Worms Exploring Geometrical Features of Phase Transitions · [N. Prokof’ev & B. Svistunov, Phys....

24
C Q T Worms Exploring Geometrical Features of Phase Transitions Wolfhard Janke Computational Quantum Field Theory Institut für Theoretische Physik Universität Leipzig, Germany Collaboration with Thomas Neuhaus (Jülich) and Adriaan Schakel (Recife) MECO36 Lviv, Ukraine, 05 – 07 April 2011 Wolfhard Janke Worms Exploring Geometrical Features of Phase Transitions

Transcript of Worms Exploring Geometrical Features of Phase Transitions · [N. Prokof’ev & B. Svistunov, Phys....

Page 1: Worms Exploring Geometrical Features of Phase Transitions · [N. Prokof’ev & B. Svistunov, Phys. Rev. Lett. 87 (2001) 160601] Wolfhard Janke Worms Exploring Geometrical Features

CQ T

Worms Exploring Geometrical Features ofPhase Transitions

Wolfhard Janke

Computational Quantum Field TheoryInstitut für Theoretische PhysikUniversität Leipzig, Germany

Collaboration with Thomas Neuhaus (Jülich) and Adriaan Schakel (Recife)

MECO36Lviv, Ukraine, 05 – 07 April 2011

Wolfhard Janke Worms Exploring Geometrical Features of Phase Transitions

Page 2: Worms Exploring Geometrical Features of Phase Transitions · [N. Prokof’ev & B. Svistunov, Phys. Rev. Lett. 87 (2001) 160601] Wolfhard Janke Worms Exploring Geometrical Features

CQ T

MotivationTheoryResults

Motivation

Develop geometrical picture of phase transitions andcritical phenomena in terms of clusters or clusterboundaries (= loops in 2d) or high-temperature graphs

Relate thermodynamic critical exponents to the fractaldimension of the geometrical objects

Monte Carlo “worm” algorithm: Combined statistics ofloops (= energetic sector) and chains (= magnetic sector)[N. Prokof’ev & B. Svistunov, Phys. Rev. Lett. 87 (2001) 160 601]

Wolfhard Janke Worms Exploring Geometrical Features of Phase Transitions

Page 3: Worms Exploring Geometrical Features of Phase Transitions · [N. Prokof’ev & B. Svistunov, Phys. Rev. Lett. 87 (2001) 160601] Wolfhard Janke Worms Exploring Geometrical Features

CQ T

MotivationTheoryResults

High-temperature series expansion of the Ising model

Partition function (Vs spins, Vb bonds):

Z =∑

{si}

eβP

b si sj =∑

{si}

{nb}

b

βnb

nb!(sisj)

nb

= 2Vs∑

{nb}′

b

βnb

nb!

= 2Vs coshVb β∑

{nb=0,1}′

K Nb

{nb}: on each bond nb = 0, 1, 2, . . .{nb}′:

nb = even at each site (no open chains){nb = 0, 1}′: only nb = 0 (non-active) or nb = 1 (active)Nb =

∑Vbb=1 nb, K = tanh β (partial summation of graphs)

Wolfhard Janke Worms Exploring Geometrical Features of Phase Transitions

Page 4: Worms Exploring Geometrical Features of Phase Transitions · [N. Prokof’ev & B. Svistunov, Phys. Rev. Lett. 87 (2001) 160601] Wolfhard Janke Worms Exploring Geometrical Features

CQ T

MotivationTheoryResults

Leads automatically to a loop gas with fugacity parameterK = tanh β (in arbitrary d )

Zloop =∑

G

K NbNNl

Nb: number of occupied bonds, Nl : number of loops,N: number of loop colors for O(N) model (N = 1 for Ising)

Contains in general intersection points (“knots”)

Pure loop gas on 2d honeycomb lattice (as used here) withcoordination number z = 3 and critical parameter:

Kc =[

2 + (2− N)1/2]−1/2

= 1/√

3 (N = 1)

Wolfhard Janke Worms Exploring Geometrical Features of Phase Transitions

Page 5: Worms Exploring Geometrical Features of Phase Transitions · [N. Prokof’ev & B. Svistunov, Phys. Rev. Lett. 87 (2001) 160601] Wolfhard Janke Worms Exploring Geometrical Features

CQ T

MotivationTheoryResults

Compact honeycomb lattice with periodicity in three directions

Wolfhard Janke Worms Exploring Geometrical Features of Phase Transitions

Page 6: Worms Exploring Geometrical Features of Phase Transitions · [N. Prokof’ev & B. Svistunov, Phys. Rev. Lett. 87 (2001) 160601] Wolfhard Janke Worms Exploring Geometrical Features

