World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission...

262

Transcript of World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission...

Page 1: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission
Page 2: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission
Page 3: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission
Page 4: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission
Page 5: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission
Page 6: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission
Page 7: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

PB 151361

^ecknlcal <ylote

WORLD MAPS OF F2 CRITICAL

FREQUENCIES AND MAXIMUM

USABLE FREQUENCY FACTORS

U. S. DEPARTMENT OF COMMERCENATIONAL BUREAU OF STANDARDS

Page 8: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

National Bureau of Standards

SEP 2 1 1980

105,354

QC100.U5753

Copy 1

Page 9: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

NATIONAL BUREAU OF STANDARDS

April 1959

WORLD MAPS OF F2 CRITICAL FREQUENCIES ANDMAXIMUM USABLE FREQUENCY FACTORS

Donald H. Zacharisen

This work was prepared in response to

Study Program 60 and Recommendation176 of the International Radio Consulta-tive Committee (CCIR).

NBS Technical Notes are designed to supplement the Bu-reau's regular publications program. They provide a

means for making available scientific data that are of

transient or limited interest. Technical Notes may be

listed or referred to in the open literature. They are for

sale by the Office of Technical Services, U. S. Depart-

ment of Commerce, Washington 25, D. C.

DISTRIBUTED BY

UNITED STATES DEPARTMENT OF COMMERCE

OFFICE OF TECHNICAL SERVICES

WASHINGTON 25, D. C.

Prlce$ 3. 50

uSC0»»->«5-Bl

Page 10: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission
Page 11: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

TABLE OF CONTENTS

Page

I. INTRODUCTION AND HISTORY 1

II. A DESCRIPTION OF WORLD PREDICTION MAPS,

PREDICTION CHARTS AND AIDS 2

III. INSTRUCTIONS FOR USE OF WORLD PREDICTIONMAPS, PREDICTION CHARTS, AND AIDS k

IV. SAMPLE CALCULATIONS 9

V. FIGURES AND TABLES - — - Ik

VI. WORLD PREDICTION MAPS AND PREDICTIONCHARTS - 22

Page 12: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission
Page 13: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

WORLD MAPS OF F2 CRITICAL FREQUENCIES ANDMAXIMUM USABLE FREQUENCY FACTORS

by

Donald' H. Zacharisen

Abstract

This report was prepared for the purpose of present-

ing six months of contour maps and charts for use in pre-

dicting F2-layer maximum usable frequencies. Prediction

maps for each even hour of Greenwich Mean Time and charts

in which time is continuous along the abscissa are given

for the months of January, March, June, July, September

and December.

The four parameters used for predicting MUFs are

foF2 and the ij-000 km MUF factor for a twelve -month running

average Zurich sunspot number of 50, and the rates of

change of foF2 and J+000 km MUF factor with sunspot number.

The first three parameters use a map presentation with GMT

constant over the surface of the map. The fourth param-

eter uses a chart presentation in which the ordinate is

geomagnetic latitude and the abscissa is local time.

1. INTRODUCTION AND HISTORY

The preparation of world prediction maps for use in predict-

ing median maximum usable frequencies (MUFs) for F2-layer trans-

mission has been undertaken at the Central Radio Propagation

Laboratory and it is the purpose of this report to present the

first six months of maps. The prediction maps are prepared for

average conditions.

Construction of these prediction maps is based on the

observed regression of F2 ordinary-wave critical frequency (foF2

)

and F2 maximum usable frequency factor (M-^000, the MUF factor

for a transmission distance of k-000 km, in particular) on the

twelve -month running-average Zurich sunspot number (RASSN) at a

given location, month of the year, and time of day as estimated

from the data collected at many ionospheric sounding stations.

The regression curves are not known precisely, but by now up to

15 points (one for each year) are available for estimating them,

and this information has been considered sufficient to warrant

the construction of world maps of foF2 and M-^000 factor covering

essentially all sunspot numbers. Since the regression curves are

observed to be essentially straight lines over a wide range of

RASSN, every RASSN in that range can be included by giving, for

example, the ordinate to the line (foF2 or M-4000) at RASSN 50

and the slope of the line.

Each final prediction map corresponds to an even hour of

Greenwich Mean Time (GMT) which is also known as Universal Time

(UT), Zebra Time (ZT), or 0° longitude time. To plot the value

of one of the four parameters at any given station for the given

GMT directly from the regression lines, which are given for each

hour of local time (LT), requires an interpolation between adja-

cent hours of LT in general. Linear interpolation would introduce

a systematic error, or bias, which may be substantial due to the

rapid non-linear diurnal variation of foF2 c An alternative, and

the method used, is to draw contour "maps" for each of which the

LT, rather than the GMT, Is constant and the abscissa is GMT as

well as longitude and subsequently to draw the final GMT predic-

Page 14: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

- 2 -

tion maps using as many points as desired from the LT maps.

This procedure is used by Naismith with the monthly predictions

of the Radio Research Station (Bulletin A), Slough, England. A

study of the errors of the procedure described above has been

considered by Crow and Zacharisen. Prediction tables for

points on the surface of the earth at latitudes greater than 35°

North have been prepared by the Radio Physics Laboratory of

Canada

.

