X-Ray Photoelectron Investigation of Phosphotungstic Acid as a Proton-Conducting Medium in Solid...

19
X-Ray Photoelectron Investigation of Phosphotungstic Acid as a Proton- Conducting Medium in Solid Polymer Electrolytes Clovis A. Linkous Stephen L. Rhoden Florida Solar Energy Center University of Central Florida Cocoa, Florida, USA E-mail: [email protected] Kirk Scammon Advanced Materials Processing and Analysis Center

Transcript of X-Ray Photoelectron Investigation of Phosphotungstic Acid as a Proton-Conducting Medium in Solid...

Page 1: X-Ray Photoelectron Investigation of Phosphotungstic Acid as a Proton-Conducting Medium in Solid Polymer Electrolytes Clovis A. Linkous Stephen L. Rhoden.

X-Ray Photoelectron Investigation of Phosphotungstic Acid as a Proton-

Conducting Medium in Solid Polymer Electrolytes

 

Clovis A. LinkousStephen L. Rhoden

Florida Solar Energy Center University of Central Florida

Cocoa, Florida, USAE-mail: [email protected]

Kirk ScammonAdvanced Materials Processing

and Analysis Center

Page 2: X-Ray Photoelectron Investigation of Phosphotungstic Acid as a Proton-Conducting Medium in Solid Polymer Electrolytes Clovis A. Linkous Stephen L. Rhoden.

Tungsten trioxide, WO3Tungsten trioxide, WO3

• Melting point: 1473 K

• Insoluble in mineral acids

• Soluble in alkali

WO3 + 2NaOH Na2WO4 + H2O

• Formation of phosphotungstic acid, PTA:

H3PO4 + 12WO3 H3PW12O40-xH2O

Page 3: X-Ray Photoelectron Investigation of Phosphotungstic Acid as a Proton-Conducting Medium in Solid Polymer Electrolytes Clovis A. Linkous Stephen L. Rhoden.

OutlineOutline

• PEM fuel cell function

• Conductivity in polymer electrolytes

• Effect of PTA on sulfonic acid polymer membrane conductivity

• XPS observation of W chemical shifts

• Relating chemical shift data to hydration environment

• Thermogravimetry

• Conclusion

• Future work

Page 4: X-Ray Photoelectron Investigation of Phosphotungstic Acid as a Proton-Conducting Medium in Solid Polymer Electrolytes Clovis A. Linkous Stephen L. Rhoden.

     

Polymer ElectrolyteMembrane

H+

H+

H+

H+

Membrane Electrode Assembly (MEA)/ Catalyst Coated Membrane (CCM)

e- e- e- e- e- e- e-

Gas Diffusion Layer

ANODE

H2 2H+ + 2e-

Catalyst Layer

Polymer Electrolyte Membrane Fuel Cell

CATHODE

O2 + 4H+ + 4e- 2H2O

Flow Field

Page 5: X-Ray Photoelectron Investigation of Phosphotungstic Acid as a Proton-Conducting Medium in Solid Polymer Electrolytes Clovis A. Linkous Stephen L. Rhoden.

Typical Current-Voltage curve for a PEM fuel cell

Typical Current-Voltage curve for a PEM fuel cell

Current density (A/cm2)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Cel

l vol

tage

(V

)

0.5

0.6

0.7

0.8

0.9

1.0

Kineticcontrol

Ohmiccontrol

Masstransportcontrol

li

i

F

RTiRi

F

RTEV 1lnln0

Page 6: X-Ray Photoelectron Investigation of Phosphotungstic Acid as a Proton-Conducting Medium in Solid Polymer Electrolytes Clovis A. Linkous Stephen L. Rhoden.

Membrane Electrode Assembly-the heart of a PEM fuel cell

Membrane Electrode Assembly-the heart of a PEM fuel cell

sprayed catalyst ink layer

Polymer membranes with catalyst ink

Mem

bra

ne

Mem

bra

ne

Mem

bra

ne

CatalyzedMembrane

MembraneElectrode AssemblyMembrane

+ 2 GDLsSpray

Catalyst

MEA inCell Hardware

+ Flow Fields& Hardware Set

Page 7: X-Ray Photoelectron Investigation of Phosphotungstic Acid as a Proton-Conducting Medium in Solid Polymer Electrolytes Clovis A. Linkous Stephen L. Rhoden.

Base Polymer of interest: PEEK and Base Polymer of interest: PEEK and PEKKPEKK

C

O

O( )x ( )y[ ]

poly(aryletherketone)

Page 8: X-Ray Photoelectron Investigation of Phosphotungstic Acid as a Proton-Conducting Medium in Solid Polymer Electrolytes Clovis A. Linkous Stephen L. Rhoden.

Previous work on NafionPrevious work on Nafion 112 and PTA 112 and PTA compositecomposite

Comparing Four Electrode Conductivity of NTPA to Nafion®

120 oC, 500 sccm H2, 230 kPaComparing Four Electrode Conductivity of NTPA to Nafion®

120 oC, 500 sccm H2, 230 kPa

1

10

100

1000

0 10 20 30 40 50 60 70 80 90 100 110

Relative Humidity (%RH)

Co

nd

uc

tivi

ty (

mS

/cm

)

Baseline NTPA Wet up at 70% RH 3-16-04

Nafion® 112 Wet up at 70% RH 1-8-04

1

10

100

1000

0 10 20 30 40 50 60 70 80 90 100 110

Relative Humidity (%RH)

Co

nd

uc

tivi

ty (

mS

/cm

)

Baseline NTPA Wet up at 70% RH 3-16-04

Nafion® 112 Wet up at 70% RH 1-8-04

Page 9: X-Ray Photoelectron Investigation of Phosphotungstic Acid as a Proton-Conducting Medium in Solid Polymer Electrolytes Clovis A. Linkous Stephen L. Rhoden.

