X RaydetectorsHowtheywork 2009 HG

download X RaydetectorsHowtheywork 2009 HG

of 50

Transcript of X RaydetectorsHowtheywork 2009 HG

  • 8/12/2019 X RaydetectorsHowtheywork 2009 HG

    1/50

    X-ray detectors

    How do they work ?How are they characterized ?

    Heinz GraafsmaPhoton Science Detector Group

    DESY-Hamburg; Germany

    [email protected]

  • 8/12/2019 X RaydetectorsHowtheywork 2009 HG

    2/50

    16/03/2009 HG-HERCULES-2009 2

    The Detector Challenge:

    1900 1960 1980 2000

    PETRA-3

    Second generation

    First generation

    X-raytubes

    ESRF (future)

    ESRF (2000)

    ESRF (1994)10

    20

    1018

    1016

    1014

    1012

    1010

    108

    1021

    1022

    1023

    1019

    1017

    1015

    1013

    1011

    109

    107

    106

    Synchrotron Sources

    brilliance

  • 8/12/2019 X RaydetectorsHowtheywork 2009 HG

    3/50

    16/03/2009 HG-HERCULES-2009 3

    The Detector Challenge:

  • 8/12/2019 X RaydetectorsHowtheywork 2009 HG

    4/50

    16/03/2009 HG-HERCULES-2009 4

    The Detector Challenge:

    Spectroscopy (determine energy of the X-rays): meV 1 keV resolution

    time resolved (100 psec) static

    Imaging (determine intensity distribution) Micro-meter millimeter resolution

    Tomographic

    Time resolved

    Scattering (determine intensity as function

    momentum transfer = angle) Small angel protein crystallography Diffuse Bragg

    Crystals - liquids

  • 8/12/2019 X RaydetectorsHowtheywork 2009 HG

    5/50

    16/03/2009 HG-HERCULES-2009 5

    What are the basic principles ?

    1. X-ray light is quantized (photons)

    2. In order to detect you have to transferenergy from the particle to the detector

    3. A photon is either fully absorbed or notat all (no track like for MIPs)

    4. The energy absorbed is transferredinto an electrical signal and then into anumber (digitized).

  • 8/12/2019 X RaydetectorsHowtheywork 2009 HG

    6/50

    16/03/2009 HG-HERCULES-2009 6

    Signal Generation Needs transfer of Energy

    Any form of elementary excitation can be used to detect theradiation signal:

    Ionization (gas, liquids, solids)

    Excitation of optical states (scintillators)

    Excitation of lattice vibrations (phonons)

    Breakup of Cooper pairs in superconductors

    Typical excitation energies:

    Ionization in semiconductors: 1 5 eVScintillation: appr. 20 eV

    Phonons: meV

    Breakup of Cooper pairs: meV

  • 8/12/2019 X RaydetectorsHowtheywork 2009 HG

    7/50

    16/03/2009 HG-HERCULES-2009 7

    What would you like to know about your X-rays?

    1. Intensity or flux (photons/sec)

    2. Energy (wavelength)

    3. Position (or mostly angles)

    4. Arrival time (time resolved

    experiments)

    5. Polarization

  • 8/12/2019 X RaydetectorsHowtheywork 2009 HG

    8/50

    16/03/2009 HG-HERCULES-2009 8

    3 modes of detection

    1. Current (=flux) mode operation

    2. Integration mode operation

    3. Photon counting mode operation

    4. Energy dispersive mode operation

  • 8/12/2019 X RaydetectorsHowtheywork 2009 HG

    9/50

    16/03/2009 HG-HERCULES-2009 9

    Current mode operation

    detector I

    X-ray

    Integrating mode operationX-ray

    detector C V(t)