CQ T

MotivationTheoryResults

Exploiting duality in 2d

honeycomb lattice←− duality −→ triangular (hexagonal) lattice

K = tanh β = e−2β̃

β on honeycomb lattice (Kc = 1/√

3)β̃ on triangular lattice (β̃c = 1

4 ln 3)

high temperature T ←− duality −→ low temperature T̃high-T graphs ←− duality −→ cluster boundaries (Peierls)

Wolfhard Janke Worms Exploring Geometrical Features of Phase Transitions

Page 7: Worms Exploring Geometrical Features of Phase Transitions · [N. Prokof’ev & B. Svistunov, Phys. Rev. Lett. 87 (2001) 160601] Wolfhard Janke Worms Exploring Geometrical Features

CQ T

MotivationTheoryResults

Spin-spin correlation function 〈si0sj0〉

〈si0sj0〉 =∑

{si}

si0sj0eβP

b si sj /Z ≡ Z (i0, j0)/Z

High-temperature series expansion of Z (i0, j0) containsadditional open chain running from i0 to j0 immersed into thebackground of loops

Pure loop gas is a special case for j0 = i0

Wolfhard Janke Worms Exploring Geometrical Features of Phase Transitions

Page 8: Worms Exploring Geometrical Features of Phase Transitions · [N. Prokof’ev & B. Svistunov, Phys. Rev. Lett. 87 (2001) 160601] Wolfhard Janke Worms Exploring Geometrical Features

CQ T

MotivationTheoryResults

β = 0.30 β = 0.44

β = 0.45 β = 0.70

Wolfhard Janke Worms Exploring Geometrical Features of Phase Transitions

Page 9: Worms Exploring Geometrical Features of Phase Transitions · [N. Prokof’ev & B. Svistunov, Phys. Rev. Lett. 87 (2001) 160601] Wolfhard Janke Worms Exploring Geometrical Features

CQ T

MotivationTheoryResults

β = 0.30 β = 0.44

β = 0.45 β = 0.70

Wolfhard Janke Worms Exploring Geometrical Features of Phase Transitions

Page 10: Worms Exploring Geometrical Features of Phase Transitions · [N. Prokof’ev & B. Svistunov, Phys. Rev. Lett. 87 (2001) 160601] Wolfhard Janke Worms Exploring Geometrical Features

CQ T

MotivationTheoryResults

Monte Carlo simulations: Worm update

Qualitative description:

Move end points of (open) chain through background ofloopsConnects loop and chain sector by reopening existingloops or creating new ones by self-closing or a “back bite”,leaving a loop behind

Quantitative update prescription (nb = 0, 1):

choose randomly either end point of the chainchoose randomly any of the links attachedupdate nb −→ n′

b = 1− nb with acceptance probability

Paccept = min(

1, K 1−2nb

)

(in effect: Paccept = K < 1 for bond creation, and alwaysaccept bond deletion)

Wolfhard Janke Worms Exploring Geometrical Features of Phase Transitions

Page 11: Worms Exploring Geometrical Features of Phase Transitions · [N. Prokof’ev & B. Svistunov, Phys. Rev. Lett. 87 (2001) 160601] Wolfhard Janke Worms Exploring Geometrical Features

CQ T

MotivationTheoryResults

If start and end point of the chain are nearest neighbors, mixedloop/chain configuration can be turned into a pure loop gas –possible switch between magnetic and energetic sector

We always attempt to close the chain and, if accepted, proceedby randomly choosing a new link among all links of the latticefor the new location of the worm. The bond variable on that linkis accepted/rejected as usual.

Slightly different from Prokof’ev/Svistunov’s original proposal[PRL 87 (2001) 160 601], but close to Wolff’s version [NPB 810(2009) 491].

Wolfhard Janke Worms Exploring Geometrical Features of Phase Transitions

Page 12: Worms Exploring Geometrical Features of Phase Transitions · [N. Prokof’ev & B. Svistunov, Phys. Rev. Lett. 87 (2001) 160601] Wolfhard Janke Worms Exploring Geometrical Features

CQ T

MotivationTheoryResults

Basic scaling properties of loop gases

Distribution of loop length n, similar to percolation:

ℓn ∼ n−d/D−1e−θn , θ ∝ (K − Kc)1/σ .

