X Parameter Webcast 2011 Final

download X Parameter Webcast 2011 Final

of 47

Transcript of X Parameter Webcast 2011 Final

  • 8/13/2019 X Parameter Webcast 2011 Final

    1/47

    1

    Dr. Loren Betts

    Research Scientist

    Agilent Technologies

  • 8/13/2019 X Parameter Webcast 2011 Final

    2/47

    Page 2

    July 2009

    Agilent EEsof EDA Overview

    *X-parameters is a trademark of Agilent Technologies, Inc.

    Innovations in EDA Webcast Series

    X-Parameter* Case Study:GaN High Power Amplif ier Design

    Dr. Loren Betts

    Research ScientistAgilent Technologies

    Agilent Technologies, Inc. 2011

  • 8/13/2019 X Parameter Webcast 2011 Final

    3/47

    Capturing the Imagination of the Industry

    Solves real-worldproblems now

    Interoperable

    characterization,

    modeling, and design

    solutions

    Does for nonlinear

    design what

    S-parameters do for

    linear design

    Changing the waythe industry works

    Continuous wave

    of innovations and

    award-winning

    research

    Page 3

  • 8/13/2019 X Parameter Webcast 2011 Final

    4/47

    Presentation Outline

    Amplifier Design Considerations using X-parameters Industry Challenges

    Introduction to X-parameters

    End-to-End Power Amplifier Design with X-parameters

    Load-Dependent X-parameters

    High Power X-parameter Measurement Configuration Final PA Results

    Page 4

  • 8/13/2019 X Parameter Webcast 2011 Final

    5/47

    Solutions: Next Generation Communication Systems

    Power Amplifier Industry Challenges: Research & development of new semiconductor processes for

    next generation components

    Develop smaller, higher power, more efficient active devicedesigns

    Reduce cost and the development time to bring product tomarket

    Issues:

    Components are exhibiting more & more nonlinear behavior

    (often by design to increase efficiency) Models of newer technologies (such as GaN) may not exist or

    may not provide an accurate description of all the componentbehavior.

    Page 5

    http://visuals.soco.agilent.com/scripts/CUWP_CGI.EXE/3-DHA0005-Cotati%20Tower.tif?directArg=ALN1606983150,3-DHA0005-Cotati%20Tower.tif
  • 8/13/2019 X Parameter Webcast 2011 Final

    6/47

    VSWR=2.5

    max

    ACPR

    (accuracy

  • 8/13/2019 X Parameter Webcast 2011 Final

    7/47

    Evolution of the Tools & Measurements

    Page 7

    TOOLS:

    NA

    SA/SS/NFAPower meter

    Oscilloscope

    DC Parametric Analyzer

    MEASUREMENTS:

    Gain compression, IP3, IMD

    PAE, ACPR, AM-PM, BERConstellation Diagram, EVM

    GD, NF, Spectral Re-growth

    ACLR, Hot S22

    Source and Load-Pull

    S-Parameters

    TOOLS:

    Vector Network

    Analyzer

    MEASUREMENTS:

    Gain

    Input match

    Output match

    Isolation

    TransconductanceInput capacitance

    S-Parameters +

    Figures of Merit

    TOOLS:

    SS & Oscilloscope

    Grease pens andPolaroid cameras

    Slotted line

    Power meter

    MEASUREMENTS:

    Bode plots

    GainSWR

    Scalar network analyzers

    Y & Z parameters

    PatchworkNVNA

    X-Parameters

  • 8/13/2019 X Parameter Webcast 2011 Final

    8/47

    Nonlinear Component Behavior

    Page 8

    2A1A

    1B 2B

    and you want to build a system by

    cascading components together.

  • 8/13/2019 X Parameter Webcast 2011 Final

    9/47

    Incident TransmittedS 21

    S 11

    Reflected S 22

    Reflected

    Transmitted Incident

    b 1

    a 1b 2

    a 2S 12

    DUT

    Port 1 Port 2

    S-parameters

    b1 = S11a1 + S12a2

    b2 = S21a1 + S22a2

    S-parameters:Linear Measurement, Modeling & Simulation

    Page 9

    Linear Simulation:

    Matrix Multiplication

    Measure with l inear VNA:

    Small amplitude sinusoids

    Model

    Parameters:

    Simple algebra

    0k

    i

    ij

    ajk j

    bS

    a =

    =

  • 8/13/2019 X Parameter Webcast 2011 Final

    10/47

    S-parameter measurements require that the S-parameters

    of the device do not change during measurement

    Page 10

    1 11 12 1

    2 21 22 2

    b S S a

    b S S a

    =

    1 11 1 12 2

    2 21 1 22 2

    b S a S a

    b S a S a

    = +

    = +

    S-Parameter Definition

    To solve, VNAs traditionally use a forwardand reverse sweep (2 port error correction).