  • 8/12/2019 X RaydetectorsHowtheywork 2009 HG

    10/50

    16/03/2009 HG-HERCULES-2009 10

    Photon counting mode

    V(t)detector

    X-ray

    C R

    Lower threshold

    Upper threshold

  • 8/12/2019 X RaydetectorsHowtheywork 2009 HG

    11/50

    16/03/2009 HG-HERCULES-2009 11

    Energy dispersive mode

    detector

    X-ray

    C V(t)R

    Height total charge = energy of the photon

  • 8/12/2019 X RaydetectorsHowtheywork 2009 HG

    12/50

    16/03/2009 HG-HERCULES-2009 12

    Some general detector parameters

    QE = quantum efficiency = fraction of incoming photons

    detected (

  • 8/12/2019 X RaydetectorsHowtheywork 2009 HG

    13/50

    16/03/2009 HG-HERCULES-2009 13

    2-Dimensional X-ray Detectors

    Workhorses at synchrotron sources

    make the best use of the availablephotons.

    Integrating versus counting Direct versus indirect detections

  • 8/12/2019 X RaydetectorsHowtheywork 2009 HG

    14/50

    16/03/2009 HG-HERCULES-2009 14

    Counting versus Integrating

    Conversion Signal processing Signal storage

    X-ray

    e-

    e-e-

    electrons ADU

    Integrate

    e-e-

    e-e-

    electrons

  • 8/12/2019 X RaydetectorsHowtheywork 2009 HG

    15/50

    16/03/2009 HG-HERCULES-2009 15

    Counting versus Integrating

    threshold

    noise

    photon

    s

    ignal

    time time

    signal

    Total integral

    Low noise Fast

  • 8/12/2019 X RaydetectorsHowtheywork 2009 HG

    16/50

    16/03/2009 HG-HERCULES-2009 16

    CCD = Charge Coupled Devices

    Very thin silicon layer that transfers photons intoelectrons not good for X-rays use

    intermediate scintillator/phosphor. Storage wells that store generated charge;

    including thermally induced charge = dark

    current fast but noisy Readout of signal through one readout node;

    transfer charge from one pixel to the next

    towards readout node

    long readout times Small pixels: 10 30 micrometer.

    Commercial product for large market perfect

    Situation now

  • 8/12/2019 X RaydetectorsHowtheywork 2009 HG

    17/50

    16/03/2009 HG-HERCULES-2009 17

    Situation now

    Large area CCD systems, mainly for PX

    ADSC, California, USA

    Indirect detection

    ==> losses & spreading

    Integrating detector

    ==> noise & information loss

    Situation now

  • 8/12/2019 X RaydetectorsHowtheywork 2009 HG

    18/50

    16/03/2009 HG-HERCULES-2009 18

    Situation now

    High resolution imaging with CCDs

    Scintillator

    Beam

    stop

    Reflecting

    objective

    X-raybeam

    Eyepiecex2Tube lens

    ESRF Frelon

    camera

    Intermediate

    image

    Visib

    lelig

    ht

    Visiblelight

    First mirror

    Simple concave surface

    Second mirrorSmall convex surface

    Scintillator is very inefficient Full tomo dataset in < 1 sec.

  • 8/12/2019 X RaydetectorsHowtheywork 2009 HG

    19/50

    16/03/2009 HG-HERCULES-2009 19

    Signal Generation Needs transfer of Energy

    Any form of elementary excitation can be used to detect theradiation signal:

    Ionization (gas, liquids, solids)

    Excitation of optical states (scintillators)

    Excitation of lattice vibrations (phonons)

    Breakup of Cooper pairs in superconductors

    Typical excitation energies:

    Ionization in semiconductors: 1 5 eVScintillation: appr. 20 eV

    Phonons: meV

    Breakup of Cooper pairs: meV

    A) O i ( l l ) i till t

  • 8/12/2019 X RaydetectorsHowtheywork 2009 HG

    20/50

    16/03/2009 HG-HERCULES-2009 20

    A) Organic (molecular) scintillators

    Naphtalene:

    -electron system

    Advantages: Fast No need for Xtalsliquids, glasses,

    Disadvantages: inefficient Non-linear (quenching)

    not good for s

    The electronic levels:

  • 8/12/2019 X RaydetectorsHowtheywork 2009 HG

    21/50

    16/03/2009 HG-HERCULES-2009 21

    The electronic levels:

    Phosphorescence

    (slow)

    1) Prompt fluorescence

    2) Phosphorescence

    3) Delayed fluorescence

    Complicated time structure

  • 8/12/2019 X RaydetectorsHowtheywork 2009 HG

    22/50

    16/03/2009 HG-HERCULES-2009 22

    b) Inorganic crystalline scintillators (NaI:Tl)Origin does not stem from molecular energy levels

    but from band-structure levels.