Solid Acid Additives for Membrane Modification

10 Å

Keggin structure

Phosphotungstic acid (PTA)

12WO3*H3PO4*24H2O

Page 10: X-Ray Photoelectron Investigation of Phosphotungstic Acid as a Proton-Conducting Medium in Solid Polymer Electrolytes Clovis A. Linkous Stephen L. Rhoden.

Conductivity vs RH for SPEEK/PTA composite membrane

Conductivity vs RH for SPEEK/PTA composite membrane

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

0 20 40 60 80 100 120

RH (%)

Co

nd

uct

ivit

y (S

/cm

)

Test I

Test II

Page 11: X-Ray Photoelectron Investigation of Phosphotungstic Acid as a Proton-Conducting Medium in Solid Polymer Electrolytes Clovis A. Linkous Stephen L. Rhoden.

Effect of Cs+ treatment on PTA/SPEEK composites

Effect of Cs+ treatment on PTA/SPEEK composites

SPEEK-PTA Composites at 80C

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

0 20 40 60 80 100 120RH (%)

Cond

uct

ivity

(S/c

m)

SPEEK+Cs-PTA

SPEEK+PTA

SPEEK

Page 12: X-Ray Photoelectron Investigation of Phosphotungstic Acid as a Proton-Conducting Medium in Solid Polymer Electrolytes Clovis A. Linkous Stephen L. Rhoden.

Representative W4f spectraRepresentative W4f spectra

0

5000

10000

15000

20000

25000

30000

35000

40000

30313233343536373839404142434445

Binding Energy eV

Na2WO4-2H20

Recrystallized PTA

WO3 Fisher

Page 13: X-Ray Photoelectron Investigation of Phosphotungstic Acid as a Proton-Conducting Medium in Solid Polymer Electrolytes Clovis A. Linkous Stephen L. Rhoden.

Summary of W4f7/2 dataSummary of W4f7/2 dataSample Binding Energy (eV)

WO3 35.1PTA + Cs2CO3 35.4PTA/Cs+/H2SO4 35.6SPEEK/PTA 35.7PTA + CsCl 35.8Na3PTA 35.9PTA-6H2O 36.0PTA-EtOH/DMF 36.2PTA (anhydrous) 36.2PTA – 24H2O (recrystallized) 37.8, 36.0Na2WO4-2H2O 36.7Cs2WO4 (anhydrous) 37.3, 35.3PTA--24H2O (commercial A) 37.5PTA--24H2O (commercial B) 37.6 Cs2WO4-2H2O 37.7

Page 14: X-Ray Photoelectron Investigation of Phosphotungstic Acid as a Proton-Conducting Medium in Solid Polymer Electrolytes Clovis A. Linkous Stephen L. Rhoden.

Weight loss thermogram for PTA-24H2O

Weight loss thermogram for PTA-24H2O

Page 15: X-Ray Photoelectron Investigation of Phosphotungstic Acid as a Proton-Conducting Medium in Solid Polymer Electrolytes Clovis A. Linkous Stephen L. Rhoden.

Weight loss thermogram for PTA-6H2O

Weight loss thermogram for PTA-6H2O

Page 16: X-Ray Photoelectron Investigation of Phosphotungstic Acid as a Proton-Conducting Medium in Solid Polymer Electrolytes Clovis A. Linkous Stephen L. Rhoden.

Weight loss thermogram for PTA treated with Cs2CO3

Weight loss thermogram for PTA treated with Cs2CO3

Page 17: X-Ray Photoelectron Investigation of Phosphotungstic Acid as a Proton-Conducting Medium in Solid Polymer Electrolytes Clovis A. Linkous Stephen L. Rhoden.

Summary of W4f7/2 dataSummary of W4f7/2 dataSample Binding Energy (eV)

WO3 35.1PTA + Cs2CO3 35.4PTA/Cs+/H2SO4 35.6SPEEK/PTA 35.7PTA + CsCl 35.8Na3PTA 35.9PTA-6H2O 36.0PTA-EtOH/DMF 36.2PTA (anhydrous) 36.2PTA – 24H2O (recrystallized) 37.8, 36.0Na2WO4-2H2O 36.7Cs2WO4 (anhydrous) 37.3, 35.3PTA-24H2O (commercial A) 37.5PTA-24H2O (commercial B) 37.6 Cs2WO4-2H2O 37.7

Page 18: X-Ray Photoelectron Investigation of Phosphotungstic Acid as a Proton-Conducting Medium in Solid Polymer Electrolytes Clovis A. Linkous Stephen L. Rhoden.

ConclusionConclusion

• Cs+ exchange improves conductivity of SPEEK/PTA composite membranes.

• W chemical shift related to O-bonding geometry (octahedral vs tetrahedral) and waters of hydration.

• Cs+ treatment lowers PTA water content and its enthalpy of hydration.

• Cs+ functions by destabilizing waters of hydration, rendering them more mobile and better able to conduct protons.

Page 19: X-Ray Photoelectron Investigation of Phosphotungstic Acid as a Proton-Conducting Medium in Solid Polymer Electrolytes Clovis A. Linkous Stephen L. Rhoden.

Future WorkFuture Work

• XRD of PTA vs water content

• IR analysis of retained hydrogen stretching frequencies

• Obtaining conductivity vs RH curves at temperatures on either side of the TGA water transition.

• Fabricating Pt//SPEEK/PTA//Pt membrane electrode assemblies and deriving fuel cell current voltage curve