    21S

    12S

    11S 22S

    10

    1e

    01

    1e

    00

    1e

    11

    1e

    0

    1a

    0

    1b

    1

    1a

    1

    1b

    01

    2e

    10

    2e

    11

    2e

    00

    2e

    1

    2b

    1

    2a

    0

    2b

    0

    2a

    ( )x t ( )y t

    bi= S

    ik a

    k

    k

  • 8/13/2019 X Parameter Webcast 2011 Final

    11/47

    S11

    S12

    S21

    S22

    =

    b1

    fwdb

    1

    rev

    b2

    fwdb

    2

    rev

    a1

    fwda

    1

    rev

    a2

    fwda

    2

    rev

    1

    If the S-parameters change .(when sweeping in the forward and reverse directions when performing 2 por t error correction)

    then the resulting computation of the S-parameters are invalid

    Page 11

    b1

    fwd b1

    rev

    b2

    fwdb

    2

    rev

    =

    S11

    S12

    S21

    S22

    a1

    fwd a1

    rev

    a2

    fwda

    2

    rev

    1 11 12 1

    2 21 22 2

    b S S ab S S a =

    1 11 1 12 2

    2 21 1 22 2

    b S a S a

    b S a S a

    = +

    = +Hot S22

    This is often why customers areasking for Hot S22 because the matchis changing versus input drive powerand frequency (Nonlinearphenomena). Hot S22 traditionallymeasured at a frequency slightly offset

    from the large input drive signal.This still does not provide thecomplete picture. X-parameters arethe solution.

    ( )x t ( )y t

  • 8/13/2019 X Parameter Webcast 2011 Final

    12/47

    Measure X-parameters

    -or-

    Generate X-parameters from

    circuit-level designs

    X-parameter Component :

    Simulate using X-

    parameters

    ADS, SystemVue & Genesys:

    Design using X-parameters

    X-parameters revolutionize the Characterization, Design,

    and Modeling of nonlinear components and systems

    X-parameters are the mathematically correct extension of S-parameters to large-signal conditions.

    Measurement and simulation based, device independent, identifiable from a simple

    set of automated NVNA measurements or directly from ADS circuit-level designs

    Fully nonlinear (Magnitude and phase of distortion)

    Cascadable (correct behavior in even highly mismatched environment)

    Extremely accurate for high-frequency, distributed nonlinear devices

    Page 12

  • 8/13/2019 X Parameter Webcast 2011 Final

    13/47

    X-parameters

    Page 13

    1 1 11 12 21 22( , , ,..., , ,...)k kB F DC A A A A=

    2 2 11 12 21 22( , , ,..., , ,...)

    k kB F DC A A A A=

    Port Index

    Harmonic (or carrier) Index

    The X-parameters provide a mathematically correct mapping of the A and B

    waves at ports, input powers, harmonics, DC bias, etc, etc.

    2A1A

    1B 2B

    Unifies

    S-parameters

    Load-Pull,

    Time-domain

    load-pull

  • 8/13/2019 X Parameter Webcast 2011 Final

    14/47

    X-Parameters Linear and Nonlinear System Description

    ( )*

    , (1,1)

    ( ) ( ) ( )

    11 , 11 , 11( ) ( ) ( )

    j j l j l

    ij kl klk l

    F S T

    ij ij kl ij klb P P aA PA aAX X X

    +

    = + +

    S-Parameters Linear System Description1 11 1 12 2

    2 21 1 22 2

    b S a S a

    b S a S a

    = +

    = +bi= S

    ika

    kk

    Scattering Parameters

    Page 14

    Definitions

    i = output port index

    j = output f requency index

    k = input port index

    l = input frequency index

    (#1)frequencylfundamentaat the#1)(portportinputamplifierthetodrivesignalLarge11 =A

    For example:

    Means: output port = 2

    output frequency = 1 (fundamental)

    input port = 2

    input frequency = 1 (fundamental)

    X21,21T

  • 8/13/2019 X Parameter Webcast 2011 Final

    15/47

    NVNA

    Data File

    ADS

    Design and Simulation

    X-parameter blocks

    -28 -26 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6-30 -4

    -30

    -20

    -10

    0

    -40

    10

    .

    .

    -28 -26 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6-30 -4

    -60

    -50

    -40

    -30

    -20

    -10

    0

    -70

    10

    .

    .

    -28 -26 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6-30 -4

    5

    10

    15

    20

    0

    25

    .

    .

    -28 -26 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6-30 -4

    70

    71

    72

    73

    74

    75

    69

    76

    .

    .

    -28 -26 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6-30 -4

    -135

    -130

    -125

    -120

    -140

    -115

    -28 -26 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6-30 -4

    0

    2

    4

    6

    8

    10

    12

    -2

    14

    .

    .

    - 2 8 - 2 6 - 2 4 - 2 2 - 2 0 - 1 8 - 1 6 - 1 4 - 1 2 - 1 0 - 8 - 6-30 -4

    -80

    -70

    -60

    -50

    -40

    -30

    -90

    -20

    .