    Advantages:

    Good efficiency

    Good linearity Radiation tolerance

    Disadvantages: Relatively slow

    Crystal structure needed (small and expensive)

  • 8/12/2019 X RaydetectorsHowtheywork 2009 HG

    23/50

    16/03/2009 HG-HERCULES-2009 23

  • 8/12/2019 X RaydetectorsHowtheywork 2009 HG

    24/50

    16/03/2009 HG-HERCULES-2009 24

    Direct detection pnCCD

    full depletion (50 m to 500 m) back side illumination

    high readout speed

    pixel sizes from 36 m to 650 m

    charge handling: more than 106 e-/pixel

    high quantum efficiency

    How many charges can be stored in

  • 8/12/2019 X RaydetectorsHowtheywork 2009 HG

    25/50

    16/03/2009 HG-HERCULES-2009 25

    How many charges can be stored in

    one pixel ?

    What determines the charge handling capacity in a pixel ?

    pixel volume:20x40x12 m3 1x104m3

    Doping: 102 P per m3

    CHC = 1 x 106 per pixel

    can be increased bydoping

  • 8/12/2019 X RaydetectorsHowtheywork 2009 HG

    26/50

    The new generation

    2D detectors:

    Hybrid Pixel Array Detectors

    What are they?

    andwhy are they so good?

    H b id Pi l A D t t (HPAD)

  • 8/12/2019 X RaydetectorsHowtheywork 2009 HG

    27/50

    Hybrid Pixel Array Detector (HPAD)

    Diode Detection Layer

    Fully depleted, high resistivity

    Direct x-ray conversion

    Silicon, GaAs, CdTe, etc.

    Connecting Bumps Solder or indium

    1 per pixel

    CMOS Layer

    Signal processing

    Signal storage & output

    Gives enormous flexibility!

    X-rays

    Hybrid Pixel Detectors

  • 8/12/2019 X RaydetectorsHowtheywork 2009 HG

    28/50

    16/03/2009 HG-HERCULES-2009 28

    Hybrid Pixel Detectors

    Particle / X-ray Signal Charge Electr. Amplifier Readout Digital Data

    Pixelated

    ParticleSensor

    Amplifier &Readout Chip

    CMOS

    Indium SolderBumpbonds

    Data Outputs

    Power

    Clock Inputs

    Connection

    wire pads

    Power

    Inputs

    Outputs

    Particle / X-ray

    Qsignal

    Si l G ti N d t f f E

  • 8/12/2019 X RaydetectorsHowtheywork 2009 HG

    29/50

    16/03/2009 HG-HERCULES-2009 29

    Signal Generation Needs transfer of Energy

    Any form of elementary excitation can be used to detect theradiation signal:

    Ionization (gas, liquids, solids)

    Excitation of optical states (scintillators)

    Excitation of lattice vibrations (phonons)

    Breakup of Cooper pairs in superconductors

    Typical excitation energies:

    Ionization in semiconductors: 1 5 eVScintillation: appr. 20 eV

    Phonons: meV

    Breakup of Cooper pairs: meV

  • 8/12/2019 X RaydetectorsHowtheywork 2009 HG

    30/50

    16/03/2009 HG-HERCULES-2009 30

    Classification of Conductivity

    Si, Ge Diamond

    Conduction band

    Conduction band

    Conduction band

    Valence band Valence band Valence band

    Conductor Semiconductor Insulator

    EE < 2 3 eV

    E > 5 eV

    Band structure (3)

  • 8/12/2019 X RaydetectorsHowtheywork 2009 HG

    31/50

    16/03/2009 HG-HERCULES-2009 31

    Ge Si GaAs

    Eg = 0.7 eV Eg = 1.1 eV Eg = 1.4 eV

    Indirect band gap Direct band gap

    Band structure (3)

