligent life tomorrow by working to improve its prospects today. This begins with directly mitigating the extinction risks that can be mitigated, and with safeguarding—to the best of humanity’s abilities—the scientific, cultural, and biological re cord so that future recoveries are possible if needed. The Vessel proposal attempts a unified approach to this work. If existential risk is well mitigated, the prospects for Earth originating life over the very long term are shown to be expansive. (Xrisk 101) is divided into two parts, and mirrors the format of the original presentation. The first part, authored by Heath Rezabek, will cover the fundamentals of Xrisk, and update on the Vessel project, a framework for preserving the cultural, scientific, and biological record in resilient facilities, on Earth and beyond. The second part, authored by Nick Nielsen, will explore the longer term implications of overcoming Xrisk for the future of civilization. 1

description

(This paper is based on a joint presentation given at Icarus Interstellar’s Starship Congress, August 15-18, 2013. This work forms the basis for Project Astrolabe, at Icarus Interstellar.) http://www.icarusinterstellar.org/introducing-project-astrolabe-navigating-the-future-of-civilization/ Though the concept of Existential Risk or Xrisk denotes risks to our very existence, it will be shown that Xrisk is far from intractable or imponderable. Because of the subtypes described in our session below (Permanent Stagnation and Flawed Realization), humanity can do much to improve the prospects for Earth-originating intelligent life tomorrow by working to improve its prospects today. This begins with directly mitigating the extinction risks that can be mitigated, and with safeguarding—to the best of humanity’s abilities—the scientific, cultural, and biological record so that future recoveries are possible if needed. The Vessel proposal attempts a unified approach to this work. If existential risk is well mitigated, the prospects for Earth- originating life over the very long term are shown to be expansive. (Xrisk 101) is divided into two parts, and mirrors the format of the original presentation. The first part, authored by Heath Rezabek, will cover the fundamentals of Xrisk, and update on the Vessel project, a framework for preserving the cultural, scientific, and biological record in resilient facilities, on Earth and beyond. The second part, authored by Nick Nielsen, will explore the longer term implications of overcoming Xrisk for the future of civilization.

Transcript of (Xrisk 101): Existential Risk for Interstellar Advocates

Page 1: (Xrisk 101): Existential Risk for Interstellar Advocates

(Xrisk  101):  Existential  Risk  for  Interstellar  Advocates

Heath  [email protected]@gmail.com

J.  N.  [email protected]@gmail.com

KeywordsExistential  Risk,  Xrisk,  Resilience,  Archival,  Vessel,  Future,  Civilization

Introduction

This  paper  is  based  on  a  joint  presentation  given  at  Icarus  Interstellar’s  Starship  Congress,  August  15-­‐18,  2013.

Though  the  concept  of  Existential  Risk  or  Xrisk  denotes  risks  to  our  very  existence,  it  will  be  shown  that  Xrisk  is  far  from  intractable  or  imponderable.  Because  of  the  subtypes  described  in  our  session  below  (Permanent  Stagnation  and  Flawed  Realization),  humanity  can  do  much  to  improve  the  prospects  for  Earth-­‐originating  intelligent  life  tomorrow  by  working  to  improve  its  prospects  today.

This  begins  with  directly  mitigating  the  extinction  risks  that  can  be  mitigated,  and  with  safeguarding—to  the  best  of  humanity’s  abilities—the  scientific,  cultural,  and  biological  re-­‐cord  so  that  future  recoveries  are  possible  if  needed.  The  Vessel  proposal  attempts  a  unified  approach  to  this  work.  If  existential  risk  is  well  mitigated,  the  prospects  for  Earth-­‐originating  life  over  the  very  long  term  are  shown  to  be  expansive.

(Xrisk  101)  is  divided  into  two  parts,  and  mirrors  the  format  of  the  original  presentation.  The  first  part,  authored  by  Heath  Rezabek,  will  cover  the  fundamentals  of  Xrisk,  and  update  on  the  Vessel  project,  a  framework  for  preserving  the  cultural,  scientific,  and  biological  record  in  resilient  facilities,  on  Earth  and  beyond.  The  second  part,  authored  by  Nick  Nielsen,  will  explore  the  longer  term  implications  of  overcoming  Xrisk  for  the  future  of  civilization.

1

Page 2: (Xrisk 101): Existential Risk for Interstellar Advocates

Part  I  -­‐  Towards  a  Vessel  Open  Framework  as  a  Mitigation  of  Xrisk

Understanding  the  Scope  and  Scale  of  Existential  Risk

Though  discussed  in  other  terms,  Xrisk  was  a  key  concern  and  priority  for  the  DARPA  2011  Strategy  Planning  Workshop.  In  its  January  2011  report,  that  workshop  prioritized  “creating  a  legacy  for  the  human  species,  backing  up  the  Earth’s  biosphere,  and  enabling  long-­‐term  sur-­‐vival  in  the  face  of  catastrophic  disasters  on  Earth.”  [1]

At  the  100YSS  2012  Symposium,  a  synthesis  of  strategies  to  address  all  three  of  these  goals  at  once  was  presented  by  Heath  Rezabek:  the  Vessel  Archives  proposal.  [2]  Before  discussing  the  ways  in  which  the  Vessel  proposal  meets  these  objectives,  existential  risk  will  be  dis-­‐cussed,  with  discussion  of  what  it  includes  and  why  priority  should  be  given  to  finding  ways  to  meet  its  challenge.

The  risk  that  Earth-­‐originating  life  may  not  endure  long  enough  to  achieve  its  full  potential  is  termed  existential  risk.  Popularly  shortened  as  Xrisk,  this  spectrum  of  risks  encom-­‐passes  both  extinction  risk  and  global  catastrophic  risk.

Nick  Bostrom,  Director  for  the  Future  of  Humanity  Institute,  defines  existential  risk  this  way  in  a  key  paper,  Existential  Risk  Prevention  as  Global  Priority:  “An  existential  risk  is  one  that  threatens  the  premature  extinction  of  Earth-­‐originating  intelligent  life,  or  the  permanent  and  drastic  destruction  of  its  potential  for  desirable  future  development.”  [3]  In  an  array  of  possible  risks  presented  in  the  paper,  small  personal  risks  are  visible  in  the  lower  left,  while  situations  of  widespread  suffering  such  as  global  tyranny  are  in  the  middle  as  Global  Cata-­‐strophic  Risks.  Finally,  the  destruction  of  life’s  long  term  potential  defines  Existential  Risk,  in  the  upper  right.

2

Page 3: (Xrisk 101): Existential Risk for Interstellar Advocates

Figure  1:    Qualitative  risk  categories.    (After  Bostrom  2013)

Xrisk  has  become  a  popular  shorthand  for  this  whole  spectrum  of  risks,  and  this  term  will  be  used  throughout.  Bostrom  provides  a  broadly  applicable  general  taxonomy  of  Xrisk  outcome  scenarios,  which  includes  several  less-­‐considered  types.  Crucially,  it  sets  aside  discussion  of  specific  incidental  causes  (asteroids,  pandemics,  etc),  internal  versus  external  causation,  or  the  importance  of  initial  causes  in  and  of  themselves,  to  focus  strictly  on  the  possible  out-­‐comes  of  Xrisk.  This  also  assists  in  envisioning  possible  recovery  scenarios.

Human  Extinction:  Humanity  goes  extinct  prematurely,  i.e.,  before  reaching  technological  maturity.

Permanent  Stagnation:  Humanity  survives  but  never  reaches  technological  maturity.     Subclasses:  unrecovered  collapse,  plateauing,  recurrent  collapse

Flawed  Realization:  Humanity  reaches  technological  maturity  but  in  a  way  that  is  dismally  and  irremediably  flawed.     Subclasses:  unconsummated  realization,  ephemeral  realization

Subsequent  Ruination:  Humanity  reaches  technological  maturity  in  a  way  that  gives  good  future  prospects,  yet  subsequent  developments  cause  the  permanent  ruination  of  those  prospects.  [3]

3

Page 4: (Xrisk 101): Existential Risk for Interstellar Advocates

Before  it  is  possible  to  discuss  the  potential  value  created  through  the  mitigation  of  Xrisk,  the  question  must  be  asked:  How  prevalent  is  life  in  the  universe,  or  in  the  Milky  Way  gal-­‐axy?

The  Fermi  Paradox,  The  Great  Silence,  and  The  Great  Filter

Is  life—living  matter,  whether  simple  or  complex—common,  or  is  it  rare,  in  the  observable  universe?  The  Kepler  Mission,  and  others  with  similar  goals  of  planet-­‐detection,  reveal  that  there  is  no  shortage  of  worlds  to  be  detected.  Yet  with  billions  of  years  of  evolutionary  time  behind  them  all,  humanity  has  heard  and  seen  no  trace  of  life  beyond  Earth.  Why?  This  is  the  Fermi  Paradox;  the  expectant  quiet  which  exists  in  the  place  of  any  signs  of  other  life  has  been  termed  the  Great  Silence.  The  Great  Silence  is  conspicuous  because  of  the  billions  of  years  of  gravitation,  geology  and  chemistry  which  lie  behind  those  worlds  humanity  has  be-­‐gun  to  detect  in  such  abundance.  

Numerous  explanations  are  possible.  [4]  Questioning  these,  Robin  Hanson  proposes  a  Great  Filter  between  single-­‐celled  life  and  radiant,  pervasive  life  throughout  the  universe:  

If  [...]  advanced  life  had  substantially  colonized  our  planet,  we  would  know  it  by  now.  We  would  also  know  it  if  they  had  restructured  most  of  our  solar  system’s  asteroid  belt  [...].  We  should  even  know  it  if  they  had  aggressively  colonized  most  of  the  nearby  stars,  but  left  us  as  a  “nature  preserve”.  Our  planet  and  solar  system,  however,  don’t  look  substantially  colonized  by  advanced  competitive  life  from  the  stars,  and  neither  does  anything  else  we  see.  To  the  contrary,  we  have  had  great  success  at  explaining  the  behavior  of  our  planet  and  solar  system,  nearby  stars,  our  galaxy,  and  even  other  galax-­‐ies,  via  simple  “dead”  physical  processes,  rather  than  the  complex  purposeful  processes  of  advanced  life.  Given  how  similar  our  galaxy  looks  to  nearby  galaxies,  it  would  even  be  hard  to  see  how  our  whole  galaxy  could  be  a  “nature  preserve”  among  substantially-­‐restructured  galaxies.  These  considerations  strongly  suggest  that  no  civilization  in  our  past  universe  has  reached  such  an  “explosive”  point,  to  become  the  source  of  a  light  speed  expansion  of  thorough  colonization.  [5]

“The  Great  Silence,”  concludes  Hanson,  “implies  that  one  or  more  of  these  steps  are  very  improbable;  there  is  a  ‘Great  Filter  along  the  path  between  simple  dead  stuff  and  explosive  life.  The  vast  vast  majority  of  stuff  that  starts  along  this  path  never  makes  it.  In  fact,  so  far  nothing  among  the  billion  trillion  stars  in  our  whole  past  universe  has  made  it  all  the  way  along  this  path.”  [5]

However  remote  it  may  be,  this  possibility  confers  upon  humanity  a  great  potential  respon-­‐sibility  in  the  here  and  now,  regardless  of  its  eventual  answer.  

In  the  absence  of  evidence  of  interstellar  life,  it  is  appropriate  to  foster  life  on  Earth  as  if  the  future  of  life  in  this  region  of  our  galaxy  depended  on  it.  Humanity  must  extend  its  very  best  

4

Page 5: (Xrisk 101): Existential Risk for Interstellar Advocates

efforts  as  stewards  of  Earth’s  flora,  fauna,  and  cultures,  regardless  of  our  own  opinions  on  our  collective  right  or  ability  to  do  so.  

Is  the  story  of  the  universe  one  of  widespread  life,  or  is  life  as  uncommon  as  we  seem  to  be,  poised  on  the  brink  between  seclusion  and  radiant  growth?  Passing  beyond  this  precarious  cusp,  and  into  the  reaches  of  interstellar  space  to  learn  the  truth  of  the  matter  through  an  effort  such  as  a  century  starship,  will  take  time.  In  order  to  achieve  the  goal  of  interstellar  travel,  humanity  must  foster  a  supporting  and  surviving  interstellar  civilization—an  inter-­‐stellar  Earth.

A  Conservative  Metric  for  Stakes  in  Xrisk  Mitigation,  and  Potential  Return  on  In-­‐vestment

It  is  possible  to  grasp  the  value  of  securing  such  a  future,  even  in  the  absence  of  such  sweep-­‐ing  scenarios  as  the  securing  of  the  prospects  of  all  life-­‐forms  on  Earth.  Setting  aside  for  the  moment  the  prevalence  of  life  as  a  whole,  and  the  ultimate  potential  of  Earth-­‐originating  nonhuman  life,  we  can  examine  a  more  conservative  base  metric:  the  value  of  a  single  hu-­‐man  life,  of  the  sort  humanity  values  every  day  through  individual  action.  