Given: Tuning parameter K and dimension d (here d = 2)

Measured: Fractal dimension D and exponent σ, governingapproach to criticality at Kc

At criticality: Radius of gyration Rg, end-to-end distance Re (foropen chains):

〈R2g〉 ∝ 〈R2

e〉 ∼ n2/D

Wolfhard Janke Worms Exploring Geometrical Features of Phase Transitions

Page 13: Worms Exploring Geometrical Features of Phase Transitions · [N. Prokof’ev & B. Svistunov, Phys. Rev. Lett. 87 (2001) 160601] Wolfhard Janke Worms Exploring Geometrical Features

CQ T

MotivationTheoryResults

Fractal dimension D for 2d models:

D = 1 + 1/2κ

(SLE classification, Coulomb gas, conformal field theory)

2d Ising: κ = 4/3 −→ D = 11/8 = 1.375

Parameter σ:

σ =1

νD

2d Ising: ν = 1 −→ σ = 8/11 = 0.727272 . . .

Wolfhard Janke Worms Exploring Geometrical Features of Phase Transitions

Page 14: Worms Exploring Geometrical Features of Phase Transitions · [N. Prokof’ev & B. Svistunov, Phys. Rev. Lett. 87 (2001) 160601] Wolfhard Janke Worms Exploring Geometrical Features

CQ T

MotivationTheoryResults

Results

Distribution ℓn of loop length n at criticality

1

10

100

1000

10000

100000

1e+006

1e+007

1e+008

1e+009

1e+010

10 100 1000 10000

n

ℓ n

Honeycomb lattice (L = 352); straight line: ℓn ∝ n−2/D−1 withD = 11/8 (bump for n > 2000: winding loops)

Wolfhard Janke Worms Exploring Geometrical Features of Phase Transitions

Page 15: Worms Exploring Geometrical Features of Phase Transitions · [N. Prokof’ev & B. Svistunov, Phys. Rev. Lett. 87 (2001) 160601] Wolfhard Janke Worms Exploring Geometrical Features

CQ T

MotivationTheoryResults

Distribution zn of open chains at criticality (L = 352)Inset: Log-log plot of L2/

n zn = L2/χ ∝ L2−γ/ν = Lη vs L

0

50000

100000

150000

200000

250000

300000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

3 3.5 4 4.5 5 5.5 6 6.5

n

z n

Inset: 2-parameter fit: η = 0.2498(26) ≈ 1/4 (χ2/dof= 1.87)

Wolfhard Janke Worms Exploring Geometrical Features of Phase Transitions

Page 16: Worms Exploring Geometrical Features of Phase Transitions · [N. Prokof’ev & B. Svistunov, Phys. Rev. Lett. 87 (2001) 160601] Wolfhard Janke Worms Exploring Geometrical Features

CQ T

MotivationTheoryResults

Distribution Pn(r) of the end-to-end distance r of open chains atcriticality with # steps n = 615, 1230, 1845 fixed (L = 352)

0

1

2

3

4

5

6

0 50 100 150 200 250 300

61512301845

r

105P

n(r

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1 1.2

61512301845

r/n1/Dn2/

DP

n

Perfect scaling collapse with D = 11/8. Scaling function is∝ tϑ exp(−btδ); t = r/n1/D , ϑ = 3/8, δ = (1− 1/D)−1 = 11/3

Wolfhard Janke Worms Exploring Geometrical Features of Phase Transitions

Page 17: Worms Exploring Geometrical Features of Phase Transitions · [N. Prokof’ev & B. Svistunov, Phys. Rev. Lett. 87 (2001) 160601] Wolfhard Janke Worms Exploring Geometrical Features

CQ T

MotivationTheoryResults

Average squared end-to-end distance (of chains) and radius ofgyration of chains and loops ∝n2/D, D =11/8 =1.375 (L= 352)

0

500

1000

1500

2000

2500

3000

200 400 600 800 1000 1200 1400 1600 1800

end-to-endopen

closed

n

1 5〈R

2 e〉,〈R

2 g〉

〈R2e〉: D = 1.3755(31) = 1.0004(23)Dexact

〈R2g〉: D = 1.3789(55) = 1.0028(40)Dexact (for chains)

Wolfhard Janke Worms Exploring Geometrical Features of Phase Transitions

Page 18: Worms Exploring Geometrical Features of Phase Transitions · [N. Prokof’ev & B. Svistunov, Phys. Rev. Lett. 87 (2001) 160601] Wolfhard Janke Worms Exploring Geometrical Features

CQ T

MotivationTheoryResults

Average length of winding loops 〈nw 〉 ∝ LD on a honeycomblattice of linear extent L at criticality

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

3 3.5 4 4.5 5 5.5 6 6.5

ln L

ln〈n

w〉

2-parameter fit: D = 1.37504(32) = 1.00003(24)Dexact

(χ2/dof= 1.13)