    .

    - 2 8 - 2 6 - 2 4 - 2 2 - 2 0 - 1 8 - 1 6 - 1 4 - 1 2 - 10 - 8 - 6-30 -4

    -100

    -80

    -60

    -40

    -120

    -20

    .

    .

    - 2 8 - 2 6 - 24 - 2 2 - 2 0 - 1 8 - 16 - 1 4 - 1 2 - 10 - 8 - 6-30 -4

    -40

    -35

    -30

    -25

    -20

    -45

    -15

    .

    .

    - 2 8 - 2 6 - 2 4 - 2 2 - 2 0 - 1 8 - 1 6 - 1 4 - 1 2 - 1 0 - 8 - 6-30 -4

    130

    140

    150

    160

    120

    170

    .

    .

    - 2 8 - 2 6 - 2 4 - 2 2 - 2 0 - 1 8 - 1 6 - 1 4 - 1 2 - 1 0 - 8 - 6-30 -4

    130

    135

    140

    145

    125

    150

    .

    .

    - 2 8 - 2 6 - 2 4 - 2 2 - 2 0 - 1 8 - 16 - 1 4 - 1 2 - 10 - 8 - 6-30 -4

    120

    122

    124

    126

    128

    130

    132

    134

    118

    136

    .

    .

    X-parameters enable accurate nonlinear

    simulation under small to moderate

    mismatch. (See later for large mismatch)

    -10 - 5 0 5 10 1 5-15 20

    -30

    -20

    -10

    0

    10

    -40

    20

    .

    .

    allowing prediction of component behavior in

    complicated nonlinear circuits.

    IMD / ACPR exact in narrow-band limit

    Nonlinear Measurements

    X-parameters enable predictive nonlinear design from NL data

    X-parameters: the same use model as S-parameters but much more powerful

    Measurement-Based Modeling & Design Flow

    Page 15

  • 8/13/2019 X Parameter Webcast 2011 Final

    16/47

    Presentation Outline

    Amplifier Design Considerations using X-parameters

    Industry Challenges

    Introduction to X-parameters

    End-to-End Power Amplifier Design with X-parameters

    Load-Dependent X-parameters

    High Power X-parameter Measurement Configuration

    Final PA Results

    Page 16

  • 8/13/2019 X Parameter Webcast 2011 Final

    17/47

    X-Parameters definition with port 2 gamma dependence

    bij

    =Xij

    (F)(DC,A11,

    2)Pj +

    Xij,kl

    (S) (DC,A11,

    2)P

    j l akl

    +Xij,kl

    (T) (DC,A11,

    2)P

    j+ l akl

    *( )k,l(1,1)

    Load-Dependent X-parametersSome components (un-matched transistors) may require input and output

    tuners because their match is far from 50 ohm.

    This requires an X-parameter model that also includes dependence on theload impedance supplied to the output of the component. This is

    accomplished by adding an impedance tuner to the output of the component.

    Depending on the component, and the class of operation, a multi-harmonic

    tuner may not be required.

    The source tuner can be fixed at a single impedance that is close to the

    conjugate match point and a power sweep performed to vary the available

    power to the component.

    Page 17

  • 8/13/2019 X Parameter Webcast 2011 Final

    18/47

    2

    1,fixed

    A

    11

    A11 is swept through

    a power sweep

    2 is swept through

    a set of fundamental

    frequency impedances

    supplied by tuner. All otherharmonic impedances

    are uncontrolled

    Load-Dependent X-parameter Measurements

    Page 18

  • 8/13/2019 X Parameter Webcast 2011 Final

    19/47

    0.2 0.4 0.6 0.80.0 1.0

    0

    5

    10

    15

    -5

    20

    0.10

    0.15

    0.20

    0.25

    0.05

    0.30

    time, nsec

    MeasuredCurrentM

    easuredVoltage

    SimulatedVoltage

    SimulatedCurrent

    Measured and Simulated Voltage and Current Waveforms

    0.2 0.4 0.6 0.80.0 1.0

    4

    68

    10

    12

    14

    2

    16

    0.1

    0.2

    0.3

    0.4

    0.0

    0.5

    time, nsec

    Measured

    CurrentM

    easu

    redVoltage

    Simula

    tedVoltage

    Simulated

    Current

    Measured and Simulated Voltage and Current Waveforms

    0 2 4 6 8 10 12 14 16-2 18

    0.10

    0.15

    0.20

    0.25

    0.05

    0.30

    MeasuredVoltage

    MeasuredCurrent

    SimulatedVoltage

    Simu

    latedCurrent

    Measured and Simulated Dynamic Load Line

    Experimental Harmonic Balance X-parameters unify S-parameters and load-pull

    Measurements X-par Simulation

    Pout Contour(dBm)

