Wrap-up of industrial power generation, Turbines I GEOS 24705 ...

35
Wrap-up of industrial power generation, Turbines I GEOS 24705/ ENST 24705 Copyright E. Moyer 2011

Transcript of Wrap-up of industrial power generation, Turbines I GEOS 24705 ...

Page 1: Wrap-up of industrial power generation, Turbines I GEOS 24705 ...

Wrap-up of industrial power generation, Turbines I

GEOS 24705/ ENST 24705

Copyright E. Moyer 2011

Page 2: Wrap-up of industrial power generation, Turbines I GEOS 24705 ...

Tesla’s AC is “three-phase”

3-phase generation animation

http://www.launc.tased.edu.au/online/sciences/physics/3phase/threeph.htm

Page 3: Wrap-up of industrial power generation, Turbines I GEOS 24705 ...

Generators are virtually unchanged in 100 yrs

Stator, 3-phase generator, Brakpan, South Africa, 1897. Photo: Siemens

Stator, 3-phase generator, Wellluck Co., China, 12.5 MW, 2010

Page 4: Wrap-up of industrial power generation, Turbines I GEOS 24705 ...

Industrial generation design specs

•  Generator  should  be  large  for  heat  dissipa3on    •  Voltage  much  higher  than  110  V  to  minimize  resis3ve  hea3ng  

•  Many  loops  to  increase  voltage  and  power  output    •  No  sliding  mechanisms  that  carry  big  current:  current  carried  in  stator  

•  Magnet  in  stator,  use  electromagnet  for  bigger  B-­‐field  

•  Mul3ple  poles  if  needed  for  higher  frequencies  

Page 5: Wrap-up of industrial power generation, Turbines I GEOS 24705 ...

Rotor carries electromagnet

Small Hydro Generator rotor - Rotor Assembly Area - Alstom Hydro

Manufacturing site in Galindo (Spain) copyright © 2010 M. Monteaux for Alstom

Old mill rotor (source unknown)

Page 6: Wrap-up of industrial power generation, Turbines I GEOS 24705 ...

Turbo-generator power grew very quickly (though seems to be leveling off)

From Vaclav Smil, “Energy at the Crossroads”

* Requires growth not just in generators but in prime movers that power them * exponential growth in several stages * topping-out of steam P and T ca. 1960

Page 7: Wrap-up of industrial power generation, Turbines I GEOS 24705 ...

First major hydropower station, Niagara Falls, 1895

Adams power station, 10 5MW AC generators. Photo: Tesla Society

Page 8: Wrap-up of industrial power generation, Turbines I GEOS 24705 ...

Hoover Dam hydropower station, upgraded 1961

17 generators, average 120 MW. Photo: source unknown

Page 9: Wrap-up of industrial power generation, Turbines I GEOS 24705 ...

The prime movers driving the world’s electricity supply

Invented  by  Parsons,  1884.  80%  of  world’s  electricity  today  (all  external  combus3on).    Power  growth  rapid:  first  turbine  75  kW  (1890),  by  1912  turbo-­‐generator  system  installed  in  Chicago  (at  Fisk!)  was  25  MW,  -­‐>  50  MW  in  Parson’s  life3me,  >  1  GW  now        Efficiency  gain  rapid:  More  efficient  than  reciproca3ng  engines,  also  simpler  –  fewer  moving  parts.    By  1916  best  demonstrated    ε  ~  37%.  Modern  turbines  average  ~  33%.      Mari:me  use:  demonstra3on  of  turbine-­‐propelled  ship,  the  Turbinia,  1897  Chief  drawback:  high  rota3on  rates  

1.  STEAM  TURBINE  

Page 10: Wrap-up of industrial power generation, Turbines I GEOS 24705 ...

The prime movers driving the world’s electricity supply

Conceived  of  in  1791.  But  no  means  of  prac3cal  building  3l  1903  (Elling).    Power  growth  slow:  no  commercializa3on  3l  1918,  no  rou3ne  use  3l  1930s.  Lowest-­‐cost  new  fossil  genera3on  choice  today.    

2.  GAS  TURBINE  

Page 11: Wrap-up of industrial power generation, Turbines I GEOS 24705 ...

