Worldline Approach to the Casimir Effect

95
Worldline Approach to the Casimir Effect Holger Gies Institute for Theoretical Physics Heidelberg University Holger Gies Worldline Approach to the Casimir Effect

Transcript of Worldline Approach to the Casimir Effect

Worldline Approach to the Casimir Effect

Holger Gies

Institute for Theoretical PhysicsHeidelberg University

Holger Gies Worldline Approach to the Casimir Effect

”during my first years at Philips I did some workthat even Pauli regarded as physics ...

H.B.G. Casimir, Autobiography, 1983

Holger Gies Worldline Approach to the Casimir Effect

A view on the quantum vacuum.

Holger Gies Worldline Approach to the Casimir Effect

A view on the quantum vacuum.

Holger Gies Worldline Approach to the Casimir Effect

A view on the quantum vacuum.

Holger Gies Worldline Approach to the Casimir Effect

A view on the quantum vacuum.

Holger Gies Worldline Approach to the Casimir Effect

A view on the quantum vacuum.

a

Holger Gies Worldline Approach to the Casimir Effect

Casimir effect.

B origin:

E =12

∑~ω[a]− 1

2

∑~ω[∞]

B Hendrik B.G. Casimir 1948:

FA

= − π2

240~ ca4

relativistic: cquantum: ~“universal”: no other parameters

kgm · s2 =

kg ·m2

sms

1m4

Holger Gies Worldline Approach to the Casimir Effect

Casimir’s derivation

B boundary conditions:

Et

∣∣∣plates

= Bn

∣∣∣plates

= 0

a

B “vacuum energy”

12

∑~ω =

~2

A∫

d2kt

(2π)2

∞∑n=−∞

ω~kt ,n, ω~kt ,n

= c

√~k2

t +(πn

a

)2

Holger Gies Worldline Approach to the Casimir Effect

Casimir’s derivation

B boundary conditions:

Et

∣∣∣plates

= Bn

∣∣∣plates

= 0

a

B “vacuum energy”

12

∑~ω =

~2

A∫

d2kt

(2π)2

∞∑n=−∞

ω~kt ,n, ω~kt ,n

= c

√~k2

t +(πn

a

)2

→∞

Holger Gies Worldline Approach to the Casimir Effect

Casimir’s derivation

B boundary conditions:

Et

∣∣∣plates

= Bn

∣∣∣plates

= 0

a

B subtract energy for very large separations: lima→∞nπa = kz

∆E(a) =~cA4π

∫dkt kt

[ ∞∑n=−∞

ω~kt ,n− 2a

π

∫dkz

√k2

t + k2z

]

B difference of two divergent quantities: Regularization required !

Holger Gies Worldline Approach to the Casimir Effect

Casimir’s regulator

B smooth cutoff function F (k/km)

F (k/km) = 1 for k � km

F (k/km) = 0 for k →∞

“The physical meaning is obvious: for veryshort waves (X-rays, e.g.) our plate ishardly an obstacle at all and therefore thezero-points energy of these waves will notbe influenced by the position of the plate.”

Holger Gies Worldline Approach to the Casimir Effect

Casimir’s regulator

B smooth cutoff function F (k/km)

F (k/km) = 1 for k � km

F (k/km) = 0 for k →∞

B regularization~2

∑ω → ~

2

∑ω F (ω/km)

B remove the regulator

∆E(a) = limkm→∞

∆E reg(a) = −c~π2A720a3

Holger Gies Worldline Approach to the Casimir Effect

Another view on the quantum vacuum.

B ρ→ 0: “pneumatic vacuum”

Holger Gies Worldline Approach to the Casimir Effect

Another view on the quantum vacuum.

B QFT: quantum fluctuations BUT: . . . just a picture !

Holger Gies Worldline Approach to the Casimir Effect

Another view on the quantum vacuum.

B Boundary conditions: Casimir effect

Holger Gies Worldline Approach to the Casimir Effect

Another view on the quantum vacuum.

B Probing the quantum vacuum, e.g., by external fields:“modified quantum vacuum”

Holger Gies Worldline Approach to the Casimir Effect

Another view on the quantum vacuum.

=⇒ modified light propagation: “QV ' medium” (PVLAS,BMV,Q&A)

Holger Gies Worldline Approach to the Casimir Effect

Another view on the quantum vacuum.

B Heat bath: quantum & thermal fluctuations

Holger Gies Worldline Approach to the Casimir Effect

Another view on the quantum vacuum.