    G. Simpson et al IEEE ARFTG Conference, December, 2008

    Load-Dependent X-Parameters of a FET

    Page 19

  • 8/13/2019 X Parameter Webcast 2011 Final

    20/47

    Fundamental Output Magnitude Second Harmonic Output Magnitude

    X-Parameter Prediction: Blue

    Measured with Harmonic Load Pull System: Red

    J. Horn et al, IEEE Power Amplifier Symposium, September, 2009

    Harmonic load-pull may be unnecessary! Simpler, cheaper, faster alternatives exist

    Contours vs. 2nd

    Harmonic Load

    (Fixed input power

    and fundamental load)

    Cree CGH40010 10 WRF Power GaN HEMT

    X-parameter Harmonic Load-Tuning Predictions

    Page 20

  • 8/13/2019 X Parameter Webcast 2011 Final

    21/47

    PNA-X

    Maury

    Software

    DUTMaury

    Tuner

    USB

    DC Supply

    GPIB

    Bias

    Tees

    NVNA

    Firmware

    Maury

    Tuner

    9 load states at f1

    Cree

    CGH40010GaN HEMT

    10 W packaged

    transistor

    900 MHz Measure Load-dependent

    X-parameters

    vs power at 9 impedances

    4 harmonics measured

    probe tones at 2nd and 3rd

    harmonics

    harmonic impedances

    uncontrolledX-parameter file taken into ADS

    for independent validation

    GaN HEMT Load-Dependent X-parameter Model

    Page 21

  • 8/13/2019 X Parameter Webcast 2011 Final

    22/47

    PNA-X

    Maury

    Software

    DUTMaury

    Tuner Z1

    USB

    DC Supply

    GPIB

    Bias

    Tees

    NVNA

    Firmware

    Maury

    Tuner

    Maury

    Tuner Z2

    Maury

    Tuner Z3

    9 states 9 states 9 states

    Waveforms measured

    versus power at each setof 729 harmonic loads as

    controlled independently

    by the tuners.

    Fundamental, second,

    and third complex

    impedances setindependently

    J. Horn et al CSICS2010, Oct. 2010

    Harmonic Load-pull Setup: For Validation Only

    Page 22

  • 8/13/2019 X Parameter Webcast 2011 Final

    23/47

    Harmonic load-pull

    measurements

    Load-dependent X-parameters

    One output tuner to vary load at

    fundamental frequency. At each load

    inject small tones at 2nd and 3rd

    harmonic frequencies

    (9x(1+2x2) = 45 measurements,actually ~125 measurements)

    Measured DC 4th harmonic

    Take into ADS. Present 729

    independent loads to model

    Three output tuners to vary

    loads at fundamental, second,

    and third harmonics

    independently

    (9x9x9 = 729 measurements)

    Measured DC - 4th harmonic

    Compare waveforms, PAE, dynamic load-lines, etc.

    Load-Dependent X-parameters Vs. Harmonic Load-pull

    Page 23

  • 8/13/2019 X Parameter Webcast 2011 Final

    24/47

    6 8 10 12 14 16 184 20

    20

    30

    40

    50

    60

    70

    10

    80

    Z1Z2Z3 Cree

    CGH40010

    GaN HEMT

    PAE

    Pin (available)

    10 20 30 40 50 600 70

    0.0

    0.5

    1.0

    1.5

    -0.5

    2.0

    Id [A]

    Vd [V]

    Harmonic loads

    X-parameter model

    Harmonic time-domain load-pull measurements

    0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.20.0 2.4

    10

    20

    30

    40

    50

    60

    0

    70

    0.0

    0.5

    1.0

    1.5

    -0.5

    2.0

    Time (nanoseconds)

    VdId

    VdId

    Courtesy of J. Horn

    Prediction of GaN HEMT Harmonic Load-dependence from

    Fundamental-only Load-dependent X-parameters

    Page 24

  • 8/13/2019 X Parameter Webcast 2011 Final

    25/47

    6 8 10 12 14 16 184 20

    20

    30

    40

    50

    60

    10

    70

    Prediction of GaN HEMT Harmonic Load-dependence

    from Fundamental-only Load-dependent X-parameters

    Page 25

    0 10 20 30 40 50 60-10 70

    .0

    .5

    .0

    .5

    .5

    .0

    Z1Z2Z3

    CreeCGH40010

    GaN HEMT

    PAE

    Id [A]

    Vd [V]

    Pin (available)

    0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.20.0 2.4

    0

    10

    20

    30

    40

    50

    60

    -10

    70

    0.0

    0.5

    1.0

    1.5

    -0.5

    2.0

    VdId

    VdId

    Time (nanoseconds)

    Harmonic loads

    Vary second harmonic output impedance (keep others fixed)

  • 8/13/2019 X Parameter Webcast 2011 Final

    26/47

    6 8 10 12 14 16 184 20

    20

    30

    40

    50

    60

    10

    70

    .