Thus  evaluated,  it  can  then  be  asked:  What  are  the  stakes  for  humanity  as  a  whole?  How  many  human  lives  have  there  been,  or  could  there  yet  be  if  extinction  is  avoided?  

Nick  Bostrom  presents  some  useful  estimates  as  illustrations  of  risk  and  reward.  

“To  calculate  the  loss  associated  with  an  existential  catastrophe,  we  must  consider  how  much  value  would  come  to  exist  in  its  absence.  It  turns  out  that  the  ultimate  potential  for  Earth-­‐originating  intelligent  life  is  literally  astronomical.”  [3]

Wolfram  Alpha  lists  the  total  world  population  as  107.6  billion  people  over  time.  The  current  global  population  is  7.13  billion.  [6]    Setting  aside  the  current  living  population  yields  100  bil-­‐lion—also  roughly  the  number  of  neurons  in  a  single  human  brain.

5

Page 6: (Xrisk 101): Existential Risk for Interstellar Advocates

Figure  2:    Total  population  over  time:  107.6  billion.  Current  global  population:  7.13  billion

Carl  Sagan  discussed  this  familiar  image  of  Earth  from  afar  as  follows:

Consider  again  that  dot.  

That’s  here.  That’s  home.  That’s  us.  On  it  everyone  you  love,  everyone  you  know,  eve-­‐ryone  you  ever  heard  of,  every  human  being  who  ever  was,  lived  out  their  lives.  The  aggregate  of  our  joy  and  suffering,  thousands  of  confident  religions,  ideologies,  and  economic  doctrines,  every  hunter  and  forager,  every  hero  and  coward,  every  creator  and  destroyer  of  civilization,  every  king  and  peasant,  every  young  couple  in  love,  every  mother  and  father,  hopeful  child,  inventor  and  explorer,  every  teacher  of  morals,  every  corrupt  politician,  every  “superstar,”  every  “supreme  leader,”  every  saint  and  sinner  in  the  history  of  our  species  lived  there  –  on  a  mote  of  dust  suspended  in  a  sunbeam.  In  …  all  this  vastness  …  there  is  no  hint  that  help  will  come  from  elsewhere  to  save  us  from  ourselves.  The  Earth  is  the  only  world  known,  so  far,  to  harbor  life.  There  is  nowhere  else,  at  least  in  the  near  future,  to  which  our  species  could  migrate.  Visit,  yes.  Settle,  not  yet.  Like  it  or  not,  for  the  moment,  the  Earth  is  where  we  make  our  stand.  [7]

6

Page 7: (Xrisk 101): Existential Risk for Interstellar Advocates

Figure  3:    100  billion  lives.  ~  One  Pale  Blue  Dot.

100  billion  lives  is  here  used  as  humanity’s  basic  unit  of  measure.  How  much  value  would  come  to  exist  if  humanity’s  future  potential  is  never  cut  short?

1016  —  10  million  billion  —  is  Bostrom’s  estimate  of  the  potential  number  of  future  lives  on  Earth  alone,  if  only  1  billion  lived  on  it  sustainably  for  the  1  billion  years  it’s  projected  to  re-­‐main  habitable.

7

Page 8: (Xrisk 101): Existential Risk for Interstellar Advocates

Figure  4:    1016  —  10  million  billion  —  Conservative  estimate  of  future  lives  with  sustained  population  of  1  billion  on  Earth

But  if  we  consider  the  possibility  of  the  spread  of  life  beyond  Earth,  or  synthetic  minds  and  lives  yet  to  come,  Bostrom’s  estimate  [2]  grows  vast:    1052  potential  lives  to  come.  100  million  x  100  billion  x  100  billion  x  100  billion  x  100  billion

8

Page 9: (Xrisk 101): Existential Risk for Interstellar Advocates

Figure  5:    1052  —  100  million  x  100  billion  x  100  billion  x  100  billion  x  100  billion  potential  lives

9

Page 10: (Xrisk 101): Existential Risk for Interstellar Advocates

This  means  that  reducing  the  chances  of  Xrisk  by  a  mere  1  billionth  of  1  billionth  of  1  per-­‐cent…  is  worth  100  billion  billion  lives.

Figure  6-­‐7:    Reducing  the  chances  of  Xrisk  by  a  mere  1  billionth  of  1  billionth  of  1  percent  is  worth  100  billion  billion  lives

10

Page 11: (Xrisk 101): Existential Risk for Interstellar Advocates

With  just  a  slight  shift  in  priorities,  humanity  could  hugely  boost  the  chances  of  life  achiev-­‐ing  its  full  future  potential  by  working  to  enhance  its  prospects  today.  Even  without  a  shift  in  global  priorities,  this  exercise  is  a  reminder  that  even  the  slightest  efforts  towards  the  mitigation  of  Xrisk  have  the  potential  for  massive  future  return  on  investment.  The  results  of  this  exercise  may  then  be  multiplied,  in  future  studies,  to  deduce  the  worth  of  Xrisk  miti-­‐gation  for  all  Earth-­‐originating  life,  multiplying  greatly  the  scale  of  humanity’s  realm  as  con-­‐sidered  here.

Securing  the  Future  Potential  of  Earth-­‐Originating  Life  through  Vessel  Archives

Armed  with  a  measurable  motivation  and  metric,  it  is  possible  to  examine  the  potential  pay-­‐off  of  our  efforts  more  optimistically.  Due  to  the  relative  tractability  of  two  subclasses  of  Xrisk,  a  far-­‐reaching  initial  investment  might  be  made  quite  effectively.

Examine  Bostrom’s  definition  again:  “An  existential  risk  is  one  that  threatens  the  premature  extinction  of  Earth-­‐originating  intelligent  life,  or  the  permanent  and  drastic  destruction  of  its  potential  for  desirable  future  development.”

Survival  alone  is  not  enough.  In  some  cases,  a  surviving  society  may  be  brutalized,  stagnant,  or  diminished  irreparably,  unable  to  aspire  or  to  build  itself  anew.  In  this  light  it  is  possible  to  reexamine  two  of  the  subtypes  of  Xrisk  originally  noted,  whose  impacts  may  be  as  unde-­‐sirable  as  extinction  itself.  Both  fall  into  the  realm  of  global  catastrophic  risks.

Permanent  Stagnation:  Humanity  survives  but  never  reaches  technological  maturity  or  interstellar  civilization.

Flawed  Realization:  Humanity  reaches  technological  maturity  but  in  a  way  that  is  ir-­‐redeemably  flawed.

In  Bostrom’s  four  classifications  of  Xrisk,  human  extinction  is  what  we  normally  think  of  as  the  ultimate  risk;  however,  it  is  actually  only  one  of  several  possible  outcomes.  Whatever  the  cause  of  an  extinction-­‐threatening  crisis,  Bostrom  usefully  points  out  that  permanent  stag-­‐nation—a  partial  but  ultimately  incomplete  recovery—poses  a  threat  as  serious  as  any  other  class  of  Xrisk.  One  of  the  design  requirements  of  a  truly  interstellar  Earth  is  that  it  will  not  only  survive,  but  that  it  will  retain  the  capability  needed  to  launch  an  interstellar  starship  in  the  fullness  of  time.

We  can,  Bostrom  notes,  distinguish  various  kinds  of  scenario  leading  to  permanent  stagna-­‐tion:  unrecovered  collapse—much  of  our  current  economic  and  technological  capabilities  are  lost  and  never  recovered;  plateauing—progress  flattens  out  at  a  level  perhaps  somewhat  

11

Page 12: (Xrisk 101): Existential Risk for Interstellar Advocates

higher  than  the  present  level  but  far  below  technological  maturity;  and  recurrent  col-­‐lapse—a  never-­‐ending  cycle  of  collapse  followed  by  recovery.

Also  of  note  is  a  family  of  outcomes  which  Bostrom  calls  flawed  realization:  “A  flawed  reali-­‐sation  occurs  if  humanity  reaches  techno-­‐  logical  maturity  in  a  way  that  is  dismally  and  ir-­‐remediably  flawed.  By  ‘irremediably’  we  mean  that  it  cannot  feasibly  be  subsequently  put  right.  By  ‘dismally’  we  mean  that  it  enables  the  realisation  of  but  a  small  part  of  the  value  that  could  otherwise  have  been  realised.”  Examples  include  humanity  enduring  only  by  be-­‐coming  a  despotic  technocracy  or  fascist  regime.

Because  the  risks  to  civilization  are  so  varied,  there  may  be  many  possible  means  of  address-­‐ing  them.  How  is  humanity  to  determine  its  priorities?  Two  broad  approaches  to  Xrisk  miti-­‐gation  bear  exploring  as  particularly  worthy  efforts  for  safeguarding  advanced  aspirations,  such  as  that  of  becoming  a  sustainable  species  on  an  interstellar  Earth.

The  first  imperative  is  education  (for  the  sake  of  prevention;  of  overall  risk  mitigation).    The  second  imperative,  in  case  of  direst  need,  is  preservation  (for  the  purposes  of  societal  recovery  in  the  midst  of  survival).    This  last  is  particularly  key  to  addressing  some  of  the  suboptimal  scenarios  in  the  Bostrom  classifications  above.  

Both  permanent  stagnation  and  flawed  realization  raise  the  interesting  possibility  that  cul-­‐tural  value  or  richness  may  be  crucial  to  humanity’s  prospects  for  societal  recovery—at  least  to  a  stage  where  candidacy  as  an  interstellar  civilization  is  desirable  once  again.  These  classes  of  Xrisk  highlight  the  long  work  of  earning—through  sustained  effort—a  role  as  stewards  of  humanity’s  cultural  heritage  as  well  as  of  the  biota  of  life  on  Earth.  

Bostrom  makes  a  compelling  case  that  the  addressing  of  existential  risk  must  include  strate-­‐gies  to  avoid  the  decline  of  humanity’s  aspirations  or  capabilities,  and  not  only  strategies  for  survival.  This  perspective  allows  a  reframing  of  the  DARPA  2011  Strategy  Planning  Work-­‐shop’s  priority:  

Creating  a  legacy  for  the  human  species,  backing  up  the  Earth’s  biosphere,  and  enabling  long-­‐term  capability  in  the  face  of  catastrophic  disasters  on  Earth.  [1]

States  as  a  new  imperative:

To  achieve  an  interstellar  civilization  while  addressing  existential  risk,  human-­‐ity  must  do  more  than  survive:  humanity  must  preserve  its  aspirations  and  ca-­‐pabilities,  as  well  as  exemplars  of  its  cultural  resources  and  exemplars  of  Earth’s  biodiversity.

Permanent  stagnation  and  flawed  realization:  Losing  our  capability  as  a  civilization,  or  en-­‐during  only  in  a  deeply  flawed  form.  These  two  risks  fill  modern  society’s  dystopian  movies.  Despite  its  flaws,  the  film  Elysium  (2013)  did  effectively  envision  permanent  stagnation  and  

12

Page 13: (Xrisk 101): Existential Risk for Interstellar Advocates

flawed  realization  as  direct  contrasts  with  one-­‐another  within  one  fictional  world,  through  the  distant  and  rarified  luxury  of  an  orbital  habitat  above  a  perpetually  desperate  and  swel-­‐ling  remnant  of  humanity.  

Figure  8:    The  Xrisk  subtypes  of  permanent  stagnation  and  flawed  realization,  as  envisioned  in  the  film  Elysium  (2013).  Because  popular  culture  understands  these  interrelated  risks,  it  is  possible  to  learn  applicable  lessons  about  messaging  and  priorities  by  understanding  them  as  well.

These  two  types  of  Xrisk  cut  to  the  heart  of  what  it  means  for  humanity  to  achieve  its  full  potential.  There  is  a  critical  path  towards  vast  opportunity  between  these  risks,  because  of  the  many  advances  needed  to  achieve  an  interstellar  future  –  and  because  of  the  benefits  such  advances  could  have  for  life  on  Earth—in  areas  such  as  habitat  design,  energy  infra-­‐structure,  biotechnology,  as  well  as  advanced  computing,  networking,  and  archival.  If  inter-­‐stellar  efforts  strive  to  prototype  here  and  now,  solving  real-­‐world  problems  along  the  way,  all  will  benefit.  If  advances  are  available  in  open  source  versions,  and  adaptable  to  human-­‐ity’s  best  minds,  such  efforts  will  gain  allies  in  an  effort  to  uplift  life  on  Earth  and  to  thrive  beyond  it.  