+++++

−−−−−

ee + −

B electric fields: Schwinger pair production “vacuum decay”

Holger Gies Worldline Approach to the Casimir Effect

Universal tool: effective action Γ.

B Quantum vacuum with background A∫fluctuations → Γ[A]

Γ[A] =⇒

δΓ[A]δA = 0, quantum Maxwell equations → (light prop.)

EQV = Γ[A]T , FCasimir = −∂EQV

∂A , Casimir force

W = 2Im Γ[A]VT , Schwinger pair production rate

(HEISENBERG&EULER’36; WEISSKOPF’36; SCHWINGER’51)

(CASIMIR’48)

Holger Gies Worldline Approach to the Casimir Effect

Universal tool: effective action Γ.

B Quantum vacuum with background A∫fluctuations → Γ[A]

Γ[A] = − ln∫Dφe−

R−|D(A)φ|2+m2|φ|2 =

=∑

λ

ln(λ2 + m2

)

B spectrum of quantum fluctuations:

ScQED: −D(A)2 φ = λ2 φScalar: (−∂2 + A(x))φ = λ2 φ

Holger Gies Worldline Approach to the Casimir Effect

Universal tool: effective action Γ.

Γ[A] =∑

λ

ln(λ2 + m2

)=

Problem solved, “in principle”

find spectrum λ for a given background Asum over spectrum

Holger Gies Worldline Approach to the Casimir Effect

Universal tool: effective action Γ.

Holger Gies Worldline Approach to the Casimir Effect

Universal tool: effective action Γ.

Holger Gies Worldline Approach to the Casimir Effect

Universal tool: effective action Γ.

Γ[A] =∑

λ

ln(λ2 + m2

)=

BUT:

In general practice:

spectrum {λ} not knownanalyticallyspectrum {λ} not bounded∑

λ →∞ (regularization)renormalization

Holger Gies Worldline Approach to the Casimir Effect

Measurements of the Casimir force.

B Experimental milestones

Sparnaay 1958,van Blokland & Overbeek 1978,Lamoreaux 1997,Mohideen & Roy 1998,

∆FF ' 100%

∆FF ' 50%

∆FF ' 5%

∆FF ' 1%

B Sparnaay’s fundamental requirements:

clean plate surfacesprecise measurement of separation acontrol of electrostatic potentials Vres

Holger Gies Worldline Approach to the Casimir Effect

Casimir meets AFM.

Atomic-Force-Microscope Measurements(MOHIDEEN ET AL.’98)

B Sphere-Plate configuration (DERJAGUIN ET AL.’56)

Force sensitivity: 10−17 N

Holger Gies Worldline Approach to the Casimir Effect

Casimir meets AFM.

Atomic-Force-Microscope Measurements(MOHIDEEN ET AL.’98)

200 µm polystyrene sphere with gold coating 85.6± 0.6 nm

Holger Gies Worldline Approach to the Casimir Effect

Casimir meets AFM.

Atomic-Force-Microscope Measurements(MOHIDEEN ET AL.’98)

B Sphere-Plate configuration (DERJAGUIN ET AL.’56)

B Results

B Corrections:

material

{surface roughness

finite conductivity

finite temperature

geometry

}QFT

Holger Gies Worldline Approach to the Casimir Effect

Casimir Morphology.(BINNS’05)

Holger Gies Worldline Approach to the Casimir Effect

Casimir Morphology.

a

R

F = − π2

240~ ca4 A F = ? F = ?

Holger Gies Worldline Approach to the Casimir Effect

Casimir vs. Newton.

B gravity:

F12 = − Gm1m2

|r1 − r2|2r12

B quantum force:

F‖ = − π2

240~ ca4 A

?Holger Gies Worldline Approach to the Casimir Effect

Casimir Edge Effects.

F‖ = − π2

240~ca4 · A

F1si = ?

(CF. BRESSI,CARUGNO,ONOFRIO,RUOSO’02)

Holger Gies Worldline Approach to the Casimir Effect

Casimir Edge Effects.

F‖ = − π2

240~ca4 · A

B parallel-plate

energy density

Holger Gies Worldline Approach to the Casimir Effect

Casimir Edge Effects.

F‖ = − π2

240~ca4 · A

F1si = ?

Holger Gies Worldline Approach to the Casimir Effect

Casimir Edge Effects.

F‖ = − π2

240~ca4 · A

F1si = ?

Holger Gies Worldline Approach to the Casimir Effect

Casimir Edge Effects.