Wolfhard Janke Worms Exploring Geometrical Features of Phase Transitions

Page 19: Worms Exploring Geometrical Features of Phase Transitions · [N. Prokof’ev & B. Svistunov, Phys. Rev. Lett. 87 (2001) 160601] Wolfhard Janke Worms Exploring Geometrical Features

CQ T

MotivationTheoryResults

Probability ΠL that one or more loops wind the honeycomblattice of linear size L at criticality

0.506

0.508

0.51

0.512

0.514

0.516

0.518

0.52

0 50 100 150 200 250 300 350 400

L

ΠL

Pw for L = 160:

P0 = 0.48802(74)P1 = 0.49960(73)P2 = 0.01236(14)P3 = 0.0000299(64)P4 = 0

P0 + P2 + P4 + . . .= 0.50038

Average: ΠL = 0.51257(27) > 0.5 (χ2/dof= 1.08)

Wolfhard Janke Worms Exploring Geometrical Features of Phase Transitions

Page 20: Worms Exploring Geometrical Features of Phase Transitions · [N. Prokof’ev & B. Svistunov, Phys. Rev. Lett. 87 (2001) 160601] Wolfhard Janke Worms Exploring Geometrical Features

CQ T

MotivationTheoryResults

Binary variable: 0 = even, 1 = odd winding numbers

Average IL(β̃) (L = 32, 64, 96):

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.25 0.255 0.26 0.265 0.27 0.275 0.28 0.285 0.29 0.295 0.3

326496

β̃

I L

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-1 -0.5 0 0.5 1

326496

(β̃ − β̃c)L1/νI L

crossing point at β̃c : scaling plot with ν = 1IL(β̃c) = 0.50024(21) straight line at 3/4:

# “odd”/# “even” configs

Wolfhard Janke Worms Exploring Geometrical Features of Phase Transitions

Page 21: Worms Exploring Geometrical Features of Phase Transitions · [N. Prokof’ev & B. Svistunov, Phys. Rev. Lett. 87 (2001) 160601] Wolfhard Janke Worms Exploring Geometrical Features

CQ T

MotivationTheoryResults

Derivative of IL(β̃) at criticality: I′L(β̃) ∝ L1/ν

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250 300 350 400

0.494 0.496 0.498 0.500 0.502 0.504 0.506 0.508

0 100 200 300 400

L

I′ L(β̃

c)

2-parameter fit: 1/ν = 1.0001(15) (χ2/dof= 1.01)Inset: IL(β̃c) = 0.50024(21).

Wolfhard Janke Worms Exploring Geometrical Features of Phase Transitions

Page 22: Worms Exploring Geometrical Features of Phase Transitions · [N. Prokof’ev & B. Svistunov, Phys. Rev. Lett. 87 (2001) 160601] Wolfhard Janke Worms Exploring Geometrical Features

CQ T

MotivationTheoryResults

Summary

Worm update perfect tool for loop-gas approachto fluctuating fields on a lattice

Concepts developed for self-avoiding walks(N = 0) generalized to Ising (N = 1) loops

Extend study in future work to other numbers ofcolors N

Collaboration with Thomas Neuhaus (FZ Jülich) andAdriaan Schakel (then Leipzig, now Recife, Brazil)

WJ, T. Neuhaus & A.M.J. Schakel, Nucl. Phys. B 829 [FS] (2010) 573

Wolfhard Janke Worms Exploring Geometrical Features of Phase Transitions

Page 23: Worms Exploring Geometrical Features of Phase Transitions · [N. Prokof’ev & B. Svistunov, Phys. Rev. Lett. 87 (2001) 160601] Wolfhard Janke Worms Exploring Geometrical Features

CQ T

MotivationTheoryResults

Acknowledgements

eee

Deutsche Forschungsgemeinschaft (DFG)

EU RTN Network “ENRAGE”

Graduate School “BuildMoNa”

DFH–UFA Graduate School Nancy–Leipzig

NIC Computer time, JSC, Forschungszentrum Jülich

THANK YOU !

Wolfhard Janke Worms Exploring Geometrical Features of Phase Transitions

Page 24: Worms Exploring Geometrical Features of Phase Transitions · [N. Prokof’ev & B. Svistunov, Phys. Rev. Lett. 87 (2001) 160601] Wolfhard Janke Worms Exploring Geometrical Features

CQ T

MotivationTheoryResults

Advertisements

WORKSHOP CompPhys11

12th International NTZ–Workshop onRecent Developments in Computational Physics,24 – 26 November 2011, ITP, Universität Leipzig

www.physik.uni-leipzig.de/ j̃anke/CompPhys11

See you there ?

Wolfhard Janke Worms Exploring Geometrical Features of Phase Transitions