Turbine  diversity:  all  kine3c  -­‐>  kine3c,  and  yet  look  different.  Why?  All  designed  to  use  flowing  fluid  to  rotate  something  –  yet  diversity  of  designs.  

Page 12: Wrap-up of industrial power generation, Turbines I GEOS 24705 ...

Features that may matter to turbine design

•  Fluid  velocity    •  Fluid  density      •  Pressure  drops  -­‐  whether  turbine  works  by  changing  fluid  pressure  (“reac3on  turbine”)  or  just  allowing  molecules  to  push  on  blades  (“impulse  turbine”),  or  something  in  between  (“impulse-­‐reac3on”)  

Page 13: Wrap-up of industrial power generation, Turbines I GEOS 24705 ...

Features that may matter to turbine design

 Wind:        Water  wheel  or  run-­‐of-­‐river  hydro:          Dam  hydro:        Gas  or  steam  turbine:  

Page 14: Wrap-up of industrial power generation, Turbines I GEOS 24705 ...

Features that may matter to turbine design

 Wind:  low  velocity,  low  density,  no  pressure  drop        Water  wheel,  run-­‐of-­‐river  hydro:                            low  velocity,  high  density,  no  pressure  drop        Dam  hydro:  low  velocity,  high  density,  large  p  drop        Gas  or  steam  turbine:                        high  velocity,  low  density,  large  pressure  drop  

Page 15: Wrap-up of industrial power generation, Turbines I GEOS 24705 ...

Steam and gas turbine similarities & differences

Page 16: Wrap-up of industrial power generation, Turbines I GEOS 24705 ...

Steam and gas turbine similarities & differences

     Both  •  Work  by  lefng  high-­‐pressure  gas  expand  •  Blades  of  turbine  are  turned  by  the  “wind”  of  steam  •  Combina3on  impulse-­‐reac3on  turbines  •  To  make  high-­‐pressure  gas,  heat  the  gas  •  Both  are  heat  engines        

Page 17: Wrap-up of industrial power generation, Turbines I GEOS 24705 ...

Steam and gas turbine similarities & differences

Steam  –  Rankine  cycle  •  external  combus3on    •  condensible  species  (so  can’t  raise  temperature  

 adiaba4cally  –  must  put  heat  in  for  latent  heat)  •   Tmax  lower  than  combus3on  temperature          (limited  by  what  boiler  can  withstand)  

•  slow  to  dispatch  (hours  -­‐  must  heat  water  to  make  steam)  •  expensive  to  build  &  install  (needs  firebox,  boiler)    Gas  –  Brayton  cycle  •  internal  combus3on    •  non-­‐condensible  species  •  Tmax  is  gas  is  combus3on  temperature  –  more  efficient  •  fast  to  dispatch  (ca.  10  minutes)  •  cheap  to  build  &  install  (compact,  single  unit)    What’s  not  to  like  about  gas?    …only  that  coal  is  cheaper!  

Page 18: Wrap-up of industrial power generation, Turbines I GEOS 24705 ...

Gas turbine – internal combustion Why are blades so different on the sides of the turbine?

Image: from LidyaSavitri.wordpress.com; Copyright unknown.

Brayton  cycle  patented  1791  (John  Barber),  first    use  in  piston  engine  1872  (George  Brayton)  

 

First  successful  turbine  build:  1903  (Aegidius  Elling)  

 

…  by  1918  General  Electric  has  a  gas  turbine  division.  

 

Now  generator  of  choice  for  fast  installa3on.  

Page 19: Wrap-up of industrial power generation, Turbines I GEOS 24705 ...

Gas turbine – internal combustion

Where does air/gas enter? What is compression ratio?

Image: from dieselduck.net Copyright: Martin Leduc?

Page 20: Wrap-up of industrial power generation, Turbines I GEOS 24705 ...

Gas turbine – internal combustion

Air-fuel mixture enters from left into compressor, which compresses air 5-20x. Air/fuel ignites in combustor, and expands to right, turning rotor. The rotor powers both a generator and drives the compressor itself

(which can take up ½ the power output of the turbine). Combustion temperatures typically > 1000 C (1300 K) as opposed to ~600 C (900K) for steam. Note that the walls of the turbines must be kept cooler than the gases inside else their metal would degrade, and even so, special steel is required to withstand the high Ts.