F‖ = − π2

240~ca4 · A

F1si = ?

Holger Gies Worldline Approach to the Casimir Effect

Worldline representation of Γ.

B pedestrian approach

Γ[A] =∑

λ

ln(λ2 + m2

)= Tr ln

[−(D(A))2 + m2

]

= −∞∫

1/Λ2

dTT

e−m2T Tr exp[D(A)2 T

]︸ ︷︷ ︸

=〈x|eiH(iT )|x〉

= −∞∫

1/Λ2

dTT

e−m2T N∫

x(T )=x(0)

Dx(τ) e−

TR0

dτ“

x24 +ie x·A(x(τ)

Holger Gies Worldline Approach to the Casimir Effect

Worldline representation of Γ.

B pedestrian approach

Γ[A] =∑

λ

ln(λ2 + m2

)= Tr ln

[−(D(A))2 + m2

]

= −∞∫

1/Λ2

dTT

e−m2T Tr exp[D(A)2 T

]︸ ︷︷ ︸

=〈x|eiH(iT )|x〉

= −∞∫

1/Λ2

dTT

e−m2T N∫

x(T )=x(0)

Dx(τ) e−

TR0

dτ“

x24 +ie x·A(x(τ)

Holger Gies Worldline Approach to the Casimir Effect

Worldline representation of Γ.

Γ[A] = −∞∫

1/Λ2

dTT

e−m2T N∫

x(T )=x(0)

Dx(τ) e−

TR0

dτ“

x24 +ie x·A(xτ)

x(T ) =

(FEYNMAN’50)

...(HALPERN&SIEGEL’77)

(POLYAKOV’87)

(FERNANDEZ,FRÖHLICH,SOKAL’92)

...(BERN&KOSOWER’92; STRASSLER’92)

(SCHMIDT&SCHUBERT’93)

(KLEINERT’94)

Holger Gies Worldline Approach to the Casimir Effect

Worldline representation of Γ.

Γ[A] = −∞∫

1/Λ2

dTT

e−m2T N∫

x(T )=x(0)

Dx(τ) e−

TR0

dτ“

x24 +ie x·A(xτ)

x(T ) =

Worldline approach:

effective action Γ ∼∫

closed worldlines x(τ)

worldline ∼ spacetime trajectory of φ fluctuationsgauge-field interaction ∼ “Wegner-Wilson loop”finding {λ} and

∑λ done in one finite (numerical) step (HG&LANGFELD’01)

Holger Gies Worldline Approach to the Casimir Effect

Worldline Numerics.

∫x(1)=x(0)

Dx(t) −→nL∑

l=1

, nL = # of worldlines

→ statistical error

x(t) −→ x i , i = 1, . . . ,N (ppl)→ systematical error

−→ → spacetime remains continuous

Holger Gies Worldline Approach to the Casimir Effect

Trajectory of a Quantum Fluctuation.

B Feynman diagram (conventionally in momentum space)

Holger Gies Worldline Approach to the Casimir Effect

Trajectory of a Quantum Fluctuation.

B worldline (artist’s view)

Holger Gies Worldline Approach to the Casimir Effect

Trajectory of a Quantum Fluctuation.

B worldline numerics: N = 4 points per loop (ppl)

Holger Gies Worldline Approach to the Casimir Effect

Trajectory of a Quantum Fluctuation.

B worldline numerics: N = 10 points per loop (ppl)

Holger Gies Worldline Approach to the Casimir Effect

Trajectory of a Quantum Fluctuation.

B worldline numerics: N = 40 points per loop (ppl)

Holger Gies Worldline Approach to the Casimir Effect

Trajectory of a Quantum Fluctuation.

B worldline numerics: N = 100 points per loop (ppl)

Holger Gies Worldline Approach to the Casimir Effect

Trajectory of a Quantum Fluctuation.

B worldline numerics: N = 1000 points per loop (ppl)

Holger Gies Worldline Approach to the Casimir Effect

Trajectory of a Quantum Fluctuation.

B worldline numerics: N = 10000 points per loop (ppl)

Holger Gies Worldline Approach to the Casimir Effect

Trajectory of a Quantum Fluctuation.

B worldline numerics: N = 100000 points per loop (ppl)

Holger Gies Worldline Approach to the Casimir Effect

Propertime T .

T ∼ regulator scale of smeared momentum shells

Holger Gies Worldline Approach to the Casimir Effect

Propertime T .