    10 20 30 40 50 600 70

    -0.5

    0.0

    0.5

    1.0

    1.5

    -1.0

    2.0

    0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.20.0 2.4

    10

    20

    30

    40

    50

    60

    0

    70

    -0.5

    0.0

    0.5

    1.0

    1.5

    -1.0

    2.0

    Z1Z2Z3

    Prediction of GaN HEMT Harmonic Load-dependence

    from Fundamental-only Load-dependent X-parameters

    Page 26

    Cree

    CGH40010

    GaN HEMT

    PAE

    Id [A]

    Vd [V]

    VdId

    VdId

    Pin (available)

    Time (nanoseconds)

    Harmonic loads

  • 8/13/2019 X Parameter Webcast 2011 Final

    27/47

    6 8 10 12 14 16 184 20

    20

    30

    40

    50

    60

    10

    70

    _

    0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.20.0 2.4

    10

    20

    30

    40

    50

    60

    0

    70

    0.0

    0.5

    1.0

    1.5

    -0.5

    2.0

    10 20 30 40 50 600 70

    0.0

    0.5

    1.0

    1.5

    0.5

    2.0

    Prediction of GaN HEMT Harmonic Load-dependence

    from Fundamental-only Load-dependent X-parameters

    Page 27

    Z1Z2Z3

    Cree

    CGH40010

    GaN HEMT

    PAE

    Id [A]

    Vd [V]

    VdId

    VdId

    Pin (available)

    Time (nanoseconds)

    Harmonic loads

    Vary third harmonic output impedance (keep others fixed)

  • 8/13/2019 X Parameter Webcast 2011 Final

    28/47

    Implications of Arbitrary Load-dependent X-parameters

    Input and output harmonic load tuning dependence predictable

    Harmonic load-pull may be unnecessary for many apps.

    Source pull may be unnecessary (apart from power transfer)

    Complementary approach to compact nonlinear device models

    Page 28

  • 8/13/2019 X Parameter Webcast 2011 Final

    29/47

    Power Amplifier Design

    Page 29

    Goal: Design a power amplifier using X-parameter measurements of a

    transistor.

    X-parameter model measuredof a Cree CGH40045F GaN

    transistor using NVNA.

    Desired Design Goals:

    Frequency = 1.2 GHz

    Output power > 45 dBm

    PAE > 60%

    Class AB

    Linearity and other performance parameters

    were not part of this first phase design.

    Note: Cree transistor is capable of higher

    performance than Desired Design

    Specifications. Refer to Cree datasheet

    for more information.

  • 8/13/2019 X Parameter Webcast 2011 Final

    30/47

    Power Amplifier Design

    Total PA design completed in ADS:

    1. Simulated impedance contours of output power and PAE at

    fundamental and harmonic frequencies at input (gate) and output

    ports (drain)

    2. Simulated impedance contours used to determine appropriate

    termination impedances at fundamental and harmonic frequencies atinput (gate) and output ports (drain) to maximize PAE and output

    power

    3. PCB designed with appropriate matching from (2)

    4. Final PA assembled and compared against simulation

    Page 30

  • 8/13/2019 X Parameter Webcast 2011 Final

    31/47

    CR3

    AR1

    NVNA

    -18 dBm (ET)

    Port 1

    Port 2

    Tuner

    Tuner

    DUTCree CGH40045F GaN HEMT

    F = 1.2 GHzGain ~ 12-16 dB

    Pout ~ 46 dBm

    +10 dBm to +32 dBm

    +46 dBm (max)

    +26 dBm (ET)

    10 dB

    (< 1 W)

    2x20 dB

    (< 1 W)

    40 dB(10 W)

    2x20 dB

    (< 1 W)

    10 dB (100 Watt)

    -20 dBm-20 dBm

    +36 dBm

    +36 dBm

    AR 5S1G4G = 30 dB at lowest gain

    Pmax = +37 dBm (5 Watts)

    Frequency = .8 4.2 GHz

    Couplers - minicircuitsZGDC10-362HP+

    CF ~ -10 dB

    Pmax >+ 53 dBm

    +12 dBm (ET) at +32

    dBm input

    -20 dBm-20 dBm

    Bias

    -18 dBm to +2 dBm (DT)

    1 dBm (ET) at G=35 dB

    30 dB

    Bias

    20 dB

    AR 60S1G4

    G = max 38 dB min 33 dB at 0%Pmax = +48 dBm (60 Watts)

    Frequency = .8 4.2 GHz

    Couplers - minicircuits

    ZGDC10-362HP+CF ~ -10 dB

    Pmax >+ 53 dBm

    NVNA X-parameter System Power Budget (120 W)

    Page 31

  • 8/13/2019 X Parameter Webcast 2011 Final

    32/47

    High Power X-parameter Measurement System

    Page 32

    M d l V ifi ti

  • 8/13/2019 X Parameter Webcast 2011 Final

    33/47

    Model Verification

    Verification of the measured X-parameter model:

    1. Make measurements of component (transistor). These are not X-

    parameter measurements but instead measurements of other

    parameters like A and B waves, output power, PAE or another

    parameter of your choice.