Image: from dieselduck.net Copyright: Martin Leduc?

Page 21: Wrap-up of industrial power generation, Turbines I GEOS 24705 ...

Gas turbine thermodynamic cycle: Brayton cycle Two adiabats and two isobars (constant pressure)

Compression and expansion are still nearly adiabatic, as in Carnot cycle. But gas combustion means that heat is input at constant pressure instead of constant temperature, and cooling also takes place at constant pressure.

Intrinsically less efficient than the Carnot cycle since heat isn’t added at hottest temperature and removed at coolest. But temperatures are hot! (> 1300 K). Efficiency depends on compressor P too.

Carnot efficiency would be ~75%. Ideal Brayton cycle ~ 60%. Commercial units actually ~ 40-50%.

Diagram: Wikimedia Commons

Page 22: Wrap-up of industrial power generation, Turbines I GEOS 24705 ...

Steam turbine – external combustion

Image: from LidyaSavitri.wordpress.com; Copyright unknown.

Page 23: Wrap-up of industrial power generation, Turbines I GEOS 24705 ...

Steam turbine thermodynamic cycle: Rankine cycle Trying to be adiabats and isotherms, but limited by Clausius-Clapeyron

The Clausius-Clapeyron relationship of liquid and vapor prevents raising T at constant entropy, so cannot make the same rectangular T-S diagram as the Carnot cycle. Stages: In stage 1-2 the liquid is compressed by a pump. 2-3 has two segments: heating of liquid, then evaporation to make steam. If you then try to expand adiabatically, water would condense. Superheating the steam (3-3’) both prevents condensation on expansion and also produces more work. Superheat also makes the cycle more Carnot-like and more efficient: think of making the cycle on a T-S plot more rectangular. After expansion the steam is brought into contact with cooling water and condensed (4-1 or 4’-1) at constant temperature. Diagram: Wikimedia Commons

Page 24: Wrap-up of industrial power generation, Turbines I GEOS 24705 ...

Steam turbine thermodynamic cycle: Rankine cycle Adding more reheat cycles improves efficiency

Most modern steam systems use two separate expansion stages (3-4) and (5-6), with the steam re-heated in between. The steam is never allowed to condense. In the second reheat stage some cooling is needed to drop temperature so that steam can condense (the segment by the “6”).

Ideal  Rankine-­‐with-­‐reheat  efficiency  for  1000  F  (550  C  or  800  K)  is  ~40%.      

Carnot  would  be  ~60%.  

Actual  turbines  get  a  bit  over  30%  

Rankine  not  worse  than  Brayton  –  ε  would  be  about  the  same  if  a  steam  turbine  could  be  run  as  hot  as  a  gas  turbine.   Diagram: Wikimedia Commons

Page 25: Wrap-up of industrial power generation, Turbines I GEOS 24705 ...

Steam turbine efficiency is achieved with multiple stages Original idea: Parsons, 1910s

Steam enters at left. Blades increase in size as P drops. Steam is removed and reheated (and superheated) before being reintroduced at the low-pressure stage.

Diagram: Govt. of Australia

Page 26: Wrap-up of industrial power generation, Turbines I GEOS 24705 ...

Steam turbines no longer increasing in efficiency

From Vaclav Smil, “Energy at the Crossroads”

•  As seen before.. steam P and

T topped out ca. 1960

•  Efficiency stalled as well

•  A bit below ideal Rankine limit

•  Note that average is below best possible – best is closer to ideal Rankine

unnecessary waste heat in condensation stage? turbine design?

Page 27: Wrap-up of industrial power generation, Turbines I GEOS 24705 ...

Steam turbines are virtually unchanged in 100 yrs

Low-pressure turbine rotor, 50 MW turbine, ca. 1929

Photo: “The Steam Turbine and Other Inventions of Sir Charles Parsons, O.M.” R.H. Parsons, 1942.

Copyright, The British Council

Low-pressure turbine rotor, for installation in a nuclear power plant (Siemens SST5 9000)

Photo: Siemens Power Generation

Where  is  steam  injected?  How  do  you  know?  