B “Measuring” the Wegner-Wilson loop exp(−ie

∮dx · A

)

Holger Gies Worldline Approach to the Casimir Effect

Casimir Effect.

B Casimir effect = “strong-field QFT”

S =12

(∂φ)2 +m2

2φ2 + Aφ2

A(x) = λ

∫S

dσ[δ(x − xσ) + δ(x − xσ)

]

(BORDAG,HENNIG,ROBASCHIK’92; GRAHAM ET AL.’03)

B Casimir energy on the worldline:

E [A] = −12

∞∫0

dTT

e−m2T N∫

x(T )=x(0)

Dx(τ) e−

TR0

dτ“

x24 +A(x(τ))

Holger Gies Worldline Approach to the Casimir Effect

Benchmark test: parallel plates

Holger Gies Worldline Approach to the Casimir Effect

Benchmark test: parallel plates

Holger Gies Worldline Approach to the Casimir Effect

Benchmark test: parallel plates

B for finite m, λ, a

(BORDAG,HENNIG, ROBASCHIK ’92) (HG,LANGFELD,MOYAERTS ’03)

Holger Gies Worldline Approach to the Casimir Effect

Casimir Effect: curvature effects on the worldline

S2

(a) (b) (c)

S1

Holger Gies Worldline Approach to the Casimir Effect

Casimir Effect: curvature effects on the worldline

−εR

4

0.012

0.01

0.008

0.006

0.004

0.002

0

Holger Gies Worldline Approach to the Casimir Effect

Casimir Effect: curvature effects on the worldline

(THANKS TO K. KLINGMULLER)

Holger Gies Worldline Approach to the Casimir Effect

Casimir Effect: sphere above plate.

0.001 0.01 0.1 1 10 100a/R

0

0.5

1

1.5

2

EC

asim

ir/E

PFA

(a/R

<<

1)

PFA plate-basedPFA sphere-based

Holger Gies Worldline Approach to the Casimir Effect

Casimir Effect: sphere above plate.

0.001 0.01 0.1 1 10 100a/R

0

0.5

1

1.5

2E

Cas

imir/E

PFA

(a/R

<<

1)

PFA plate-basedPFA sphere-basedworldline numerics

Holger Gies Worldline Approach to the Casimir Effect

Casimir Effect: sphere above plate.

0.001 0.01 0.1 1 10 100a/R

0

0.5

1

1.5

2E

Cas

imir/E

PFA

(a/R

<<

1)

PFA plate-basedPFA sphere-basedoptical approximationworldline numerics"KKR" multi-scattering map

(HG,LANGFELD,MOYAERTS’03; JAFFE,SCARDICCHIO’04; BULGAC,MAGIERSKI,WIRZBA’05; HG,KLINGMÜLLER’05)

Holger Gies Worldline Approach to the Casimir Effect

Future Casimir curvature measurements.

B cylinder-plate geometry (BROWN-HAYES,DALVIT,MAZZITELLI,KIM,ONOFRIO’05)

(EMIG,JAFFE,KARDAR,SCARDICCHIO’06; HG,KLINGMULLER’06; BORDAG’06)

Holger Gies Worldline Approach to the Casimir Effect

Casimir Edge Effects.

F‖ = −γ‖~ca4 · A

F1si = ?

(CF. BRESSI,CARUGNO,ONOFRIO,RUOSO’02)

Holger Gies Worldline Approach to the Casimir Effect

Casimir Edge Effects.

F‖ = −γ‖~ca4 · A

F1si = ?

(CF. BRESSI,CARUGNO,ONOFRIO,RUOSO’02)

Holger Gies Worldline Approach to the Casimir Effect

Casimir Edge Effects.

F‖ = −γ‖~ca4 · A

F1si = ?

(CF. BRESSI,CARUGNO,ONOFRIO,RUOSO’02)

Holger Gies Worldline Approach to the Casimir Effect

Casimir Edge Effects.

Σ2

aΣ1

Holger Gies Worldline Approach to the Casimir Effect

Casimir Edge Effects.

εC

asim

ira

4

0

-0.002

-0.004

-0.006

-0.008

-0.01

-0.012

-0.014

Holger Gies Worldline Approach to the Casimir Effect

Casimir Edge Effects.

B effective description of a finite plate

area A boundary C

F = −γ‖~ca4 Aeff,

B effective area: Aeff ' A + γ1siγ‖

aC, γ1si = 5.23(2)× 10−3

(HG,KLINGMULLER’06)

Holger Gies Worldline Approach to the Casimir Effect

Casimir Edge Effects.