What  would  such  comprehensive  advances  or  efforts  be  like?  

13

Page 14: (Xrisk 101): Existential Risk for Interstellar Advocates

Vessel  is  an  approach  to  advanced  computing,  compact  habitat  design,  and  long-­‐term  ar-­‐chival  which  seeks  to  directly  mitigate  the  two  categories  of  Xrisk  discussed  above:  perma-­‐nent  stagnation  and  flawed  realization.  At  the  100  Year  Starship  Symposium  (2012),  Vessel  Archives  were  presented  as  a  practical  proposal,  a  means  towards  safeguard  life’s  potential  on  Earth  and  beyond.

While  the  use  of  the  word  vessel  here  includes  the  potential  for  an  instance  in  the  form  of  a  craft  (such  as  a  seafaring  or  spacefaring  craft),  several  other  meanings  of  the  word  are  also  deliberately  invoked  in  its  usage:    A  medium,  a  conduit,  and  a  receptacle.    

Figure  9:    Vessel  Symbol.    (CC  BY-­‐SA  Heath  Rezabek  -­‐  2013)

14

Page 15: (Xrisk 101): Existential Risk for Interstellar Advocates

Vessel,  as  a  design  solution,  begins  with  a  simple  premise:  

Capability  lost  before  advanced  goals  are  reached  will  be  very  difficult  to  recover,  without  a  means  of  setting  a  baseline  for  civilization’s  capabilities.

A  Vessel  is  an  installation,  facility,  or  habitat  that  serves  as  a  reservoir  for  Earth’s  scientific,  biological,  and  cultural  record.  Into  a  Vessel  is  poured  what  must  be  retained  for  humanity’s  potential  to  be  maintained,  and  for  the  potential  of  all  Earth-­‐originating  life  to  be  secured.  On  Earth  or  beyond,  a  Vessel  habitat  is  designed  to  carry  forth  a  representative  sample  of  all  Earth  has  been.  

Figure  10:  Vessel  facility  visualized  as  the  primary  function  of  a  Callebaut  Lilypad.  (Image  ©  Philippe  Steels  -­‐  pixelab.be  -­‐  Used  by  Permission  -­‐  2008)

A  Vessel  is  proposed  to  house  a  core  collection,  a  cache  dedicated  to  the  preservation  of  bio-­‐logical,  cultural,  and  scientific  heritage.  Integral  to  this  core  capacity  is  proposed  some  means  (interface)  towards  the  recovery  of  lost  capability  through  creative  reconstruction  of  the  materials  preserved.  Secondarily,  a  layered  design  pattern  is  proposed  as  a  means  for  ac-­‐complishing  these  aims,  with  core  archives  safeguarded  at  its  center,  specialized  research  spaces  surrounding  them,  and  approachable  learning  spaces  at  its  periphery,  regardless  of  the  size  or  scale  of  an  individual  Vessel  facility.  Examples  at  numerous  scales  are  here  pro-­‐vided  as  illustration  of  flexibility.

15

Page 16: (Xrisk 101): Existential Risk for Interstellar Advocates

Vessel  Facilities  as  a  Library  of  Life

At  a  Vessel’s  core  may  lie  biological  archives,  meant  to  preserve  key  traces  and  exemplars  of  Earth’s  biodiversity.  Here  the  primary  model  is  Gregory  Benford’s  groundbreaking  1992  Li-­‐brary  of  Life  proposal.  

The  Library  of  Life  is  a  practical  project  proposal  as  well  as  a  thought  experiment,  originally  set  forth  by  author  Gregory  Benford  as  a  refereed  scientific  paper  in  1992.  In  response  to  ac-­‐celerating  loss  of  biodiversity  worldwide,  it  proposes  a  “broad  program  of  freezing  species  in  threatened  ecospheres”,  in  situ,  which  “could  preserve  biodiversity  for  eventual  use  by  future  generations.”  [8]

This  paper,  originally  published  in  the  Proceedings  of  the  National  Academy  of  Sciences,  was  expanded  in  Benford’s  2001  nonfiction  work  Deep  Time,  which  explored  the  methods  human  use  to  communicate  across  the  ages.  In  this  version,  Benford  notes  that  “...this  was  and  is  a  radical  idea:  to  convey  a  new  kind  of  message,  intensely  information-­‐dense,  a  signal  of  desperation.  The  target  lies  at  least  a  century  away,  perhaps  much  longer:  nothing  less  than  a  future  generation  that  needs  the  information  lost  in  our  coming  dieback  of  many  species,  and  can  harvest  our  salvaged  samples  with  technology  we  cannot  foresee.”  [8]

A  variety  of  methods  excavating  and  gathering  in  situ  samples  of  biomass  are  explored,  from  earth  moving  machines  to  local  teams  of  manual  laborers  for  more  finely-­‐tuned  samples.  If  a  Library  of  Life  were  actually  undertaken  and  stored  within  a  Vessel  Archive,  it  would  add  one  more  reason  to  attempt  the  establishment  of  such  centers  as  widely  as  possible,  so  as  to  locally  preserve  the  most  endangered  of  biomes—at  the  least  in  the  form  of  their  organic  and  genetic  materials.

The  chapter  on  the  Library  of  Life  proposal  in  Deep  Time  ends  with  a  discussion  of  the  pos-­‐sibilities  that,  “...if  scientific  progress  has  followed  the  paths  that  many  envision  today,  [fu-­‐ture  generations]  will  have  the  means  to  perform  seeming  miracles.  They  will  have  devel-­‐oped  ethical  and  social  mechanisms  we  cannot  guess,  but  we  can  prepare  now  the  broad  outlines  of  a  recovery  strategy,  simply  by  banking  biological  information.”    [8]

16

Page 17: (Xrisk 101): Existential Risk for Interstellar Advocates

Figure  11:    Vessel  proposes  facilities  similar  in  function  to  those  of  a  Library  of  Life,  as  de-­‐scribed  by  Gregory  Benford.    (Image  “Living  Diatom  Cell”  CC  BY  Debra  Gale  -­‐  2011)

Vessel  Facilities  as  a  Chamber  of  Codes  and  Very  Long  Term  Knowledge  Archive

Also  crucial  would  be  core  archives  for  cultural  artifacts  and  scientific  knowledge,  in  both  physical  and  digital  forms.  Several  examples  exist  of  information  storage  technologies  engi-­‐neered  to  endure  the  passage  of  time,  such  as  the  digital  DNA  encoding  strategies  of  George  Church’s  team  at  the  Wyss  Institute  [9]  as  well  as  Ewan  Birney  and  Nick  Goldman’s  ap-­‐proach  [10],  the  fused  quartz  technologies  of  Hitachi  [11]  or  Jingyu  Zhang  [12],  and  the  Ro-­‐setta  Disk  project  of  the  Long  Now  Foundation,  which  is  the  first  deliverable  for  their  10,000  Year  Library  [13].  

Birney  and  Goldman’s  approach  has  particularly  informed  the  Vessel  proposal,  as  their  speculations  suggest  layers  of  decoding  exercises  necessary  to  ultimately  decode  DNA-­‐based  digital  information.  [10]  Birney  and  Goldman  also  propose  the  presence  of  a  deciphering  key  such  as  the  Rosetta  Disk,  an  existing  creation  of  the  Long  Now  Foundation,  which  cross-­‐references  over  1,500  human  languages.  [13]

17

Page 18: (Xrisk 101): Existential Risk for Interstellar Advocates

Such  progressive  exercises  would  serve  to  protect  the  materials,  requiring  a  baseline  of  effort  and  ability  to  progress  through  them.  Those  very  same  safeguards  would  also,  however,  serve  as  a  means  of  teaching  and  learning  the  information  being  imparted,  which  could  in-­‐clude  simple  to  complex  mechanisms  for  the  retrieval  and  decoding  of  deeper  layers  of  knowledge.  

Figure  12:    Vessel  proposes  facilities  similar  in  function  to  those  of  a  Chamber  of  Codes,  as  described  by  Ewan  Birney  and  Nick  Goldman.    (Image  “Rosetta  Disk”  by  Rolfe  Horn,  courtesy  of  The  Long  Now  Foundation  -­‐  www.longnow.org  -­‐  2008)

Vessel  Facilities  as  Research  Labs  and  Learning  Labs

Surrounding  these  archives  are  proposed  Research  Labs,  where  specialists  may  collaborate  on  advanced  technologies,  seeking  critical  paths  which  avoid  and  mitigate  Xrisk.  In  a  time  of  recovery,  sealed  labs  may  be  the  birthplace  of  new  beginnings.  Research  Labs  are  proposed  

18

Page 19: (Xrisk 101): Existential Risk for Interstellar Advocates

to  open  inwards  to  draw  upon  the  core  cache.  Experts  in  their  relevant  fields  may  be  both  stewards  and  users  of  the  core  archives.

In  the  near  term,  through  an  outer  ring  of  Learning  Labs,  Vessel  facilities  may  welcome  the  curious,  and  give  visitors  an  inspiring  glimpse  at  advanced  studies.  Immersive  labs  may  be  catalysts  for  change,  helping  people  understand  the  arc  of  history  in  nature,  culture,  and  sci-­‐ence;  the  common  risks  ahead;  and  the  limitless  possibilities  if  Earth  achieves  its  full  poten-­‐tial.  This  function,  familiar  in  one  form  to  any  who  have  visited  a  nature  &  science  museum  and  seen  paleontologists  at  work,  hints  at  a  pathway  towards  present-­‐day  implementations  of  Vessel  facilities  as  popular,  well-­‐attended,  comprehensive  exhibitions  for  a  public  trying  to  make  sense  of  the  risks  and  opportunities  of  our  present  day.

In  the  short  term,  Vessel  facilities  may  be  a  new  breed  of  community  knowledge  center,  fo-­‐cused  on  resilience  and  long-­‐term  prospects.  Built  around  these  three  roles—Learning,  Re-­‐search,  and  Archival—the  Vessel  Open  Framework  is  designed  to  adapt  to  any  contingency.  What  all  Vessels  are  proposed  to  have  in  common  is  a  dedication  to  preserving  cultural  ca-­‐pability,  and  layered,  approachable  facilities  adapted  to  their  settings.  

Many  should  be  built,  using  many  different  approaches.  Some  may  be  public,  founded  as  community  knowledge  cooperatives  or  other  community-­‐scaled  efforts.  Mission  critical  and  institutional  Vessels  may  be  as  remote  as  the  Svalbard  Seed  Vault,  or  otherwise  secured  and  secret.

Figure  13:    Vessel  proposes  facilities  similar  in  function  to  those  of  a  Nature  &  Science  Mu-­‐seum,  with  Learning  Labs  and  Research  Labs.    (Image  CC  BY-­‐SA  Takaaki  Nishioka  -­‐  2008)

19

Page 20: (Xrisk 101): Existential Risk for Interstellar Advocates

In  cases  where  a  Vessel  facility  is  visible  and  public,  near-­‐term  benefits  (such  as  an  increased  societal  awareness  of  long  term  thinking)  are  more  plausible  benefits  than  long  term  secu-­‐rity.  Yet  each  design  might  be  replicated  in  remote  environments,  or  otherwise  secured  against  catastrophic  loss.

Because  potential  risks  are  difficult  to  foresee,  the  Vessel  Open  Framework  remains  deliber-­‐ately  flexible  and  encouraging  of  divergent  approaches  to  the  mission  of  resilient  very  long  term  archival.  One  path  towards  ensuring  this  hybrid  vigor  is  to  explore  and  promote  very  different  visions  of  Vessel  architectures  or  functional  programs.

Visualizing  Vessel

A  growing  range  of  visualizations  have  thus  far  been  used  to  depict  the  Vessel  project,  with  the  goal  of  envisioning  a  wide  array  of  facility  typologies.