Page 28: Wrap-up of industrial power generation, Turbines I GEOS 24705 ...

Turbo-generators are virtually unchanged in 100 yrs

Turbine hall with steam turbine & generators, ca 20 MW each,1929 Photo: “The Steam Turbine and Other Inventions of Sir Charles Parsons, O.M.” R.H. Parsons, 1942. Copyright, The British Council

Page 29: Wrap-up of industrial power generation, Turbines I GEOS 24705 ...

Turbo-generators are virtually unchanged in 100 yrs

The turbine hall of Bruce Power's Bruce A nuclear power plant in Ontario, Canada. Photo: Bruce Powell

Page 30: Wrap-up of industrial power generation, Turbines I GEOS 24705 ...

Steam and gas turbine similarities & differences

Steam  –  Rankine  cycle  •  external  combus3on    •  condensible  species  (so  can’t  raise  temperature  

 adiaba4cally  –  must  put  heat  in  for  latent  heat)  •   Tmax  lower  than  combus3on  temperature          (limited  by  what  boiler  can  withstand)  

•  slow  to  dispatch  (hours  -­‐  must  heat  water  to  make  steam)  •  expensive  to  build  &  install  (needs  firebox,  boiler)    Gas  –  Brayton  cycle  •  internal  combus3on    •  non-­‐condensible  species  •  Tmax  is  gas  is  combus3on  temperature  –  more  efficient  •  fast  to  dispatch  (ca.  10  minutes)  •  cheap  to  build  &  install  (compact,  single  unit)    What’s  not  to  like  about  gas?    …only  that  coal  is  cheaper!  

Page 31: Wrap-up of industrial power generation, Turbines I GEOS 24705 ...

Selected power plant options

Coal-­‐fired  power  (steam  turbine)    cheap  fuel,  lowest  efficiency  (30-­‐35%)  

 Natural  gas  power  plant  (gas  turbine)  

 expensive  fuel,  bener  efficiency  (40-­‐50%)    Combined-­‐cycle  power  (gas  +  steam)  

 expensive  fuel,  high  efficiency  (55-­‐60%)    IGCC  (coal-­‐fired  gas  +  steam)  

 cheap  fuel,  high  efficiency  (55-­‐60%  -­‐  cost  of  making  syngas)    Cogenera:on  (generally  gas,  re-­‐use  waste  heat)  

 expensive  fuel,  can  be  highest  “efficiency”  (>  80%)        since  waste  heat  is  no  longer  wasted  

 

Page 32: Wrap-up of industrial power generation, Turbines I GEOS 24705 ...

Coal-fired power always involves steam

Fuel burns to make heat; heat boils water to make steam; steam drives steam turbine; turbine spins generator; generator make electricity. Items to note: 1) Compressor (not labeled here) compresses liquid water to high pressure. 2) Steam is recirculated, to permit use of purified water and a final drop in P below atmospheric, as in Newcomen engine. Operating conditions: Firebox T ~ 2200 C, Steam T ~ 550 C (800 K), P up to 200 atmospheres.

Diagram: Tennessee Valley Authority

Page 33: Wrap-up of industrial power generation, Turbines I GEOS 24705 ...

Combined cycle = combining gas and steam Exhaust from gas turbine still high enough T to be hot side of steam turbine

Get ~ 40% from gas turbine, 60% waste. But then get 30% of that waste back. 0.3*0.6 ~ 0.2. Total efficiency rises to 60%!

Note: combined cycle is not the same as cogeneration (also called “combined heat and power” or CHP). It means you literally have combined two different turbines. Image: Copyright unknown.

Gas supply

Page 34: Wrap-up of industrial power generation, Turbines I GEOS 24705 ...

IGCC = gasification of coal, then combining gas and steam

This is “integrated gasification – combined cycle”, or IGCC. Image: copyright unknown.

Page 35: Wrap-up of industrial power generation, Turbines I GEOS 24705 ...

Cogeneration borrow waste heat for industry or buildings Usually done with gas

Image: Cangen Energy

Why gas?

Because cogeneration is usually done in the home or business, where you couldn’t burn coal…