B effective description of a finite plate

area A boundary C

F = −γ‖~ca4 Aeff,

B effective area: Aeff ' A + γ1siγ‖

aC, γ1si = 5.23(2)× 10−3

(HG,KLINGMULLER’06)

Holger Gies Worldline Approach to the Casimir Effect

Further Worldline Applications.

Heisenberg-Euler effective actions, spinor QED,flux tubes, quantum-induced vortex interactions

(HG,LANGFELD’01; LANGFELD,MOYAERTS,HG’02)

thermal fluctuations, free energies(HG,LANGFELD’02)

+++++

−−−−−

ee + − “spontaneous vacuum decay”, Schwinger pairproduction in inhomogeneous electric fields

(HG,KLINGMÜLLER’05)

nonperturbative effective actions(HG,SÁNCHEZ–GUILLÉN,VÁZQUEZ’05)

Holger Gies Worldline Approach to the Casimir Effect

Higher loops per pedes

B Feynman diagrammar:

∼∫

dDp1

(2π)D

∫dDp2

(2π)D

∏i

∆i(qi)

Holger Gies Worldline Approach to the Casimir Effect

Higher loops per pedes

B Worldline:

∼∫

T

⟨ ∫dτ1dτ2 ∆(x(τ1), x(τ2))

⟩x

B photon propagator in coordinate space

∆(x1, x2) =

∫dDp

(2π)D1p2 eip(x1−x2) =

Γ(D−2

2

)4πD/2

1|x1 − x2|D−2

Holger Gies Worldline Approach to the Casimir Effect

Higher loops per pedes

B Worldline:

∼∫

T

⟨e−ie

Hdx·A(x)

∫dτ1dτ2 ∆(x(τ1), x(τ2))

⟩x

Holger Gies Worldline Approach to the Casimir Effect

Higher loops per pedes

B Feynman diagrammar:

+ ∼∫

dDp1

(2π)D

∫dDp2

(2π)D

∫dDp3

(2π)D

∏i

∆i(qi)

+

∫dDp1

(2π)D

∫dDp2

(2π)D

∫dDp3

(2π)D

∏i

∆i(qi)

Holger Gies Worldline Approach to the Casimir Effect

Higher loops per pedes

B Worldline:

+

∼∫

T

⟨ ∫dτ1dτ2dτ3dτ4 ∆(x(τ1), x(τ2))∆(x(τ3), x(τ4))

⟩x

B both diagrams in one expression

Holger Gies Worldline Approach to the Casimir Effect

Higher loops per pedes

B Worldline:

+

∼∫

T

⟨ (∫dτ1dτ2 ∆(x(τ1), x(τ2))

)2 ⟩x

B both diagrams in one expression

Holger Gies Worldline Approach to the Casimir Effect

Higher loops per pedes

B Worldline, all possible photon insertions:

∑∼

∫T

⟨exp

(−e2

2

∫dτ1dτ2 ∆(x(τ1), x(τ2))

) ⟩x

=⇒ “quenched approximation” (further charged loops neglegted)(FEYNMAN’50)

Holger Gies Worldline Approach to the Casimir Effect

Systematics: small-Nf expansion

+ + + . . .

∼ Nf

∫T

⟨e−

e22

R R∆

⟩x

+ N2f

∫T 1,T 2

⟨F2{x1, x2}

⟩x1,x2

+ N3f

∫T 1,T 2,T 3

⟨F3{x1, x2, x3}

⟩x1,x2,x3

+ . . .

=⇒ “particle-~ expansion” (HALPERN&SIEGEL’77)

=⇒ arbitrary g, “small” A (. . . but not perturbative in A)

Holger Gies Worldline Approach to the Casimir Effect

A scalar model in quenched approximation

φ: “charged” matter field, A: “scalar” photon

L(φ,A) =12

(∂µφ)2 +12

m2φ2 +12

(∂µA)2 − i2

h Aφ2.

well-defined perturbative expansionwell-defined small-Nf expansion∼ h Aφ2 superrenormalizable, [h] = 1, in D = 4imaginary interaction ∼ QED

(. . . imaginary Wick-Cutkosky model)

Holger Gies Worldline Approach to the Casimir Effect

Photon effective action

B quenched approximation

ΓQA[A] =

∫x

12

(∂µA)2 − 12(4π)2

∫ ∞

0

dTT 3 e−m2T

⟨eih

RdτA e−h2 V [x ]

⟩x

= , (1)