Figure  14:    Vessel  as  a  Seafaring  Callebaut  Lilipad  -­‐  Plan.  (Image  ©  Philippe  Steels  -­‐  pixelab.be  -­‐  Used  by  Permission  -­‐  2008)

20

Page 21: (Xrisk 101): Existential Risk for Interstellar Advocates

Figure  15:    Vessel  as  a  Seafaring  Callebaut  Lilipad  -­‐  Section.  (Image  ©  Philippe  Steels  -­‐  pixelab.be  -­‐  Used  by  Permission  -­‐  2008)

21

Page 22: (Xrisk 101): Existential Risk for Interstellar Advocates

Figure  16:    Vessel  as  a  Regional  Facility.  (Image  CC  BY-­‐SA  Joshua  Davis  and  Heath  Rezabek  -­‐  2013)

22

Page 23: (Xrisk 101): Existential Risk for Interstellar Advocates

Figure  17:    Vessel  as  an  Urban  Facility.  (Image  ©  Stephan  Martiniere  -­‐  www.martiniere.com  -­‐  Used  by  Permission  -­‐  2004)

23

Page 24: (Xrisk 101): Existential Risk for Interstellar Advocates

Figure  18:    Vessel  as  an  Arcology  (Large-­‐Scale  Community  Habitat).  Paolo  Soleri.  (Image  courtesy  of  Cosanti  Foundation  -­‐  Used  by  Permission  -­‐  1969)

Figure  19:    Vessel  as  a  Hyperbolic  Tetrahedral  Beacon  Tower.  (Image  CC  BY-­‐SA  Agustina  Rodriguez  and  Heath  Rezabek  -­‐  2014)  

24

Page 25: (Xrisk 101): Existential Risk for Interstellar Advocates

Figure  20:    Vessel  as  a  Remote  Mountaintop  Beacon.  (Image  “Skybeam”  CC  BY  Ben  Dansie  -­‐  2009)

Figure  21:    Vessel  as  a  Lunar  Facility.  (Image  CC  BY-­‐SA  Joshua  Davis  and  Heath  Rezabek  -­‐  2013)

25

Page 26: (Xrisk 101): Existential Risk for Interstellar Advocates

Figure  22:    Vessel  Archive  Modules  as  envisioned  on  a  Starship.  (Image  “IXS  Dragonfly”  by  Mark  Rademaker  -­‐  Used  by  permission  -­‐  2014)

Design  variations  help  shape  our  practical  explorations:  How  do  inhabitants  provide  energy  to  such  facilities?  Might  they  be  habitats?  Are  there  technologies  now  viable  on  a  very  large  scale  which  could  be  used  for  smaller,  mission-­‐critical  facilities?  What  is  its  likely  maximum  scale  or  size?  What  elements  of  the  design  pattern  language  would  remain  between  separate  Vessel  installations  if  different  instances  were  built  in  a  variety  of  settings?

When  explored  and  compared  at  length,  visualizations  whose  original  purpose  is  to  convey  a  diverse  range  of  design  approaches  will  ultimately  inspire  new  questions  and  strategies  for  adapting  to  future  situations.

Resilient  Future  Habitats  and  Long  Term  Archives:  Towards  a  Vessel  Pattern  Lan-­‐guage

By  asking  the  questions  needed  to  solve  a  wide  range  of  design  problems,  a  comprehensive  design  language  can  be  developed  over  time,  capable  of  robust  adaptation  to  a  growing  range  of  challenges.

Solutions  to  various  problematic  scenarios  may  be  clearly  named  by  identifying  the  chal-­‐lenge  to  be  addressed  and  articulating  strategies  beneath  that  name.  No  potential  solution  need  be  lost  if  it  can  be  captured  and  conveyed  to  future  designers.  Once  articulated,  any  such  approach  can  be  called  a  design  pattern.  If  all  of  these  design  patterns  are  developed  

26

Page 27: (Xrisk 101): Existential Risk for Interstellar Advocates

to  reinforce  one-­‐another,  together  they  form  what  is  called  a  pattern  language.  These  two  concepts  arise  from  the  fields  of  architecture,  computer  science,  and  design.  

Christopher  Alexander:  A  Pattern  Language

Christopher  Alexander  is  an  architect  and  Emeritus  Professor  of  Architecture  at  the  Univer-­‐sity  of  California,  Berkeley.  Through  his  work  as  an  architect  and  engineer,  has  contributed  the  concept  of  a  Pattern  Language  [14]  to  the  practices  of  design  and  planning.

Though  developed  within  the  realm  of  architecture,  it  has  now  come  to  be  known  nearly  as  well  for  its  impact  on  software  development.  As  originally  described,  the  core  concept  sug-­‐gests  that  physical  spaces  originally  unfolded  in  certain  patterns  due  to  the  knowledge  their  builders  had  of  the  ways  each  larger  and  smaller  space  helped  shape  those  around  it  into  a  greater  whole.    A  threshold  makes  no  sense  without  a  pathway  leading  up  to  it,  a  door,  and  an  area  of  interior  directly  beyond  it  which  welcomes  one  into  the  space.  Each  of  these  can  be  described  as  a  pattern,  each  helping  to  suggest  and  to  form  the  patterns  adjacent  to  it.

Originating  with  an  architectural  pattern  language  expressed  by  Christopher  Alexander  in  1977  (see  his  book  A  Pattern  Language),  his  approach  requires  that  a  design  solution  include  a  few  key  elements:

-­‐  A  concise  name  or  title  which  expresses  clearly  the  design  solution  it  strives  to  im-­‐plement.-­‐  The  original  problem  statement  or  design  challenge,  articulated  concisely  beneath  that  title.-­‐  Context,  research  and  insights  into  the  design  challenge  and  the  ways  they  suggest  their  solution.-­‐  The  full  design  pattern,  articulated  concisely.-­‐  (Ideally)  the  design  pattern  is  flanked  by  a  listing  of  those  larger  patterns  which  help  to  shape  it  (at  top),  and  those  smaller  patterns  which  it  helps  to  shape  (at  bottom).  [14]

Without  developing  an  entire  design  pattern  language  as  yet,  it  remains  possible  to  sketch  out  the  beginnings  of  a  design  pattern  language  for  Vessel  facilities:

Biodiversity  CachesCultural  CachesEarthbound  Facilities  and  HabitatsLunar  Facilities  and  HabitatsAsteroid  Enclosures  and  HabitatsInterplanetary  Enclosures  and  Habitats…  and  so  on.

27

Page 28: (Xrisk 101): Existential Risk for Interstellar Advocates

Functional  strategies  may  be  captured  through  pattern  languages  as  well.  An  applied  exam-­‐ple  is  found  in  the  question  of  Vessel  facility  positioning  or  placement.

In  correspondence,  Lt.  Col.  Peter  Garretson  recommended  several  potential  positions  for  mission-­‐critical  Vessel  facilities,  including  the  Lunar  South  Pole  and  the  L5  Lagrange  point.  Garretson  also  noted  that  having  a  Vessel  facility  housed  within  a  solar  power  transmitting  satellite  in  geosynchronous  orbit,  or  positioned  between  two  or  more  of  them  in  an  orbital  array,  would  be  a  useful  arrangement.  This  raises  the  design  possibility  that  any  Vessel  sited  within  a  populated  region  might  have  at  least  one  mirror  instance  directly  above  it,  in  GEO,  providing  it  with  supplemental  power.  Since  the  positions  of  these  GEO  Vessels  would  be  clear,  concealed  mirror  sites  would  also  be  pragmatic.    (Personal  communication,  August  23,  2013).

Suggested  here  are  the  following  potential  pattern  names  based  upon  these  solutions,  each  of  which  may  suggest  still  others:

Distributed  SitesRedundant  Positioning  and  Archive  MirroringDiversified  Instances  of  Community  Knowledge…  with  subtypes  including:

L5  PointGEO  PositioningLunar  Dark  SideLunar  South  Pole…  and  so  on.

To  provide  a  further  example  of  the  design  pattern  development  process,  we  can  examine  another  class  of  potential  problem  for  a  Vessel  habitat  or  installation:  that  of  power  security.  Designing  a  Vessel  facility  or  complex  to  operate  independently  of  any  surrounding  infra-­‐structure  could  help  to  mitigate  risks  to  a  Vessel  from  large-­‐scale  solar  events  or  other  un-­‐foreseen  circumstances.  Dr.  Daniel  Sheehan,  of  USD,  suggests  in  correspondence  the  many  ways  that  locally  hardening  a  Vessel  installation’s  power  system  could  be  accomplished:

“If  one  has  access  to  a  space  weather  forecast,  then  vulnerable  elements  can  be  disconnected  before  a  storm.”  …  “If  the  power  grid  is  small,  then  the  Faraday  induction  due  to  time  chang-­‐ing  magnetic  fields  can  be  minimized.  If  transformers  and  other  devices  have  surge  protec-­‐tion,  this  would  add  safety.  If  one  got  away  from  grid  systems  entirely  and  went  with  local  power  generation,  e.g.  small  electric  generators  or,  better  yet,  heat  recyclers,  then  there  should  be  no  problem.  Solar  events  are  really  only  problematic  for  large-­‐scale  electrical  grids.  The  bottom  line:  your  Vessel  installation  could  be  easily  hardened  against  flare  events.”  (Personal  communication,  September  15,  2013).

28

Page 29: (Xrisk 101): Existential Risk for Interstellar Advocates

Names  for  these  design  strategies  thus  emerge:

Independent  Power  InfrastructureDedicated  PowerGEO  Beamed  SolarForecasting  DowntimeHeat  Cycling…and  so  on.

Many  more  of  these  key  design  patterns  could  be  envisioned,  both  on  Earth  and  beyond  it,  as  taking  place  in  the  near  future  or  the  far  future.  

Developing  a  unified  design  pattern  language  for  the  Vessel  project  is  an  extensive  undertak-­‐ing,  its  beginnings  suggested  by  the  examples  here.  As  a  comprehensive  approach,  the  Ves-­‐sel  Open  Framework  must  span  a  range  of  disciplines,  from  architecture  to  systems  design.  Because  the  use  of  pattern  languages  and  design  patterns  has  been  successfully  applied  across  fields  for  decades,  developing  a  cross-­‐disciplinary  pattern  language  for  Vessel  design  remains  a  viable  strategy  in  a  way  that  more  specialized  documentation  or  specification  ef-­‐forts  might  not  be.

Once  effective  and  sheltering  environs  have  been  described  in  this  way,  the  imperative  of  the  Vessel  proposal  is  more  easily  addressed:  Preserve  what  Earth-­‐originating  life  has  been  and  has  achieved  thus  far,  as  an  irreplaceable  resource  for  the  future,  and  a  galvanizing  in-­‐spiration  in  the  present.

From  Practical  Proposals  to  the  Far  Future  of  Earth-­‐Originating  Life

The  present  effort  arises  in  a  spirit  of  synthesis,  proposing  the  strategy  of  a  common  frame-­‐work  for  the  wide  variety  of  proposals  and  efforts  which  have  come  before.  An  ongoing  re-­‐view  of  such  resources,  called  the  Vessel  Global  Survey,  seeks  to  expand  upon  the  exemplars  below.  Please  contact  the  author  with  additional  suggestions:    [email protected]

Exemplars  describing  strategies  for  resilient  habitats,  on  Earth  or  in  space,  include  Paolo  Soleri’s  Arcology  framework  [15];  Buckminster  Fuller’s  Cloud  9  proposal  [16];  and  Freeman  Dyson’s  Ark  Eggs  proposal  [17].  Habitats  for  living  beings  are  not  often  presented  as  a  form  of  living  archival,  and  an  order  of  magnitude  more  such  proposals  may  exist  to  be  synthe-­‐sized  and  adapted  towards  these  ends.

Exemplars  proposing  the  long  term  preservation  of  key  cultural  materials  include  the  Ro-­‐setta  Disk  project  for  the  preservation  of  languages,  the  Manual  for  Civilization  project  for  the  preservation  of  cultural  materials  (both  of  the  Long  Now  Foundation)  [18].

29

Page 30: (Xrisk 101): Existential Risk for Interstellar Advocates

Aside  from  Benford’s  Library  of  Life  proposal,  exemplars  similarly  focused  on  preservation  of  Earth’s  biodiversity  include  DNA  Net  Earth  (William  Y.  Brown,  Brookings  Institution)  [19];  The  Svalbard  Global  Seed  Vault  (Global  Crop  Diversity  Trust)  [20];  the  Frozen  Zoo  project  (San  Diego  Zoo)  [21];  and  the  Revive  &  Restore  program  (Long  Now  Foundation)  [22].

Exemplars  exploring  the  use  of  DNA  as  a  medium  or  substrate  for  very  long  term  data  stor-­‐age  include  those  at  the  Wyss  Institute  (George  Church,  Yuan  Gao,  Sriram  Kosuri)  [23];  and  the  European  Bioinformatics  Institute  (Ewan  Birney,  Nick  Goldman)  [24].

Exemplars  exploring  the  use  of  physical  or  optical  media  as  a  medium  or  substrate  for  very  long  term  data  storage  include  those  at  the  University  of  Southampton  (Fused  quartz  as  proposed  by  Jingyu  Zhang)  [25],  Kyoto  University  (Fused  quartz  as  proposed  by  Hitachi  Cen-­‐tral  Research  Laboratory)  [26];  IBM  Atomic  Scale  Memory  (Andreas  Heinrich,  Chris  Lutz)  [27];  and  Tungsten  and  silicon  nitride  encapsulated  media  (Jeroen  de  Vries,  Dmitri  Schel-­‐lenberg  of  the  University  of  Twente)  [28].