    2. Record the input power, impedances (input and output ports,

    fundamental and harmonic) and bias used during the

    measurements in (1).

    3. Place these impedances in the simulator as terminations of the X-

    parameter model and sweep power over that used in measurement

    range.

    Note: Extrapolation boundaries is a topic for

    another day

    Page 33

  • 8/13/2019 X Parameter Webcast 2011 Final

    34/47

    X-parameter Model Verification - Circuit Template

    Page 34

  • 8/13/2019 X Parameter Webcast 2011 Final

    35/47

    X-parameter Model Verification - Results

    22 24 26 2820 30

    40

    42

    44

    38

    46

    0.7

    2.0

    Incident Power (dBm)

    DeliveredP

    ower(dBm) D

    rainCur

    rent(Amps)

    Verification of X-parameter Model

    Measured

    Simulated

    Page 35

  • 8/13/2019 X Parameter Webcast 2011 Final

    36/47

    PAE_

    contours

    E

    Power_con

    tours

    P

    Elevel=70.711610, number=65

    Plevel=46.029871, number=52

    46.05

    Maximum Powerand contourlevels, dBm:

    46.0045.5045.0044.5044.0043.50

    43.0042.50

    70.812

    Maximum PAEand contourlevels, %:

    68.00064.00060.00056.00052.00048.00044.00040.000

    Simulated Fundamental Pout and PAE Contours

    PAE > 70 %

    Output Power > 45dBm

    All other impedances in the

    simulator set to 50 ohm

    except fundamental input

    impedance (~2 ohm).

    Page 36

  • 8/13/2019 X Parameter Webcast 2011 Final

    37/47

    21.0

    22.0

    23.0

    24.0

    25.0

    26.0

    27.0

    28.0

    29.0

    20.0

    30.0

    RFpower[0,::]

    m3

    RF Power SelectorTransducerPower Gain

    1.200 GHz

    FundamentalFrequency

    20.00021.00022.00023.000

    24.00025.00026.00027.00028.00029.00030.000

    38.91639.82640.71741.596

    42.46043.31844.12244.77545.18045.47245.696

    18.91618.82618.71718.596

    18.46018.31818.12217.77517.18016.47215.696

    37.95342.01946.46551.376

    56.10861.76767.22671.32272.65973.30874.317

    20.28122.58325.06927.747

    30.98434.28337.87741.45344.57947.12448.783

    0.7240.8070.8950.991

    1.1071.2251.3531.4811.5921.6831.743

    12.54713.04713.36113.415

    13.50012.97712.24211.65311.86512.14211.988

    FundamentalOutput Power dBm

    AvailableSource Power dBm

    39 40 41 42 43 44 4538 46

    16

    17

    18

    15

    19

    Fund. Output Power, dBm

    m2

    m1Transducer Power Gain, d B

    20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.520.0 30.0

    15

    20

    25

    30

    35

    40

    45

    10

    50

    RFpower

    Spectrum[1]

    Spectrum[3]

    Spectrum[2]

    Fundamental and Third Harm., dBm

    3.220

    45.70

    Gain Compressionbetween markers, dB

    Output Powerat Marker m2, dBm

    Power- AddedEfficiency, %

    39 40 41 42 43 44 4538 46

    40

    50

    60

    70

    30

    80

    Fund. Output Power, dBm

    PAE, %

    39 40 41 42 43 44 4538 46

    0.8

    1.01.2

    1.4

    1.6

    0.6

    1.8

    Fund. Output Power, dBm

    High Suppl y Current

    HighSupplyCurrent

    ThermalDissipationWatts

    DC PowerConsumpt.Watts

    500.M

    1.00G

    1.50G

    2.00G

    2.50G

    3.00G

    3.50G

    0.000

    4.00G

    -100

    -50

    0

    -150

    50

    Output Spectrum, dBm

    0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.60.0 1.8

    -30

    -20

    -10

    0

    10

    20

    30

    -40

    40

    time, nsec

    ts(Vinput

    ),V

    ts(Vload),V

    Input and Output Voltage Waveforms

    Simulated ParametersADS Amplifier DesignGuide

    Page 37

  • 8/13/2019 X Parameter Webcast 2011 Final

    38/47

    Final Power Amplifier

    PAE could be improved based on a

    better physical termination impedanceat the 2nd harmonic at the input in the

    next design. However, there is a

    tradeoff between the bandwidth of the

    impedance and PAE (i.e. PAE could be

    very peaky over a very narrow

    frequency bandwidth)

    Page 38

    Courtesy of University of Waterloo

  • 8/13/2019 X Parameter Webcast 2011 Final

    39/47

    X-parameter Measurements Rules-of-Thumb

    Leave enough pre-amplifier linear gain for extraction and drive tones

    If the pre-amplifier is saturated with the drive signal then adding the extractionsignal will degrade X-parameters. Generally seen during a power sweep where

    there is divergence between simulated and measured results at the higher end of

    the power sweep (watch receiver compression though).

