X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology...

53
X-ray Photoelectron Spectroscopy

Transcript of X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology...

Page 1: X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology Work? Auger Electron Cylindrical Mirror Analyzer (CMA)

X-ray Photoelectron Spectroscopy

Page 2: X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology Work? Auger Electron Cylindrical Mirror Analyzer (CMA)

Outline XPS Background XPS Instrument How Does XPS Technology

Work? Auger Electron Cylindrical Mirror Analyzer

(CMA) Equation KE versus BE Spectrum Background Identification of XPS Peaks X-rays vs. e- Beam XPS Technology

Page 3: X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology Work? Auger Electron Cylindrical Mirror Analyzer (CMA)

XPS Background XPS technique is based on Einstein’s idea about the

photoelectric effect, developed around 1905 The concept of photons was used to describe the ejection of

electrons from a surface when photons were impinged upon it During the mid 1960’s Dr. Siegbahn and his research group

developed the XPS technique. In 1981, Dr. Kai M. Siegbahn was awarded the Nobel Prize in

Physics  "for his contribution to the development of high-resolution electron spectroscopy“.

Kai M. Siegbahn

Page 4: X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology Work? Auger Electron Cylindrical Mirror Analyzer (CMA)

X-Rays Irradiate the sample surface, hitting the core electrons (e-) of the

atoms. The X-Rays penetrate the sample to a depth on the order of a

micrometer. Useful e- signal is obtained only from a depth of around 10 to 100 Å on

the surface. The X-Ray source produces photons with certain energies:

Mg K photon with an energy of 1253.6 eV Al K photon with an energy of 1486.6 eV

Normally, the sample will be radiated with photons of a single energy (Mg K or Al K). This is known as a monoenergetic X-Ray beam.

Page 5: X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology Work? Auger Electron Cylindrical Mirror Analyzer (CMA)

XPS

Page 6: X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology Work? Auger Electron Cylindrical Mirror Analyzer (CMA)
Page 7: X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology Work? Auger Electron Cylindrical Mirror Analyzer (CMA)
Page 8: X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology Work? Auger Electron Cylindrical Mirror Analyzer (CMA)
Page 9: X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology Work? Auger Electron Cylindrical Mirror Analyzer (CMA)

Why the Core Electrons? An electron near the Fermi level is far from the nucleus, moving in

different directions all over the place, and will not carry information about any single atom.

Fermi level is the highest energy level occupied by an electron in a neutral solid at absolute zero temperature.

Electron binding energy (BE) is calculated with respect to the Fermi level.

The core electrons are local close to the nucleus and have binding energies characteristic of their particular element.

The core electrons have a higher probability of matching the energies of Al K and Mg K.

Core e-

Valence e-

Atom

Page 10: X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology Work? Auger Electron Cylindrical Mirror Analyzer (CMA)

Binding Energy (BE)

These electrons are attracted to the proton with

certain binding energy x

This is the point with 0 energy of attraction between the electron

and the nucleus. At this point the electron is free from the atom.

The Binding Energy (BE) is characteristic of the core electrons for each element. The BE is determined by the attraction of the electrons to the nucleus. If an electron with energy x is pulled away from the nucleus, the attraction between the electron and the nucleus decreases and the BE decreases. Eventually, there will be a point when the electron will be free of the nucleus.

0

x

p+

B.E.

Page 11: X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology Work? Auger Electron Cylindrical Mirror Analyzer (CMA)

Energy Levels

Vacuum Level

Fermi Level

Lowest state of energy

BE

Ø, which is the work function At absolute zero Kelvin the electrons fill from the lowest energy states up. When the electrons occupy up to this level the neutral solid is in its “ground state.”