Exemplars  proposing  various  solutions  for  the  resilience  of  digital  data  and  computation  over  long  timeframes  include  the  Internet  Archive  [29];  redundantly  distributed  storage  platforms  such  as  GlusterFS  [30],  LOCKSS  [31],  and  BitTorrent  Sync  [32];  and  the  Lunar  Su-­‐percomputer  proposal  of  Ouliang  Chang  [33].

Each  of  these  differs  in  its  approach  and  its  focus;  yet  each  shares  with  Vessel  and  with  one-­‐another  a  key  understanding:  The  prospects  for  Earth-­‐originating  life  in  the  future,  whether  vast  or  diminishing,  depend  upon  our  actions  and  our  foresight  in  this  current  cultural  mo-­‐ment  of  opportunity,  agency,  awareness,  ability,  capability,  and  willpower.    

As  time  and  resources  allow,  Vessel  will  continue  to  be  refined  as  an  adaptable  approach  to  this  common  mission,  in  a  spirit  of  service  to  all  past,  present,  and  future  life  in  the  universe.

Nick  Nielsen  continues  our  journey  into  the  prospects  for  Earth-­‐originating  life,  should  we  succeed  in  safeguarding  its  full  potential.

30

Page 31: (Xrisk 101): Existential Risk for Interstellar Advocates

Figure  23:    Origins  (Image  ©  Lucy  West  -­‐  www.lucyweststudios.com  -­‐  Used  by  Permission  -­‐  2011)

“Build  as  if  your  ancestors  crossed  over  your  bridges.”

–  Proverbial

31

Page 32: (Xrisk 101): Existential Risk for Interstellar Advocates

Part  II  –  Existential  Risk  and  Far  Future  Civilization  

Earth’s  Cosmological  Context  

The  prospects  for  Earth-­‐originating  life  in  the  future  as  seen  from  the  perspective  of  existen-­‐tial  risk  awareness  and  mitigation  can  be  grasped  by  the  perspective  of  seeing  Earth  from  space.  It  was  a  pivotal  moment  in  human  self-­‐understanding  when  the  Apollo  astronauts  turned  their  camera  back  toward  Earth  from  the  distance  of  the  moon  and  revealed  our  planet  as  a  vulnerable  oasis  against  the  black  backdrop  of  space.  As  our  spacecraft  have  trav-­‐eled  ever  greater  distances  from  Earth,  we  have  been  provided  with  ever  more  comprehen-­‐sive  images  of  Earth  in  space,  in  which  our  world  appears  as  a  pale  blue  dot  in  the  skies  of  Mars  and  even  can  be  dimly  seen  from  deep  space  at  the  edge  of  our  solar  system.  [34]

Figure  24  -­‐  (Four  images  of  Earth:  Upper  left:  Apollo  8  photograph  of  Earth  from  the  moon;  upper  right:  Earth  and  Moon  from  3.9  million  miles,  taken  by  the  Galileo  spacecraft;  lower  left:  Earth  as  seen  from  the  surface  of  Mars  by  the  Mars  Exploration  Rover  Spirit;  lower  right:  Earth  seen  from  a  distance  of  3.7  billion  miles  by  the  Voyager  1  spacecraft.  Credit:  NASA/JPL/Cornell/Texas  A&M

32

Page 33: (Xrisk 101): Existential Risk for Interstellar Advocates

To  see  our  world  as  a  pale  blue  dot  barely  visible  in  the  vastness  of  space  graphically  shows  Earth’s  place  in  the  universe,  and  if  we  could  continue  to  expand  our  scope  for  several  more  orders  of  magnitude  while  remaining  focused  on  our  pale  blue  dot,  we  would  perceive  our  Earth  in  the  full  magnitude  of  its  cosmological  context.  Just  as  Earth  is  placed  in  cosmologi-­‐cal  context  by  its  appearance  as  a  pale  blue  dot,  we  must  similarly  place  earth-­‐originating  life,  intelligence,  and  civilization  in  its  cosmological  context,  and  we  can  do  so  by  way  of  as-­‐trobiology.  Astrobiology  can  be  understood  as  an  extrapolation  and  extension  of  terrestrial  biology,  or  as  biology  in  a  cosmological  context.

Life’s  Astrobiological  Context  

There  are  many  definitions  of  astrobiology,  some  quite  detailed  and  others  quite  concise.  The  NASA  strategic  plan  of  1996  [35]  gives  this  definition  of  astrobiology:  

“The  study  of  the  living  universe.  This  field  provides  a  scientific  foundation  for  a  mul-­‐tidisciplinary  study  of  (1)  the  origin  and  distribution  of  life  in  the  universe,  (2)  an  un-­‐derstanding  of  the  role  of  gravity  in  living  systems,  and  (3)  the  study  of  the  Earth’s  atmospheres  and  ecosystems.”

The  NASA  astrobiology  website  characterizes  astrobiology  as  follows:  

“Astrobiology  is  the  study  of  the  origin,  evolution,  distribution,  and  future  of  life  in  the  universe.  This  multidisciplinary  field  encompasses  the  search  for  habitable  envi-­‐ronments  in  our  Solar  System  and  habitable  planets  outside  our  Solar  System,  the  search  for  evidence  of  prebiotic  chemistry  and  life  on  Mars  and  other  bodies  in  our  Solar  System,  laboratory  and  field  research  into  the  origins  and  early  evolution  of  life  on  Earth,  and  studies  of  the  potential  for  life  to  adapt  to  challenges  on  Earth  and  in  space.”  [36]  

More  concisely,  astrobiology  has  been  called,  “The  study  of  life  in  space”  [37]  and  that,  “As-­‐trobiology…  removes  the  distinction  between  life  on  our  planet  and  life  elsewhere.”  [38]  Tak-­‐ing  these  sententious  formulations  of  astrobiology  as  the  study  of  life  in  space,  which  removes  the  distinction  between  life  on  our  planet  and  life  elsewhere,  gives  us  a  new  perspective  with  which  to  view  life  on  Earth.  

33

Page 34: (Xrisk 101): Existential Risk for Interstellar Advocates

With  earth-­‐originating  life,  intelligence,  and  civilization  placed  in  cosmological  context,  we  ourselves  and  our  civilization  can  be  understood  in  the  same  terms  in  which  the  Fermi  paradox  is  discussed.  [39]  Enrico  Fermi  asked,  if  the  universe  is  filled  with  life,  “Where  is  everybody?”  The  universe  is  billions  of  years  old,  demonstrably  compatible  with  the  exis-­‐tence  of  intelligent  life,  and  yet  we  find  no  evidence  of  highly  advanced  civilizations  other  than  our  own.  The  paradox  has  only  been  sharpened  by  recent  scientific  discoveries  of  exo-­‐planets,  including  small,  rocky  planets  in  the  habitable  zones  of  stars,  some  of  them  rela-­‐tively  nearby  in  cosmological  terms.  [40]  The  conditions  requisite  for  life  appear  to  be  less  rare  the  more  we  search  for  them,  hence  the  ongoing  relevance  of  the  Fermi  paradox.  

Once  we  place  terrestrial  life  in  an  astrobiological  context  and  so  remove  the  distinction  be-­‐tween  life  on  earth  and  life  elsewhere,  we  see  that  the  idea  of  an  “alien”  is  an  anthropocen-­‐tric  concept,  and  a  Copernican  conception  such  as  astrobiology  must  do  away  with  the  idea  of  “aliens”  as  constituting  all  life  other  than  earth-­‐originating  life.  [41]  So  when  we  ask,  “Where  are  all  the  aliens?”  We  must  answer,  “Right  here,  on  Earth;  we  are  the  aliens.”  We  inhabit  a  planet  that  has  produced  complex  life  that  has  in  turn  produced  complex  social  institutions  that  we  call  civilization.  All  this  has  happened  on  a  pale  blue  dot  that  is  an  “alien”  world  for  every  world  in  the  cosmos  other  than  our  own.  

Astrocivilization:  Civilization  in  Cosmological  Context  

A  conception  of  intelligence  and  civilization  as  comprehensive  as  astrobiology—what  we  can  call  astrocivilization—would  place  these  phenomena  in  cosmological  context,  and  draw-­‐ing  on  the  insights  of  astrobiology  we  can  easily  see  that  an  anthropocentric  conception  of  alien  intelligence  as  all  intelligence  other  than  earth-­‐originating  intelligence  limits  our  con-­‐ception  of  intelligence,  as  an  anthropocentric  conception  of  alien  civilization  as  all  civiliza-­‐tion  other  than  earth-­‐originating  civilization  limits  our  conception  of  civilization.  A  Coper-­‐nican  conception  will  be  concerned  with  the  fate  of  life,  intelligence,  and  civilization  as  such,  but  we  must  also  acknowledge  that  we  are  all  that  is  know  so  far  of  life  as  such,  unco-­‐pernican  though  that  sounds.  

We  are  the  only  known  “aliens”  to  pass  through  the  Great  Filter  [42]—which  is  what  we  call  whatever  it  is  that  has  filtered  out  other  possible  civilizations  in  the  universe  and  left  us  only  with  our  own  civilization  on  Earth  in  evidence.  The  development  of  astrobiology  has  di-­‐rected  our  attention  to  the  many  near  disasters  we  have  experienced  in  the  past—disasters  that  have  shaped  the  surface  of  our  planet  and  the  history  of  life  on  Earth.  The  emergence  of  a  single  hominid  species  from  several  branches  of  hominid  evolution  makes  homo  sapiens  a  kind  of  existential  choke  point  or  bottleneck  in  the  history  of  intelligent  life,  so  that  there  is  

34

Page 35: (Xrisk 101): Existential Risk for Interstellar Advocates

a  sense  in  which  we  are  the  Great  Filter.  And  the  life  we  enjoy  on  Earth,  which  is  itself  a  marvelous  and  meaningless  sequence  of  unlikely  contingencies  of  the  cosmos,  is  vulnerable  at  any  moment  to  being  annihilated  by  another  meaningless  sequence  of  unlikely  contin-­‐gencies  of  the  cosmos.  Events  of  great  consequence  (from  an  anthropocentric  perspective)  are  no  less  “filtered”  by  the  natural  history  of  the  universe  than  the  species  that  these  cosmo-­‐logical  events  threaten,  so  that  the  destruction  of  an  intelligent  species  (if  it  has  happened  previously  in  the  history  of  the  universe)  can  be  understood  to  be  similarly  the  result  of  a  filter,  and  as  unlikely  as  the  emergence  of  an  intelligent  species.  [44]      

Through  the  ages  of  cosmological  and  geological  time  our  homeworld  has  been  subject  to  massive  volcanism,  asteroid  impacts,  solar  flares,  gamma  ray  bursts,  and  the  extensive  gla-­‐ciation  that  characterizes  the  present  Quaternary  glaciation,  with  its  warmer  inter-­‐glacial  periods  such  as  the  Holocene,  during  which  the  whole  of  human  civilization  has  emerged.  These  natural  forces  of  the  Earth,  the  solar  system,  and  the  cosmos  at  large  have  shaped  ter-­‐restrial  life,  humanity,  and  human  civilization.  We  have  been  hammered  on  the  anvil  of  a  violent  and  dynamic  universe,  and  we  have  survived  thus  far,  but  our  ongoing  survival,  our  existential  viability,  is  not  assured.  

That  we  have  survived  so  far,  and  are  able  to  pose  the  question  of  our  ongoing  existential  viability,  is  not  merely  arbitrary,  but  is  the  result  of  an  observational  selection  effect,  which  in  a  cosmological  context  is  usually  called  the  anthropic  cosmological  principle.  [45]  Terres-­‐trial  life  has  reached  its  present  level  of  complexity,  and  our  civilization  has  reached  its  pre-­‐sent  level  of  technological  sophistication,  because  we  are  on  a  relatively  quiescent  planet  in  a  relatively  quiescent  solar  system  in  a  relatively  quiescent  part  of  the  Milky  Way  galaxy  (and  so  on,  from  the  local  group  to  the  universe  entire).  Thus,  if  it  is  the  case  that  we  have  been  hammered  on  the  anvil  of  a  violent  universe,  it  has  not  been  too  violent.  If  our  history  had  been  visited  by  more  catastrophic  events—if,  for  example,  the  K-­‐Pg  impact  that  proba-­‐bly  led  to  the  mass  extinction  of  dinosaurs  had  involved  a  larger  collision,  such  as  that  which  likely  resulted  in  the  formation  of  Earth’s  moon,  then  human  beings  would  not  have  evolv-­‐ed—we  would  not  be  here  to  observe  and  to  question  our  ongoing  viability.  [46]  

The  background  rate  of  existential  threats  has  been  such  as  to  shape  life  on  Earth,  but  not  to  eliminate  it  entirely.  This  is  the  ongoing  tension  between  the  unlikelihood  of  the  emergence  of  sufficiently  complex  life  to  produce  an  intelligent  species  and  the  unlikelihood  of  an  event  that  could  result  in  the  extinction  of  such  an  intelligent  species  once  the  quiescent  condi-­‐tions  conducive  to  the  emergence  of  such  a  species  obtain  (or  the  unlikelihood  of  an  event  that  could  result  in  the  extinction  of  an  entire  biosphere  and  therefore  the  impossibility  of  the  emergence  of  another  intelligent  species).  It  is  also  a  tension  subject  to  change  as  new  historical  forces  emerge  that  will  shape  ongoing  life  on  Earth.      