    Simulation termination impedance

    When comparing simulated as and bs from X-parameters against measured asand bs it is critical that the terminations in the simulation match that used during

    measurement. Ensure proper calibration and de-embedding techniques where

    applicable.

    Calibration procedure using 8 term error model, tuners and pre-amplifiers

    Often pre-amplifiers are removed behind the couplers during calibration and thenplaced back in-line after the calibration procedure is complete. This may effect the

    tuner characterization and therefore the source and load impedances behind the

    tuners should be determined from the NVNA and accounted for to ensure proper

    applied impedance to the component by the tuners.

    Page 39

    N li V N k A l (NVNA)

  • 8/13/2019 X Parameter Webcast 2011 Final

    40/47

    Nonlinear Vector Network Analyzer (NVNA)

    Page 40

    Vector (amplitude/phase) corrected nonlinear

    measurements from 10 MHz to 13.5, 26.5 43.5 50 GHz

    Calibrated absolute amplitude and relative phase (cross-

    frequency relative phase) of measured spectra traceable tostandards lab

    Up to 50 GHz of vector corrected bandwidth for time

    domain waveforms of voltages and currents of DUT

    Multi-Envelope domain measurements for measurement

    and analysis of memory effects

    X-parameters: Extension of Scattering parameters into the

    nonlinear region providing unique insight into nonlinear DUT

    behavior

    X-parameter extraction into ADS nonlinear simulation and

    design

    NVNA can control external DC instruments (sweep and

    sense) during RF measurements

    Standard PNA-X with New Nonlinear features and

    capabilityNew phase calibration standard

    NVNA FW

    X P t T h l

  • 8/13/2019 X Parameter Webcast 2011 Final

    41/47

    X-Parameter Technology

    in Agilent EEsof EDAs Platforms

    Page 41

    ADS X P t G t

  • 8/13/2019 X Parameter Webcast 2011 Final

    42/47

    ADS X-Parameter Generator

    Available in ADS 2009 Update 1

    Generate nonlinear X-parameter

    models in ADS

    Augments Agilents measurement-based

    X-parameter generation (PNA-X Series

    Nonlinear Vector Network Analyzer)

    Easy to setup and run

    Multi-tone

    Multi-port: No limits on the number of ports, frequency or power

    Models amplifiers, mixers, and transceivers with frequency conversion

    Page 42

    X t t h l i di idl

  • 8/13/2019 X Parameter Webcast 2011 Final

    43/47

    X-parameter technology is expanding rapidly

    Agilent breakthroughs:

    Load-dependent X-parameters 50 GHz Agilent NVNA

    High-Power X-parameter measurements

    X-parameter generator in ADS

    Simulation of XnP component in ADS,Genesys & SystemVue

    Two-tone measured X-parameters

    Three-port measured X-parameters

    Memory: Dynamic X-parameters

    Education, training, app. Notes

    Page 43

    Q ti ?

  • 8/13/2019 X Parameter Webcast 2011 Final

    44/47

    Questions?

    Page 44

    Design and simulate with

    measured or generated X-parameters in ADS

    Measure X-parameters withAgilents NVNA

    Design with measured

    X-parameters in ADS

    F M I f ti

  • 8/13/2019 X Parameter Webcast 2011 Final

    45/47

    For More Information

    Page 45

    X-parameters

    www.agilent.com/find/x-parameters

    Nonlinear Vector Network Analyzer

    www.agilent.com/find/nvna

    ADS MMIC design seminar (click on X-parameters link)

    www.agilent.com/find/eesof-mmic-seminar

    X-Parameters Aid MMIC Design

    http://www.mwrf.com/Articles/Index.cfm?Ad=1&ArticleID

    =22811

    X-Parameter YouTube Videos

    http://www.youtube.com/user/AgilentEEsof

    Trademark Usage, Open Documentation & Partnerships

    http://www.agilent.com/find/x-parameters-info

    Selected References and Links

    http://www.agilent.com/find/x-parametershttp://www.agilent.com/find/nvnahttp://www.agilent.com/find/eesof-mmic-seminarhttp://www.mwrf.com/Articles/Index.cfm?Ad=1&ArticleID=22811http://www.mwrf.com/Articles/Index.cfm?Ad=1&ArticleID=22811http://www.youtube.com/user/AgilentEEsofhttp://www.agilent.com/find/eesof-x-parameters-infohttp://www.agilent.com/find/eesof-x-parameters-infohttp://www.agilent.com/find/eesof-x-parameters-infohttp://www.youtube.com/user/AgilentEEsofhttp://www.mwrf.com/Articles/Index.cfm?Ad=1&ArticleID=22811http://www.mwrf.com/Articles/Index.cfm?Ad=1&ArticleID=22811http://www.agilent.com/find/eesof-mmic-seminarhttp://www.agilent.com/find/nvnahttp://www.agilent.com/find/x-parameters
  • 8/13/2019 X Parameter Webcast 2011 Final