Page 12: X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology Work? Auger Electron Cylindrical Mirror Analyzer (CMA)
Page 13: X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology Work? Auger Electron Cylindrical Mirror Analyzer (CMA)
Page 14: X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology Work? Auger Electron Cylindrical Mirror Analyzer (CMA)
Page 15: X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology Work? Auger Electron Cylindrical Mirror Analyzer (CMA)
Page 16: X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology Work? Auger Electron Cylindrical Mirror Analyzer (CMA)
Page 17: X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology Work? Auger Electron Cylindrical Mirror Analyzer (CMA)
Page 18: X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology Work? Auger Electron Cylindrical Mirror Analyzer (CMA)
Page 19: X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology Work? Auger Electron Cylindrical Mirror Analyzer (CMA)
Page 20: X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology Work? Auger Electron Cylindrical Mirror Analyzer (CMA)
Page 21: X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology Work? Auger Electron Cylindrical Mirror Analyzer (CMA)
Page 22: X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology Work? Auger Electron Cylindrical Mirror Analyzer (CMA)
Page 23: X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology Work? Auger Electron Cylindrical Mirror Analyzer (CMA)
Page 24: X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology Work? Auger Electron Cylindrical Mirror Analyzer (CMA)
Page 25: X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology Work? Auger Electron Cylindrical Mirror Analyzer (CMA)
Page 26: X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology Work? Auger Electron Cylindrical Mirror Analyzer (CMA)

XPS Spectrum The XPS peaks are sharp.

In a XPS graph it is possible to see Auger electron peaks.

The Auger peaks are usually wider peaks in a XPS spectrum.

Aluminum foil is used as an example on the next slide.

Page 27: X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology Work? Auger Electron Cylindrical Mirror Analyzer (CMA)

XPS Spectrum

O 1s

O becauseof Mg source

CAl

Al

O 2s

O Auger

Sample and graphic provided by William Durrer, Ph.D.Department of Physics at the Univertsity of Texas at El Paso

Page 28: X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology Work? Auger Electron Cylindrical Mirror Analyzer (CMA)

Auger Spectrum

Characteristic of Auger graphsThe graph goes up as KE increases.

Sample and graphic provided by William Durrer, Ph.D.Department of Physics at the Univertsity of Texas at El Paso

Page 29: X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology Work? Auger Electron Cylindrical Mirror Analyzer (CMA)
Page 30: X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology Work? Auger Electron Cylindrical Mirror Analyzer (CMA)
Page 31: X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology Work? Auger Electron Cylindrical Mirror Analyzer (CMA)
Page 32: X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology Work? Auger Electron Cylindrical Mirror Analyzer (CMA)
Page 33: X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology Work? Auger Electron Cylindrical Mirror Analyzer (CMA)

Instrumentation for X-ray Photoelectron Spectroscopy

Page 34: X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology Work? Auger Electron Cylindrical Mirror Analyzer (CMA)

XPS Instrument

XPS is also known as ESCA (Electron Spectroscopy for Chemical Analysis).

The technique is widely used because it is very simple to use and the data is easily analyzed.

XPS works by irradiating atoms of a surface of any solid material with X-Ray photons, causing the ejection of electrons.

University of Texas at El Paso, Physics DepartmentFront view of the Phi 560 XPS/AES/SIMS UHV System

Page 35: X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology Work? Auger Electron Cylindrical Mirror Analyzer (CMA)

XPS Instrument

X-Ray Source

Ion Source

SIMS Analyzer

Sample introductionChamber

Page 36: X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology Work? Auger Electron Cylindrical Mirror Analyzer (CMA)
Page 37: X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology Work? Auger Electron Cylindrical Mirror Analyzer (CMA)

How Does XPS Technology Work?

A monoenergetic x-ray beam emits photoelectrons from the from the surface of the sample.

The X-Rays either of two energies:

Al Ka (1486.6eV) Mg Ka (1253.6 eV)

The x-ray photons The penetration about a micrometer of the sample

The XPS spectrum contains information only about the top 10 - 100 Ǻ of the sample.

Ultrahigh vacuum environment to eliminate excessive surface contamination.

Cylindrical Mirror Analyzer (CMA) measures the KE of emitted e-s.

The spectrum plotted by the computer from the analyzer signal.

The binding energies can be determined from the peak positions and the elements present in the sample identified.