35

Page 36: (Xrisk 101): Existential Risk for Interstellar Advocates

Extraterrestrialization:  the  Development  of  Spacefaring  Civilization  

Earth-­‐originating  life  has  now  given  rise  to  industrial-­‐technological  civilization,  which  con-­‐tinues  in  its  development  to  this  day.  What  follows  planet-­‐bound  industrial-­‐technological  civilization  is  the  process  of  extraterrestrialization—the  movement  of  the  infrastructure  of  terrestrial  civilization  off  the  surface  of  the  Earth  and  into  space—which  places  earth-­‐originating  civilization  in  cosmological  context,  just  as  the  pale  blue  dot  places  Earth  in  cosmological  context  and  astrobiology  places  life  in  cosmological  context.  Extraterrestriali-­‐zation  is  an  existential  imperative.  Carl  Sagan  wrote  that,  “…every  surviving  civilization  is  obliged  to  become  spacefaring—not  because  of  exploratory  or  romantic  zeal,  but  for  the  most  practical  reason  imaginable:  staying  alive.”  [47]  The  process  of  extraterrestrialization,  should  it  come  to  pass,  furnishes  us  with  a  more  comprehensive  conception  of  civilization  that  begins  to  transcend  our  anthropic  bias.  

Figure  25:    Extraterrestrialization.    Image  by  J.  N.  Nielsen

The  resources  of  industrial-­‐technological  civilization  hold  the  promise  that  life,  intelligence,  and  civilization  can  spread  beyond  our  terrestrial  homeworld.  [48]  Each  stage  in  the  devel-­‐opment  of  a  civilization  capable  of  harnessing  the  energy  resources  required  to  expand  be-­‐yond  exclusively  planet-­‐bound  conditions  represents  passing  through  further  layers  of  the  Great  Filter.  The  gravitational  thresholds  of  our  home  world,  our  local  solar  system,  our  lo-­‐cal  galaxy,  and  our  local  universe  are  each  of  them  existential  risks  and  existential  opportu-­‐nities  for  the  future  development  of  earth-­‐originating  life,  intelligence,  and  civilization.  With  the  passage  beyond  one  gravitational  threshold  to  another,  existential  risk  is  mitigated  

36

Page 37: (Xrisk 101): Existential Risk for Interstellar Advocates

but  not  eliminated;  the  mitigation  of  one  level  of  existential  risk  means  ascending  to  a  more  comprehensive  level  of  existential  risk.  

The  technology  that  our  civilization  develops  will  influence  the  structure  of  extraterrestrial-­‐ized  civilization.  [49]  If  the  settlement  of  the  universe  is  parallel  to  the  settlement  of  our  planet,  each  gravitational  threshold  will  first  be  passed  by  an  initial  slow  wave,  only  to  much  later  be  filled  in  by  faster  waves  of  expansion  resulting  from  later,  higher  technology.  But  in  the  event  of  a  disruptive  technological  breakthrough,  as,  for  example,  any  of  the  technolo-­‐gies  based  on  the  Alcubierre  drive  concept  (or  any  other  propulsion  system  that  has  the  practical  effect  of  superluminary  velocity),  there  could  be  an  initial  fast  wave  of  expansion  only  later  filled  in  by  slower  and  more  thorough  later  waves  filling  in  the  gaps.  

Whatever  the  large-­‐scale  structure  of  spacefaring  civilization  [50],  existential  risks  confront  us  at  every  stage  of  development.  No  sooner  do  we  leave  behind  one  risk  than  we  encounter  another,  more  comprehensive  risk  that  confronts  our  expanding  and  more  comprehensive  civilization.  Existential  viability  is  to  be  won  through  a  continuous  engagement  with  the  hi-­‐erarchy  of  risks  through  which  an  existentially  viability  civilization  must  pass.  

The  Risk  of  Cataloging  Existential  Risks  

There  is  an  almost  irresistible  temptation  to  compile  a  list  of  existential  threats  and  to  assess  these  risks  in  order  of  priority  in  order  to  make  a  rational  cost/benefit  analysis  of  existential  risk  mitigation  efforts.  After  all,  industrial-­‐technological  civilization  has  achieved  its  great  accomplishments  largely  through  the  application  of  procedural  rationality.  Yet  the  very  power  of  the  idea  of  existential  risk  derives  from  the  non-­‐constructive  character  of  the  con-­‐cept:  we  know  that  we  will  face  risks,  even  if  we  cannot  exhibit  in  intuition  (to  employ  a  Kantian  turn  of  phrase)  what  exactly  these  risks  will  be.  [51]  The  risk  that  strikes  our  Achil-­‐les’  heel  may  be  the  risk  that  we  failed  to  exhibit  in  our  intuition.    

If  we  try  to  address  existential  risks  on  a  case-­‐by-­‐case  basis,  we  will  be  presented  with  count-­‐less  dilemmas  that  are  likely  to  become  irremediable  political  conflicts.  Should  we  build  planetary  defenses  to  guard  Earth  against  asteroid  strikes,  or  should  we  harden  our  global  electrical  grid  against  a  power  surge  from  a  mass  coronal  ejection  that  could  destroy  it?  Should  we  develop  legal  restrictions  on  potentially  disruptive  technologies  that  could  pose  an  existential  threat  (say,  genetics,  nanotechnology,  and  robotics  [52]),  or  should  we  push  innovative  technologies  to  the  limit  of  their  development  in  order  to  apply  them  in  geoengi-­‐neering  solutions  to  climate  change?  

37

Page 38: (Xrisk 101): Existential Risk for Interstellar Advocates

If  we  attempt  to  compile  a  list  of  potential  existential  threats  and  to  systematically  mitigate  them  one  by  one  (an  admirably  constructivistic  approach  to  existential  risk),  we  risk  being  blindsided  by  some  existential  threat  that  we  overlooked,  while  if  we  pursue  a  strategy  of  existential  risk  mitigation  that  addresses  any  risk  whatsoever,  we  are  much  less  likely  to  be  blindsided  by  an  unexpected  risk  that  eludes  human  imagination.  A  strategy  of  absolute  generality  will  not  only  mitigate  known  existential  risks,  but  may  also  mitigate  unknown  ex-­‐istential  risks.  What  is  needed  is  a  strategy  of  existential  risk  mitigation  as  such,  effective  for  any  existential  risk,  for  civilization  as  such,  effective  for  any  civilization.  The  question  then  becomes  this:  what  can  we  do  that  would  likely  preserve  Earth-­‐originating  life,  intelligence,  and  civilization  regardless  of  the  threats  to  their  existence?  What  existential  risk  mitigation  strategy  is,  in  principle,  blind  to  the  existential  threat  against  which  it  secures  us?      

Knowledge,  Redundancy,  and  Autonomy  

Given  extraterrestrialized  civilization  in  its  cosmological  context,  we  can  approach  existen-­‐tial  risk  mitigation  through  three  principles:  knowledge,  which  transforms  unknown  uncer-­‐tainties  into  quantifiable  risks  that  admit  of  calculation  and  mitigation,  redundancy,  which  means  multiple  self-­‐sufficient  centers  for  Earth-­‐originating  intelligent  life,  and  autonomy,  which  assures  the  independence  of  each  self-­‐sufficient  center  to  seek  its  own  strategies  for  survival.  

What  does  knowledge  have  to  do  with  risk?  Following  economist  Frank  Knight,  what  we  call  Knightian  risk  distinguishes  between  predictability,  risk,  and  uncertainty,  with  predictability  implying  total  knowledge,  risk  implying  partial  knowledge,  and  uncertainty  implying  the  absence  of  knowledge.  [53]  These  are  simplified  and  idealized  categories;  no  risk  is  entirely  free  of  uncertainty,  and  even  uncertainty  must  lie  within  what  is  possible  within  our  uni-­‐verse,  and  in  that  sense  is  constrained  and  predictable.  But  Knightian  risk  offers  a  frame-­‐work  to  think  about  the  dynamic  nature  of  risk,  which  changes  over  time.  We  can  think  of  predictability,  risk,  and  uncertainty  as  constituting  an  epistemic  continuum,  based  on  our  level  of  knowledge.  Growth  of  knowledge  moves  the  boundary  of  risk  outward,  encompass-­‐ing  more  unknowns,  meaning  less  uncertainty  and  more  predictability.  In  the  event  of  civili-­‐zational  collapse  and  the  loss  of  knowledge,  the  boundary  of  risk  contracts,  and  a  greater  proportion  of  the  world  is  given  over  to  uncertainty.    

38

Page 39: (Xrisk 101): Existential Risk for Interstellar Advocates

Figure  26:    Epistemic  Continuum.    The  epistemic  continuum,  from  a  high  degree  of  knowledge  and  predictability,  through  risk  as  an  admixture  of  knowledge  and  uncertainty,  to  unknowns  of  which  we  possess  a  low  degree  of  knowledge.  Image  by  J.  N.  Nielsen.]    

For  example,  even  if  we  have  done  very  little  in  the  past  forty  years  in  terms  of  human  space  exploration  and  extraterrestrial  settlement,  and  we  are  still  accessing  earth  orbit  with  dis-­‐posable  chemical  rockets,  space  science  has  made  enormous  progress  during  this  period  of  time,  and  this  knowledge  has  transformed  our  understanding  of  our  universe  and  our  place  within  it.  This  growth  of  our  knowledge  of  the  universe  has  made  the  universe  a  little  less  uncertain  and  a  little  more  predictable  for  us,  suggesting  clear  paths  for  the  management  and  mitigation  of  existential  risk.

Knowledge  alone  is  not  enough.  Without  redundancy  of  earth-­‐originating  life,  intelligence,  and  civilization  we  still  face  the  possibility  of  a  terrestrial  single-­‐point  failure.  Existential  risk  mitigation  ultimately  means  multiple  self-­‐sufficient  centers  for  Earth-­‐originating  intelligent  life.  These  distinct  centers  of  earth-­‐originating  life,  intelligence,  and  civilization  will  be  sub-­‐ject  to  distinct  risks  and  distinct  opportunities,  and  these  distinct  populations  of  Earth-­‐originating  life,  intelligence,  and  civilization  will  be  subject  to  distinct  selection  pressures,  so  that  they  will  evolve  into  unique  forms  of  each.  [54]  

Knowledge  of  risks  and  redundant  centers  of  earth-­‐originating  life  together  are  not  yet  enough  to  secure  the  long-­‐term  viability  of  Earth-­‐originating  life,  intelligence,  and  civiliza-­‐tion.  Redundancy  without  diversity  incurs  the  risk  of  homogeneity  and  monoculture.  Exis-­‐tential  risk  mitigation  also  points  to  the  necessity  of  the  independence  of  each  self-­‐sufficient  center  to  seek  its  own  strategies  of  survival.  The  mutual  independence  of  self-­‐sufficient  cen-­‐

39

Page 40: (Xrisk 101): Existential Risk for Interstellar Advocates

ters  means  the  possibility  of  continued  social  and  technological  experimentation,  which  will  in  turn  lead  to  the  realization  of  distinct  forms  of  civilization.  

Autonomy  among  multiple  independent  centers  of  civilization  seems  like  an  unambiguous  condition,  but  it  may  be  more  difficult  to  achieve  than  we  suppose.  [55]  If  we  look  around  the  planet  today,  with  all  its  ethnic  and  cultural  diversity,  we  see  that  there  is,  for  all  practi-­‐cal  purposes,  only  one  viable  form  of  political  organization—the  nation-­‐state  –  and  again,  for  all  practical  purposes,  only  one  viable  form  of  civilization—industrial-­‐technological  civi-­‐lization.  We  must  proactively  seek  to  transcend  social  and  technological  monoculture  to  ar-­‐rive  at  a  civilizational  pluralism  from  which  social  and  technological  experimentation  flows  naturally.  