    Ohmic Particle Detector

  • 8/12/2019 X RaydetectorsHowtheywork 2009 HG

    32/50

    16/03/2009 HG-HERCULES-2009 32

    Vbias >0

    d

    area A

    Ionizing particle

    Q

    E-field :

    E = Vbias / d

    Carrier velocity :v = E = ( Vbias / d )

    Signal collection time :

    = d / v = d2 / ( Vbias )

    Resistance :

    R = (d / A)

    leakage current :

    ileak = Vbias / R = (VbiasA) / ( d )

    leakage charge :

    Qleak = ileak = d A /

    Qleak = Volume /

    Ohmic Particle Detector

    Ohmic material : Resistivity e.g. intrinsic semiconductor

    Example Sili 20 k

  • 8/12/2019 X RaydetectorsHowtheywork 2009 HG

    33/50

    16/03/2009 HG-HERCULES-2009 33

    Example : Silicon = 20 kcm

    d = 300mm , Signal charge = 4fClb = 24000 e

    Pad detector : A = 1 cm2

    Qleak = 10-9 Clb ---> ~ 80'000 e ---> S/N ~ 0.3

    Pixel detector : 100m x 100m ---> A = 10-4 cm2

    Qleak = 10-13 Clb ---> ~ 800 e ---> S/N ~ 30 !!!!

    The operation of semiconductor materials in a ohmic regime works fine for:

    Silicon ( Ebandgap = 1.16eV) at low temperature

    High bandgap semiconductors ( GaAs, Diamond) at room temperature

    However, for Silicon at room temperature need another trick !

  • 8/12/2019 X RaydetectorsHowtheywork 2009 HG

    34/50

    16/03/2009 HG-HERCULES-2009 34

    p-n-junction and space charge region

    p-n-junction before

    equalization of Fermi levels

    fixed charges :

    mobile charges:

    p-type n-type

    acceptor

    density NA

    donor

    density ND

    negative spacecharge region

    positive spacecharge region

    xA xD

    DA xNxN DA =

    charge neutrality

    p-n-junction afterequalization of Fermi levels

    region free of

    mobile carriers ! no leakage current !

  • 8/12/2019 X RaydetectorsHowtheywork 2009 HG

    35/50

    16/03/2009 HG-HERCULES-2009 35

    Vbias ~ +100V

    Segmented Silicon Diode Sensors for Particle Detection

    photon

    x-ray

    charged particle

    K , p , e

    PE electron+++

    - --

    Ex-ray

    Shared Charge collection on segmented

    electrodes due to:

    Diffusion during drift time

    Lorentzangle due to presence of B-field

    Tilted tracks

    Individual readout of charge signal on

    electrodes allows position interpolation

    that is better than pitch of segmentation.

    n-

    type

    p++

    n++

    Silicon microstrip detectors in HEP:

    Strip pitch = 50m

    Position resolution ~1.5 m achieved

    Hybrid Pixel Array Detector (HPAD)

  • 8/12/2019 X RaydetectorsHowtheywork 2009 HG

    36/50

    Hybrid Pixel Array Detector (HPAD)

    Diode Detection Layer

    Fully depleted, high resistivity

    Direct x-ray conversion

    Silicon, GaAs, CdTe, etc.

    Connecting Bumps Solder or indium

    1 per pixel

    CMOS Layer

    Signal processing

    Signal storage & output

    Gives enormous flexibility!

    X-rays

    e new genera on:M di i t l

  • 8/12/2019 X RaydetectorsHowtheywork 2009 HG

    37/50

    16/03/2009 HG-HERCULES-2009 37

    gMedipix et al.