Page 38: X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology Work? Auger Electron Cylindrical Mirror Analyzer (CMA)

Why Does XPS Need UHV? Contamination of surface

XPS is a surface sensitive technique. Contaminates will produce an XPS signal and lead to incorrect

analysis of the surface of composition.

The pressure of the vacuum system is < 10-9 Torr

Removing contamination To remove the contamination the sample surface is bombarded with argon

ions (Ar+ = 3KeV). heat and oxygen can be used to remove hydrocarbons

The XPS technique could cause damage to the surface, but it is negligible.

Page 39: X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology Work? Auger Electron Cylindrical Mirror Analyzer (CMA)

X-Rays on the Surface

The X-Rays will penetrate to the core e- of the atoms in the sample.

Some e-s are going to be released without any problem giving the Kinetic Energies (KE) characteristic of their elements.

Other e-s will come from inner layers and collide with other e-s of upper layers

These e- will be lower in lower energy. They will contribute to the noise signal of the spectrum.

Page 40: X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology Work? Auger Electron Cylindrical Mirror Analyzer (CMA)

X-Rays and the ElectronsX-RayElectron without collision

Electron with collision

The noise signal comes from the electrons that collide with other electrons of different layers. The collisions cause a decrease in energy of the electron and it no longer will contribute to the characteristic energy of the element.

Page 41: X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology Work? Auger Electron Cylindrical Mirror Analyzer (CMA)

What electrons can the Cylindrical Mirror Analyzer Detect?

The CMA not only can detect electrons from the irradiation of X-Rays, it can also detect electrons from irradiation by the e- gun.

The electron gun it is located inside the CMA while the X-Ray source is located on top of the instrument.

The only electrons normally used in a spectrum from irradiation by the electron gun are known as Auger electrons. Auger electrons are also produced by X-ray irradiation.

Page 42: X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology Work? Auger Electron Cylindrical Mirror Analyzer (CMA)
Page 43: X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology Work? Auger Electron Cylindrical Mirror Analyzer (CMA)

Cylindrical Mirror Analyzer (CMA)

The electrons ejected will pass through a device called a CMA.

The CMA has two concentric metal cylinders at different voltages.

One of the metal cylinders will have a positive voltage and the other will have a 0 voltage. This will create an electric field between the two cylinders.

The voltages on the CMA for XPS and Auger e-s are different.

Page 44: X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology Work? Auger Electron Cylindrical Mirror Analyzer (CMA)

Cylindrical Mirror Analyzer (CMA)

When the e-s pass through the metal cylinders, they will collide with one of the cylinders or they will just pass through.

If the e-’s velocity is too high it will collide with the outer cylinder

If is going too slow then will collide with the inner cylinder. Only the e- with the right velocity will go through the cylinders

to reach the detector.

With a change in cylinder voltage the acceptable kinetic energy will change and then you can count how many e-s have that KE to reach the detector.

Page 45: X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology Work? Auger Electron Cylindrical Mirror Analyzer (CMA)

Applications of XPS

Page 46: X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology Work? Auger Electron Cylindrical Mirror Analyzer (CMA)
Page 47: X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology Work? Auger Electron Cylindrical Mirror Analyzer (CMA)
Page 48: X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology Work? Auger Electron Cylindrical Mirror Analyzer (CMA)
Page 49: X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology Work? Auger Electron Cylindrical Mirror Analyzer (CMA)
Page 50: X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology Work? Auger Electron Cylindrical Mirror Analyzer (CMA)
Page 51: X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology Work? Auger Electron Cylindrical Mirror Analyzer (CMA)

XPS on AFM tip-induced SiOx pump

Page 52: X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology Work? Auger Electron Cylindrical Mirror Analyzer (CMA)

4-nm ultrathin SiO3.4 protrusions

%100][)Si(01234

nn

IIIII

IP

)Si()Si(2)Si(3)Si(4Si

O 1234 PPPP

Page 53: X-ray Photoelectron Spectroscopy. Outline XPS Background XPS Instrument How Does XPS Technology Work? Auger Electron Cylindrical Mirror Analyzer (CMA)

XPS on three-layer SiOx pump