B Worldline self-interaction potential

h2 V [x ] :=h2

8π2

∫ T

0dτ1dτ2

1|x1 − x2|2

Holger Gies Worldline Approach to the Casimir Effect

Self-interaction potential

Holger Gies Worldline Approach to the Casimir Effect

Self-interaction potential

Holger Gies Worldline Approach to the Casimir Effect

Quenched effective action

B soft-photon effective action, A ' const. ( . . . á la Heisenberg-Euler)

ΓQA[A] = − 12(4π)D/2

∞∫0

dTT 1+D/2 e−m2T eihAT

⟨e−h2 V [x ]

⟩x

=

B PDF analysis⟨e−h2 V [x ]

⟩x

=

∫dV Px(V ) e−h2V

Holger Gies Worldline Approach to the Casimir Effect

Renormalized effective action(HG,SANCHEZ-GUILLEN,VAZQUEZ’05)

ΓQA,R[A] = − 132π2

∫d4x

∞∫0

dTT 3 e−m2

RT(

eihAT − 1− ihAT +(hAT )2

2

)

×

β + h2

8π2 T

)1+α

, α ' 0.79, β ' 13.2

0.5 1 1.5 2A

-0.002

-0.0015

-0.001

-0.0005

Re G 8h=1<

0.5 1 1.5 2A

-0.8

-0.6

-0.4

-0.2

Re G 8h=5<

Holger Gies Worldline Approach to the Casimir Effect

Massless Limit?

B one-loop small-φ-mass limit: IR divergence

Γ1-loop[A]∣∣

hAm2

R�1 ' −

164π2

∫d4x (hA)2 ln

hAm2

R

B quenched small-φ-mass limit: finite

ΓQA,R[A]|mR=0 = −[−Γ(−2− α)] cos π

25−3απ2(1−α)βα

∫d4x (hA)2

(Ah

[1+O((A/h))]

=⇒ break-down of massless limit ∼ artifact of perturbation theory

. . . large log’s summable

Holger Gies Worldline Approach to the Casimir Effect

Conclusions.

Probing the quantum vacuum by strongfields, Casimir boundaries, etc . . .

. . . brings QFT to the desktop

“quantum fields meet micro mechanics”

Worldline numerics :

efficient tool

intuitive picture

Holger Gies Worldline Approach to the Casimir Effect

Conclusions.

Probing the quantum vacuum by strongfields, Casimir boundaries, etc . . .

. . . brings QFT to the desktop

“quantum fields meet micro mechanics”

Worldline numerics :

efficient tool

intuitive picture

Holger Gies Worldline Approach to the Casimir Effect

Conclusions.

Probing the quantum vacuum by strongfields, Casimir boundaries, etc . . .

. . . brings QFT to the desktop

“quantum fields meet micro mechanics”

Worldline numerics :

efficient tool

intuitive picture

Holger Gies Worldline Approach to the Casimir Effect

Holger Gies Worldline Approach to the Casimir Effect

Fermions on the worldline I.

B Grassmann loops

Γ1spin = ln det

[γµ∂µ + ieγµAµ + m

]= − 1

2(4π)D/2

∫ ∞

1/Λ2

dTT 1+D/2 e−m2T

∫PDx∫

ADψ e−

R T0 dτLspin

Lspin =14

x2 + iexµAµ+12ψµψ

µ − ieψµFµνψν

Holger Gies Worldline Approach to the Casimir Effect

Fermions on the worldline II.

B spinor QED (parity-even part):

Γ =− 1

2

(4π)D2

∫dDxCM

∞∫1/Λ2

dTT D

2 +1e−m2T

⟨Wspin[A]

⟩x

Wspin[A] = W [A] × PT exp

ie2

T∫0

dτ σµνFµν

Fσ Fσ

FσFσ

FσFσFσ

FσFσ

FσFσ

Holger Gies Worldline Approach to the Casimir Effect

Fermions on the worldline III.

B Spin factor (STROMINGER’80,POLYAKOV’88)

Γ[A] =12

1(4π)D/2

∫ ∞

0

dTT (1+D/2)

e−m2T⟨

e−ieH

dxA(x) Φ[x ]⟩

x

Φ[x ] := trγP : ei2

R T0 dτ σω(τ) :

ωµν(τ) =14

limε→0

∫ ε

−ε

dρρ xµ(τ +ρ

2)xν(τ − ρ

2)

(HG&HAMMERLING’05)

Holger Gies Worldline Approach to the Casimir Effect