The  Moral  Imperative  of  Existential  Risk  Mitigation  

Taking  existential  risk  seriously  means  that  certain  moral  imperatives  follow  from  this  per-­‐spective,  but  who  would  possibly  object  to  preventing  human  extinction?  Of  course,  it  is  not  as  simple  as  that.  It  might  be  more  difficult  than  we  suppose  to  define  human  extinction,  because  to  do  so  we  would  need  to  agree  upon  what  constitutes  human  viability  in  the  long  term.  Additionally,  there  are  vastly  different  conceptions  of  what  constitutes  a  viable  civili-­‐zation  and  of  what  constitutes  the  good  for  civilization.  What  is  stagnation?  What  is  flawed  realization?  What  exactly  is  subsequent  ruination,  when  achievement  is  followed  by  failure?  What  constitutes  a  civilizational  failure?  What  exactly  would  constitute  the  “drastic  failure  of…  life  to  realise  its  potential  for  desirable  development”?  What  is  human  potential?  Does  it  include  transhumanism?  For  some,  transhumanism  is  a  moral  horror,  and  a  future  of  tran-­‐shumanism  would  be  a  paradigm  case  of  flawed  realization,  while  for  others  a  human  future  without  transhumanism  would  constitute  permanent  stagnation.  These  are  difficult  ques-­‐tions  that  cannot  be  wished  away;  to  pretend  that  they  are  not  contentious  is  to  fail  to  do  justice  to  the  complexity  of  the  human  condition.  

These  different  conceptions  of  human  potential  and  desirable  outcomes  for  civilization  will  issue  in  different  ideals,  different  aspirations,  and  different  actions,  but  if  we  can  continue  to  increase  knowledge,  establish  redundancy  and  assure  autonomy  there  is  reason  to  hope  that  existential  catastrophe  can  be  avoided  and  an  OK  outcome  realized,  which  is  the  point  of  what  Nick  Bostrom  calls  the  maxipok  rule—maximizing  the  probability  of  an  OK  outcome,  where  an  OK  outcome  is  defined  as  an  outcome  that  avoids  existential  catastrophe.  [56]  

While  the  formulations  of  knowledge,  redundancy,  and  autonomy  above  are  framed  in  terms  of  Earth-­‐originating  life,  intelligence,  and  civilization,  such  a  strategy  of  existential  

40

Page 41: (Xrisk 101): Existential Risk for Interstellar Advocates

risk  mitigation  holds  for  life,  intelligence,  and  civilization  as  such,  i.e.,  for  any  possible  intel-­‐ligent  species  that  seeks  the  existential  viability  of  itself  and  its  biosphere  for  the  long  term  future.  Any  civilization  that  fails  to  pursue  knowledge,  redundancy,  and  autonomy—any  or  all  of  them—places  itself  at  greater  existential  risk  than  a  civilization  that  systematically  pursues  all  of  them.  That  is  to  say,  epistemic  stagnancy  is  an  existential  risk;  exclusive  reli-­‐ance  upon  a  single,  unique  center  of  civilization  is  an  existential  risk;  absence  of  autonomy  (what  a  Kantian  would  call  heteronomy)  is  an  existential  risk.

If  we  do  nothing,  we  will  have  on  our  conscience  the  extinction  of  all  earth-­‐originating  life,  intelligence  and  civilization.  If  we  understand  any  or  all  of  these  to  possess  intrinsic  value,  allowing  their  extinction  through  neglect  and  inaction  is  morally  indefensible.  In  the  long  term,  our  survival  is  only  to  be  had  through  the  extraterrestrialization  of  our  civilization.  But  survival  is  not  salvation.  Survival  often  simply  means  that  we  will  have  the  opportunity  to  go  on  to  make  later  mistakes  on  a  larger  scale,  which  still  constitutes  an  OK  outcome  that  is  better  than  the  alternative.

41

Page 42: (Xrisk 101): Existential Risk for Interstellar Advocates

References[1]    DARPA,  “The  100-­‐Year  Starship  Study:  Strategy  Planning  Workshop  Synthesis  &  Discus-­‐sions”,  (http://web.archive.org/web/20140502051005/http://100yearstarshipstudy.com/100YSS_January_Synopsis.pdf).  Accessed  May  2014.

[2]    H.  Rezabek,  “Vessel  Archives:  A  Strategic  Approach  to  Existential  Risk,  Human  Survival,  and  the  Future  of  Life  in  the  Universe”,  100  Year  Starship  2012  Symposium  Conference  Pro-­‐ceedings.  pp.  331-­‐351,  2013.

[3]    N.  Bostrom,  “Existential  Risk  Prevention  as  Global  Priority”,  Global  Policy  Vol.  4,  Issue  1,  pp.15-­‐31,  2013.

[4]    S.  Webb,  “Where  Is  Everybody?  Fifty  Solutions  to  the  Fermi  Paradox  and  the  Problem  of  Extraterrestrial  Life”,  Copernicus  Books,  New  York,  2002.

[5]  R.  Hanson,  “The  great  filter-­‐are  we  almost  past  it?”  Journal  preprint  available  at  (http://web.archive.org/web/20140502212207/http://hanson.gmu.edu/greatfilter.html).  Ac-­‐cessed  May  2014.

[6]    Wolfram  Alpha,  “Input  Interpretation:  World  Population”  (http://www.wolframalpha.com/input/?i=world+population).  Accessed  May  2014.

[7]    C.  Sagan,  “Pale  Blue  Dot:  A  Vision  of  the  Human  Future  in  Space”,  Random  House,  New  York,  1997.

[8]    G.  Benford,  “Saving  the  Library  of  Life”,  Proceedings  of  the  National  Academy  of  Sci-­‐ences  89,  11098-­‐11101,  1992.

[9]    Wyss  Institute,  “Writing  the  Book  in  DNA”  Press  Release  (https://web.archive.org/web/20120819235233/http://wyss.harvard.edu/viewpressrelease/93/).  Accessed  June  2014.

[10]    E.  Yong,  “DNA  storage:  The  code  that  could  save  civilisation”,  BBC  Future.  (https://web.archive.org/web/20140104202909/http://www.bbc.com/future/story/20130724-­‐saving-­‐civilisation-­‐in-­‐one-­‐room).  Accessed  June  2014.    

[11]    J.  Zhang,  “5D  Data  Storage  by  Ultrafast  Laser  Nanostructuring  in  Glass”,  (https://web.archive.org/web/20140526034051/http://www.orc.soton.ac.uk/fileadmin/downl

42

Page 43: (Xrisk 101): Existential Risk for Interstellar Advocates

oads/5D_Data_Storage_by_Ultrafast_Laser_Nanostructuring_in_Glass.pdf).  Accessed  June  2014.

[12]    AFP,  “Data  that  lives  forever    possible:  Japan's  Hitachi”,  (https://web.archive.org/web/20131115020440/http://phys.org/news/2012-­‐09-­‐japan-­‐hitachi.html).  Accessed  June  2014.

[13]    Long  Now  Foundation,  “The  Rosetta  Project:  Concept”,  (http://web.archive.org/web/20131127125407/http://rosettaproject.org/disk/concept/).  Ac-­‐cessed  June  2014.

[14]  C.  Alexander,  S.  Ishikawa,  &  M.  Silverstein,  “A  Pattern  Language:  Towns,  Buildings,  Con-­‐struction,”  CES  Center  for  Environmental  Structure,  Oxford  University  Press,  Oxford,  1977.

[15]    P.  Soleri,  "Arcology:  The  City  in  the  Image  of  Man",  M.I.T.  Press,  Cambridge,  1971.

[16]    L.S.  Sieden,  "Buckminster  Fuller’s  Universe",  Basic  Books,  New  York,  2000.

[17]    F.  Dyson,  "Noah’s  Ark  Eggs  and  Viviparous  Plants",  in  Starship  Century,  Lucky  Bat  Books,  Nevada,  2013.

[18]    Long  Now  Foundation,  "Works  in  Progress",  Blurb  Publishing,  San  Francisco,  2013.

[19]    W.Y.  Brown,  "DNA  Net  Earth",  Global  Views  no.39,  Brookings  Institution,  Washington  DC,  (https://web.archive.org/web/20130602131022/http://www.brookings.edu/research/papers/2013/03/dna-­‐net-­‐earth-­‐brown).  Accessed  June  2014.

[20]    Global  Crop  Diversity  Trust,  "Svalbard  Global  Seed  Vault",  (https://web.archive.org/web/20140529162353/http://www.croptrust.org/content/svalbard-­‐global-­‐seed-­‐vault).  Accessed  June  2014.

[21]    San  Diego  Zoo,  "Frozen  Zoo",  (https://web.archive.org/web/20130808055242/http://www.sandiegozooglobal.org/what_we_do_banking_genetic_resources/frozen_zoo).  Accessed  June  2014.

[22]    Long  Now  Foundation,  "Revive  &  Restore",  (https://web.archive.org/web/20140601085500/http://longnow.org/revive/).  Accessed  June  

43

Page 44: (Xrisk 101): Existential Risk for Interstellar Advocates

2014.

[23]    G.M.  Church,  Y.  Gao,  S.  Kosuri,  "Next-­‐generation  Digital  Information  Storage  in  DNA",  Science  DOI:  10.1126/science.1226355  supplement  PMID:  22903519,  2012.

[24]    N.  Goldman,  P.  Bertone,  S.  Chen,  C.  Dessimoz,  E.M.  LeProust,  B.  Sipos,  E.  Birney,  "To-­‐wards  Practical,  High-­‐capacity,  Low-­‐maintenance  Information  Storage  in  Synthesized  DNA",  Nature  DOI:10.1038/nature.11875494,  77–80,  2013

[25]    J.  Zhang,  M.  Gecevičius,  M.  Beresna,  P.G.  Kazansky,  "Seemingly  Unlimited  Lifetime  Data  Storage  in  Nanostructured  Glass",  Physical  Review  Letters,  112(3):033901.  DOI:10.1103/PhysRevLett.112.033901,  2014.

[26]    M.  Shiozawa,  T.  Watanabe,  R.  Imai,  M.  Umeda,  T.  Mine,  Y.  Shimotsuma,  M.  Sakakura,  K.  Miura,  K.  Watanabe,  "Simultaneous  Multi-­‐Bit  Recording  and  Driveless  Reading  for  Per-­‐manent  Storage  in  Fused  Silica",  J.  of  Laser  Micro  /  Nanoengineering,  Vol.  9,  No.  1,  DOI:10.2961/jlmn.2014.01.0001,  2014

[27]    S.  Loth,  S.  Baumann,  C.P.  Lutz,  D.M.  Eigler,  A.J.  Heinrich,    "Bistability  in  Atomic-­‐scale  Antiferromagnets",  Science,  Bd.  335,  S.196,  DOI:10.1126/science.1214131,  2012

[28]    J.  de  Vries,  D.  Schellenberg,  L.  Abelmann,  A.  Manz,  M.  Elwenspoek,  "Towards  Gigayear  Storage  Using  a  Silicon-­‐Nitride/Tungsten  Based  Medium",  arXiv:1310.2961,  (http://arxiv.org/abs/1310.2961).  Accessed  June  2014.

[29]    Internet  Archive,  "About  the  Internet  Archive",  (https://web.archive.org/web/20140425155322/https://archive.org/about/).  Accessed  June  2014.

[30]    GlusterFS,  "About  GlusterFS",  (https://web.archive.org/web/20140529220132/http://www.gluster.org/about/).  Accessed  June  2014.

[31]    LOCKSS,  "About  LOCKSS",  (https://web.archive.org/web/20140127012806/http://www.lockss.org/about/).  Accessed  June  2014.

[32]  BitTorrent  Sync,  "BitTorrent  Sync",  (https://web.archive.org/web/20140614024531/http://www.bittorrent.com/sync).  Accessed  

44

Page 45: (Xrisk 101): Existential Risk for Interstellar Advocates

June  2014.

[33]  O.  Chang,  M.  Thangavelu,  "Lunar  Supercomputer  Complex:  21st  Century  DSN  Evolution  Prospects",  AIAA  Meeting  Papers,  (http://arc.aiaa.org/doi/abs/10.2514/6.2012-­‐5184),  2012.

[34]  Of  this  most  distant  picture  of  Earth  Carl  Sagan  wrote,  “It  seemed  to  me  that  another  picture  of  the  Earth,  this  one  taken  from  a  hundred  thousand  times  farther  away,  might  help  in  the  continuing  process  of  revealing  to  ourselves  our  true  circumstance  and  condition.”  C.  Sagan,  “Pale  Blue  Dot:  A  Vision  of  the  Human  Future  in  Space”,  Random  House,  New  York,  1997,  Chap.  1.  The  Hubble  Ultra  Deep  Field  image  is  another  photograph  that  has  more  re-­‐cently  played  a  role  in  human  self-­‐understanding,  providing  the  most  expansive  context  yet  for  the  place  of  humanity  in  the  universe.  