    46/47

    Selected References and Links1. D. E. Root, J. Horn, L. Betts, C. Gillease, J. Verspecht, X-parameters: The new paradigm for measurement, modeling, and design

    of nonlinear RF and microwave components, Microwave Engineering Europe, December 2008 pp 16-21.

    http://www.nxtbook.com/nxtbooks/cmp/mwee1208/#/16

    2. D. E. Root, X-parameters: Commercial implementations of the latest technology enable mainstream applications Microwave

    Journal, Sept. 2009, http://www.mwjournal.com/search/ExpertAdvice.asp?HH_ID=RES_200&SearchWord=root

    3. J. Verspecht and D. E. Root, Poly-Harmonic Distortion Modeling, in IEEE Microwave Theory and Techniques Microwave

    Magazine, June, 2006.4. D . E. Root, J. Verspecht, D. Sharrit, J. Wood, and A. Cognata, Broad-Band, Poly-Harmonic Distortion (PHD) Behavioral Models

    from Fast Automated Simulations and Large-Signal Vectorial Network Measurements, IEEE Transactions on Microwave Theory

    and Techniques Vol. 53. No. 11, November, 2005 pp. 3656-3664

    5. J. Verspecht, J. Horn, L. Betts, D. Gunyan, R. Pollard, C. Gillease, D. E. Root, Extension of X-parameters to include long-term

    dynamic memory effects, IEEE MTT-S International Microwave Symposium Digest, 2009. pp 741-744, June, 2009

    6. J. Verspecht, J. Horn, D. E. Root A Simplified Extension of X-parameters to Describe Memory Effects for Wideband Modulated

    Signals, Proceedings of the 75th IEEE MTT-S ARFTG Conference, May, 2010

    7. J. Xu, J. Horn, M. Iwamoto, D. E. Root, Large-signal FET Model with Multiple Time Scale Dynamics from Nonlinear Vector

    Network Analyzer Data, IEEE MTT-S International Microwave Symposium Digest, May, 2010.

    8. J. Horn, S. Woodington, R. Saini, J. Benedikt, P. J. Tasker, and D. E. Root; Harmonic Load-Tuning Predictions from X-

    parameters, IEEE PA Symposium, San Diego, Sept. 2009

    9. D. Gunyan , J. Horn, J. Xu, and D. E. Root, Nonlinear Validation of Arbitrary Load X-parameter and Measurement-Based Device

    Models, IEEE MTT-S ARFTG Conference, Boston, MA, June 200910. G. Simpson, J. Horn, D. Gunyan, and D. E. Root, Load-Pull + NVNA = Enhanced X-Parameters for PA Designs with High

    Mismatch and Technology-Independent Large-Signal Device Models, IEEE ARFTG Conference, Portland, OR December 2008.

    11. J. Horn, J. Verspecht, D. Gunyan, L. Betts, D. E. Root, and J. Eriksson, X-Parameter Measurement and Simulation of a GSM

    Handset Amplifier, 2008 European Microwave Conference DigestAmsterdam, October, 2008

    12. J. Verspecht, D. Gunyan, J. Horn, J. Xu, A. Cognata, and D.E. Root, Multi-tone, Multi-Port, and Dynamic Memory Enhancements

    to PHD Nonlinear Behavioral Models from Large-Signal Measurements and Simulations, 2007 IEEE MTT-S Int. Microwave

    Symposium Digest, Honolulu, HI, USA, June 2007.

    13. D. E. Root, J. Xu, J. Horn, M. Iwamoto, and G. Simpson, Device Modeling with NVNAs and X-parameters, 2010 IEEE MTT-S

    INMMiC Conference, Gtenborg, Sweden, April 26, 2010

    14. J. Horn, G. Simpson, D. E. Root, GaN Device Modeling with X-parameters,Accepted for publication 2010IEEE CSICS, Oct. 2010

    Page 46

    Th k Y t S ti P t

    http://www.nxtbook.com/nxtbooks/cmp/mwee1208/http://www.mwjournal.com/search/ExpertAdvice.asp?HH_ID=RES_200&SearchWord=roothttp://www.mwjournal.com/search/ExpertAdvice.asp?HH_ID=RES_200&SearchWord=roothttp://www.nxtbook.com/nxtbooks/cmp/mwee1208/
  • 8/13/2019 X Parameter Webcast 2011 Final

    47/47

    Thank You to Supporting Partners

    AR RF/Microwave Instrumentation

    Cree

    Focus Microwaves

    Maury Microwave

    Mini-Circuits

    University of Waterloo