    Au

    Sensor Substrate

    InGaAs

    UBM

    Insulator

    CMOS ROIC

    Au

    UBM

    Al

    bumpAu

    Sensor Substrate

    InGaAs

    UBM

    Insulator

    Au

    UBM

    Al

    Au

    Sensor Substrate

    Al

    UBM

    Insulator

    UBM

    Al

    XFS Module Specification: PSI/SLS

  • 8/12/2019 X RaydetectorsHowtheywork 2009 HG

    38/50

    16/03/2009 HG-HERCULES-2009 38

    XFS Module Specification: PSI/SLS

    Operate 2x4 (8) Chips per Module. ~78 x 39 mm2

    Hybridization

  • 8/12/2019 X RaydetectorsHowtheywork 2009 HG

    39/50

    16/03/2009 HG-HERCULES-2009 39

    Hybridization

    Cut the sensor as close as possible

    Use thinned readout chips

    Stay within the exact n-fold pixel pitch

  • 8/12/2019 X RaydetectorsHowtheywork 2009 HG

    40/50

    16/03/2009 HG-HERCULES-2009 40

    PILATUS @ SLS

    Courtesy: Ch. Brnnimann, PSI SLS Detector Group

    Sensor

    Read-out chips

    Wire bonds

    Base plate

    Al support

    Module Control Board MCB

    Cable

    Wh HPAD l ?

  • 8/12/2019 X RaydetectorsHowtheywork 2009 HG

    41/50

    16/03/2009 HG-HERCULES-2009 41

    Why are HPADs so popular ?

    Custom design of functionality: you design

    your readout chip specific for yourapplication (unlike CCDs).

    Can do photon counting no noise.

    Direct detection good spatial resolution

    Massive parallel detection high flux

    But: development takes long and is

    expensive.

    Large Hadron Collider LHC at CERN

  • 8/12/2019 X RaydetectorsHowtheywork 2009 HG

    42/50

    16/03/2009 HG-HERCULES-2009 42Proton Proton collisions at 14 TeV Higgs & SUSY search

    LHC2008

    CERN Site (Meyrin)CERN Site (Meyrin)

    SPS

    CMS - experiment

    ATLAS

    LEP Tunnel

    1985

  • 8/12/2019 X RaydetectorsHowtheywork 2009 HG

    43/50

    After 13 years of R&D and construction we install the Pixel Detector into CMS

  • 8/12/2019 X RaydetectorsHowtheywork 2009 HG

    44/50

    16/03/2009 HG-HERCULES-2009 44

    Compact Muon Solenoid

  • 8/12/2019 X RaydetectorsHowtheywork 2009 HG

    45/50

    16/03/2009 HG-HERCULES-2009 45

    p

    S t f 2D t

  • 8/12/2019 X RaydetectorsHowtheywork 2009 HG

    46/50

    16/03/2009 HG-HERCULES-2009 46

    Some more parameters for 2D systems

    Point Spread Function (PSF) (Line spreadfunction (LSF) or spatial resolution):A very small beam (smaller than the pixel size)

    will produce a spot with a certain size and

    shape. Very important are the FWHM; and thetails of the PSF.

    This is experimentally difficult use sharp

    edge and LSFNote: pixel size is not spatial resolution! (but

    should be close to it in an optimal design).

    Some more parameters for 2D systems

  • 8/12/2019 X RaydetectorsHowtheywork 2009 HG

    47/50

    16/03/2009 HG-HERCULES-2009 47

    Some more parameters for 2D systems

    Modulation Transfer Function (MTF):

    How is a spatially modulated signal (line pattern)

    recorded (transferred) by the detector?

    This depends on the frequency.

    Is directly related to the LSF and the DQE

    MinMax

    MinMaxcontrastModulation

    +

  • 8/12/2019 X RaydetectorsHowtheywork 2009 HG

    48/50

    16/03/2009 HG-HERCULES-2009 48

    100 %

    0 %

  • 8/12/2019 X RaydetectorsHowtheywork 2009 HG

    49/50

    Summary Detectors

  • 8/12/2019 X RaydetectorsHowtheywork 2009 HG

    50/50

    16/03/2009 HG-HERCULES-2009 50

    Summary Detectors

    Signal-to-noise ratio most fundamentalparameter in measurements.

    A detector is always a compromise (ex.speed vs. noise). Application determines

    what you compromise. Never take a detector as a perfect black

    box, be aware of limitations.

    Understanding your detector is part ofunderstanding your science.