[35]  Quoted  in  S.J.  Dick  and  J.E.  Strick,  “The  Living  Universe:  NASA  and  the  Development  of  Astrobiology”,  Rutgers  University  Press,  Piscataway,  NJ,  2005,  p.  vi,  also  cf.  p.  205.

[36]  NASA  Astrobiology:  Life  in  the  Universe  (http://astrobiology.nasa.gov/about-­‐astrobiology/)  Accessed  June  2014.  

[37]  L.J.  Mix,  “Life  in  Space:  Astrobiology  for  Everyone”,  Harvard  University  Press,  Cam-­‐bridge  and  London,  2009,  p.  1.  

[38]  K.W.  Plaxco  and  M.  Gross,  “Astrobiology:  A  Brief  Introduction”,  The  John  Hopkins  Uni-­‐versity  Press,  Baltimore,  2006,  p.  vii.  

[39]  Perhaps  the  most  systematic  study  of  the  Fermi  Paradox,  also  referenced  in  Part  I  of  this  paper,  is  to  be  found  in  S.  Webb,  “Where  Is  Everybody?  Fifty  Solutions  to  the  Fermi  Paradox  and  the  Problem  of  Extraterrestrial  Life”,  Copernicus  Books,  New  York,  2002.    

[40]  Cf.  Andrew  Snyder-­‐Beattie,  “Habitable  exoplanets  are  bad  news  for  humanity”  (http://theconversation.com/habitable-­‐exoplanets-­‐are-­‐bad-­‐news-­‐for-­‐humanity-­‐25838)  Ac-­‐cessed  June  2014,  and  George  Dvorsky,  “Does  a  galaxy  filled  with  habitable  planets  mean  humanity  is  doomed?”  (http://io9.com/5919110/does-­‐a-­‐galaxy-­‐filled-­‐with-­‐habitable-­‐planets-­‐mean-­‐humanity-­‐is-­‐doomed)  Accessed  June  2014.  I  do  not  agree  with  the  reasoning  presented  in  these  particular  ar-­‐ticles,  but  the  dilemma  can  be  summarized  in  this  way:  “What  we  are  learning  makes  the  universe  appear  to  be  more  biofriendly  every  day.”  J.  Tartar  and  C.  Impey,  “If  You  Want  to  Talk  to  ET,  You  Must  First  Find  ET”,  Frontiers  of  Astrobiology,  Cambridge  University  Press,  Cambridge  et  al.,  2012,  p.  287.  The  authors  go  on  to  note  that,  “Everything  depends  on”  the  

45

Page 46: (Xrisk 101): Existential Risk for Interstellar Advocates

final  four  terms  of  the  Drake  equation,  for  which  we  have  no  data  other  than  our  planet  and  ourselves,  and  this  data  we  possess  only  due  to  observational  selection  effects.  

[41]  All  life  other  than  earth-­‐originating  life  is,  properly  speaking,  exobiology,  but  exobiology  is  relative  to  a  particular  planet  or  other  celestial  body  on  which  life  has  emerged.  Any  extra-­‐terrestrial  life  that  might  be  found  would  be  an  instance  of  exobiology  for  human  beings,  but  human  beings  and  all  terrestrial  life  would,  in  turn,  be  instances  of  exobiology  for  life  that  has  independently  arisen  on  another  world.  

[42]  R.  Hanson,  “The  great  filter-­‐-­‐are  we  almost  past  it?”  Journal  preprint  available  at  (http://web.archive.org/web/20140502212207/http://hanson.gmu.edu/greatfilter.html).  Ac-­‐cessed  June  2014.

[43]  In  saying  that  we  are  the  Great  Filter,  I  mean  the  whole  history  of  humanity  from  the  emergence  of  cognitive  modernity  approximately  70,000  years  before  present  to  the  devel-­‐opment  of  contemporary  industrial-­‐technological  civilization.  The  low  level  of  genetic  diver-­‐sity  among  human  beings  today  may  be  the  result  of  a  population  bottleneck  in  the  prehis-­‐toric  past.  There  is  an  unresolved  debate  whether  this  bottleneck  occurred,  and  whether  it  was  a  short  bottleneck  precipitated  by  a  climatological  catastrophe  or  a  long  bottleneck  of  thousands  of  years’  duration.  In  either  case,  if  there  was  a  dramatic  population  bottleneck  this  could  be  identified  with  the  great  filter.  But  we  are  not  yet  in  the  clear;  civilization  con-­‐tinues  to  produce  anthropogenic  existential  threats,  so  it  seems  better  to  identify  the  great  filter  with  all  of  human  history  since  cognitive  modernity,  which  is,  in  any  case,  a  short  pe-­‐riod  of  time  in  cosmological  terms.    

[44]  A  distinction  can  be  made  among  existential  risks  between  those  that  cut  short  the  de-­‐velopment  of  life,  intelligence,  and  civilization  before  these  have  reached  maturity,  and  which  risks  conform  to  the  pattern  of  an  accident  of  cosmological  proportions,  and  those  that  extinguish  the  natural  life  cycles  of  a  species,  an  intelligence,  or  a  civilization—such  as  the  exhaustion  of  our  sun  in  the  far  future—that  can  be  predicted  with  a  high  degree  of  cer-­‐tainty.      

[45]  In  the  present  context,  I  will  only  refer  to  the  weak  formulation  of  the  anthropic  cosmo-­‐logical  principle,  and  will  not  make  reference  to  strong  formulations  of  anthropic  cosmo-­‐logical  principle.

[46]  Being  among  the  currently  surviving  species  on  Earth,  whilst  the  vast  majority  of  spe-­‐cies  that  have  evolved  have  gone  extinct,  means  that  we  are  subject  to  survivorship  bias  as  the  result  of  our  biological  success.  If  the  great  filter  was  the  population  bottleneck  men-­‐

46

Page 47: (Xrisk 101): Existential Risk for Interstellar Advocates

tioned  in  note  [43]  above  (or  even  technological  civilization  today),  and  we  are  not  only  bio-­‐logically  successful  but  are  also  the  rare  example  of  an  intelligent  species  that  has  survived  the  great  filter,  then  we  are  also  subject  to  the  survivorship  bias  inherent  in  having  survived  the  great  filter.  

[47]  C.  Sagan,  “Pale  Blue  Dot:  A  Vision  of  the  Human  Future  in  Space”,  Random  House,  New  York,  1997,  Chap.  21.

[48]  In  the  big  picture  and  the  long  term,  the  most  important  function  that  human  beings  may  serve  in  the  universe  is  to  be  a  dispersal  vector  for  earth-­‐originating  life  to  gain  a  foot-­‐hold  in  the  cosmos.  Cf.  J.  N.  Nielsen,  “Extraterrestrial  dispersal  Vectors”,  Centauri  Dreams  (http://www.centauri-­‐dreams.org/?p=30024).  Accessed  June  2014.  If  the  rest  of  the  universe  beyond  Earth  is  sterile,  then  the  expansion  of  earth-­‐originating  life  into  the  universe  will  be  cosmological  equivalent  of  the  Cambrian  explosion,  although  several  orders  of  magnitude  larger.  (Also  cf.  F.  Dyson,  “Noah’s  Ark  Eggs  and  Viviparous  Plants”,  in  Starship  Century,  Lucky  Bat  Books,  Nevada,  2013.,  cited  in  note  [17]  above—which  gives  a  surprisingly  bio-­‐centric  vision  of  the  future.)  If  the  rest  of  the  universe  is  not  sterile,  we  will  see  something  like  a  “Wallace  Line”  where  earth-­‐originating  life  and  life  originating  elsewhere  share  a  boundary  along  their  farthest  line  of  dispersal.

[49]  J.  N.  Nielsen,  “How  We  Get  There  Matters,”  Centauri  Dreams  (http://www.centauri-­‐dreams.org/?p=30695).  Accessed  June  2014.  

[50]  J.  N.  Nielsen,  “The  Large-­‐Scale  Structure  of  Spacefaring  Civilization”,  100  Year  Starship  2012  Symposium  Conference  Proceedings.  pp.  301-­‐304,  2013.

[51]  Exhibition  in  intuition  is  a  theme  found  throughout  Kant,  who  is  generally  recognized  as  a  proto-­‐constructivist.  For  example:  “…mathematics  must  first  exhibit  all  its  concepts  in  in-­‐tuition,  and  pure  mathematics  exhibit  them  in  pure  intuition,  i.e.  construct  them.”  (I.  Kant,  “Prolegomena  to  Any  Future  Metaphysics”,  translated  by  Peter  G.  Lucas,  Manchester  Uni-­‐versity  Press,  1953,  section  10,  p.  39)  Kant’s  most  systematic  exposition  is  to  be  found  in  his  Critique  of  Pure  Reason.  

[52]  I  cite  this  litany  of  genetics,  nanotechnology,  and  robotics  since  these  are  the  three  technologies  that  feature  in  Bill  Joy’s  seminal  article,  “Why  the  future  doesn’t  need  us”,  Wired,  April  2000  (http://archive.wired.com/wired/archive/8.04/joy.html).  Accessed  June  2014.  I  might  just  as  well  have  cited  AI  research  or  nuclear  technology.

47

Page 48: (Xrisk 101): Existential Risk for Interstellar Advocates

[53]  F.  Knight,  “Risk,  Uncertainty,  and  Profit”,  Augustus  M.  Kelley,  New  York,  1964.  Cf.  espe-­‐cially  Chapter  VIII,  “Structures  and  Methods  for  Meeting  Uncertainty.”  

[54]  Heath  Rezabek  has  remarked  that  diversity  should  be  added  to  the  list  of  knowledge,  redundancy,  and  autonomy;  I  am  assuming  that  diversity  will  follow  from  the  autonomy  of  multiple  independent  centers  of  civilization,  as  each  independent  center  will  be  subject  to  unique  selection  pressures  that  will  result  in  divergence,  thus  diversity.  

[55]  The  danger  of  homogenization  and  monoculture  can  be  expressed  biologically  in  terms  of  convergent  evolution:  similar  habitats  with  similar  selection  pressures  may  produce  simi-­‐lar  results,  and  in  so  far  as  we  may  seek  Earth  twins  as  centers  among  multiple  independent  relicts  of  civilization,  we  would  be  seeking  a  similar  habitat  with  similar  selection  pressures.  Earth-­‐originating  life,  intelligence,  and  civilization  may  all  be  subject  to  convergent  evolu-­‐tion,  thus,  from  the  perspective  of  existential  risk  mitigation,  it  would  behoove  us  to  tran-­‐scend  our  existential  comfort  zone  and  subject  ourselves  to  dissimilar  selection  pressures.  

[56]  N.  Bostrom,  “Existential  Risk  Prevention  as  Global  Priority”,  Global  Policy  Vol.  4,  Issue  1,  pp.  15-­‐31,  2013.

48

Page 49: (Xrisk 101): Existential Risk for Interstellar Advocates

Acknowledgements

The  authors  collectively  wish  to  thank  Paul  Gilster,  for  his  encouragement  and  support  of  this  work,  and  his  invitation  to  develop  these  concepts  further  in  regular  installments  on  his  Centauri  Dreams  blog.  

We  wish  to  thank  Andreas  Tziolas  and  Richard  Obousy  at  Icarus  Interstellar,  for  encourag-­‐ing  us  to  develop  these  themes  into  the  basis  of  Project  Astrolabe,  an  initiative  which  will  be  dedicated  to  the  study  of  civilization’s  future  prospects  on  Earth  and  beyond.    For  more  in-­‐formation,  please  contact  the  authors.

Heath  wishes  to  thank  Lucy  West,  Stephan  Martiniere,  Philippe  Steels,  and  the  Soleri  Ar-­‐chives  for  discussion  and  permission  to  illustrate  aspects  of  the  Vessel  proposal  with  their  art.  Heath  wishes  to  thank  Laura  Welcher  at  the  Long  Now  Foundation  for  Rosetta  Disk  artwork,  as  well  as  Lt.  Col.  Peter  Garretson  and  Dr.  Daniel  Sheehan  for  technical  advisory.

Heath  owes  a  particular  debt  of  gratitude  to  the  artists  and  architect  who  dedicated  time  and  expertise  in  co-­‐developing  several  custom  visualizations  of  Vessel  facilities:    Mark  Rademaker  (The  IXS  Dragonfly:  Vessel  Archive  Ship),  Joshua  Davis  (Regional  and  Lunar  Vessel  Facilities),  and  Agustina  Rodriguez  (Vessel  Beacon  Tower).

49