Construction of the prediction maps has been greatly facili-

tated by the availability of data collected from many ionospheric

sounding stations for the years beginning about 19^3 or later e

(Earlier data are not always used because of changes in instru-

mentation and methods of scaling.) These data were in a form

suitable for preparing world prediction maps because of their

previous or simultaneous inclusion in the monthly Basic Radio

Propagation Predictions (CRPL Series D), which the Central Radio

Propagation Laboratory has been publishing since July 1, 19^6

(published as IRPL Series D from September 1, 19^ to June 1,

19^6). A description of the preparation and use of these pre-

dictions may be found in Sections 6 .k and 6 6 of Reference 3 and

in Reference k.

II. A DESCRIPTION OF WORLD PREDICTION MAPSPREDICTION CHARTS AND AIDS

Figure k shows the map projection that was used in producing

all of the world prediction maps. This map will be used in deter-

mining the location of the desired communication path endpoints.

Figure 5, a great circle chart centered on the equator, is based

on the same projection used in the above map of the world. The

two will be used together in order to determine the great circle

communication path lying between a transmitting and receiving sta-

tion that are of interest to the user. The world prediction maps

are all presented for each even hour of the day. The prediction

charts of slope of regression line of M-4000 factor on RASSN do

not utilize a map of the world but instead have time of day rather

than longitude as the abscissa. Hence there are fewer charts to

represent this parameter than there are maps to represent the

other parameters. It was determined, from the results of a pilot

study, that it would be of doubtful value to attempt to specify

this parameter in much detail.

Figure 6, a distance nomogram, is used to obtain F2-layer

MUFs for communication paths of intermediate distances (0 to ^000

km) between the values of foF2 and F2-4000 MUF provided by the

world prediction maps and prediction charts. The nomogram has

F2-zero-MUF rather than foF2 along the left vertical axis. The

required value of F2-zero-MUF may be obtained by adding an

approximate value of one-half of the gyrofrequency (f ) to the

value of foF2 obtained from the prediction maps* This value of

Page 15: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

- 3 -

If is obtained from Table 1 in which it is assumed that f

depends only on geomagnetic latitude. The geomagnetic latitude,

for a given geographic latitude and longitude, may be obtained

from Table 2.5

The prediction maps for foF2 at RASSN 50 and M-lj-000 factor

at RASSN 50 are used respectively with those for the slope of

regression of foF2 on RASSN and the prediction charts of the

slope of regression of M-4000 factor on RASSN . The prediction

maps of the first two parameters above give the value of foF2 or

M-lj-OOO factor at a RASSN of 50 for a given geographical location.

The prediction maps of the third parameter give the rate of

change of foF2 with RASSN for a given geographical location.

The prediction charts of the fourth parameter give the rate of

change of M-^000 factor with RASSN for a given geomagnetic lati-

tude. For example, a value from the map of foF2 at RASSN 50

used with a corresponding value from the map of the rate of

change of foF2 with RASSN will give the value of foF2 for essen-

tially all values of RASSN.

The prediction maps and aids included in this report are

seen to require an additional factor before the desired MUFs can

be calculated. This missing factor is a predicted value of

RASSN such as is supplied five months in advance of the month in

question by CRPL using the McNish-Lincoln method.

There is a rather simple set of equations that may be used

to obtain MUFs and optimum working frequencies (OWFs) from the

world prediction maps, prediction charts, and aids included in

this report and a predicted value of RASSN » The following sym-

bols, some abbreviated from regular usage, will be defined for

their use in presenting these equations:

R = predicted RASSN

f (R) = median ordinary-wave critical frequency(median foF2) at RASSN R (denotes medianfoF2 as a function of R),

f (50) = median foF2 at RASSN 50.

b„ = slope of the regression line of median foF2on RASSN (the rate of change of median foF2with RASSN).

M(R) = median maximum usable frequency factor fora transmission distance of ^000 kilometers(median M-4000) at RASSN R.

M(50) = median M-^000 at RASSN 50.

bM = slope of the regression line of median M-^000factor on RASSN (rate of change of medianM-lj-000 factor with RASSN).

F2-zero-MUF(R) = maximum usable frequency for a transmissiondistance of zero kilometers at RASSN R.

F2-^-000-MUF(R) = maximum usable frequency for a transmissiondistance of ^000 kilometers at RASSN R.

frr = gyrofrequency.n

f (R) = f (50) + (R-50)bf

.

M(R) = M(50) + (R-50)bM

.

f (R) + fH/2= median F2-zero-MUF(R).

[f(R)][M(R)] = median F2-^000-MUF(R).

f (50), bf , and M(50) are read from their respective maps at the

geographical location of the midpoint of the great-circle path

between the transmitting and receiving stations b,, is readM

from a chart at the geomagnetic latitude of the midpoint of the

Page 16: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

- k -

great circle path between the transmitting and receiving sta-

tions-. The predicted value of RASSN sent out to the users of

this report will be one that would be expected to give the user

the best results in predicting MUFs rather than one that will

predict most closely a correct value of RASSN. Even with this

condition, the value of RASSN that will be sent to the user will

follow closely the predicted or expected value of RASSN.

The world prediction maps of foF2 at RASSN 50 and M-^000

factor at RASSN 50 were drawn from median values and so using

the values from these maps in the above equations will result in

median values of F2-4000-MUF(R) and F2-zero-MUF(R) The median

value is of course the middle value when the observed data are

arranged in order of magnitude. Oommunications at the MUF calcu-

lated from these prediction maps and charts should be effective

approximately 50$ of the time.

A value of F2-MUF that should be effective approximately 90$

of the time may be easily obtained from the above median F2-MUF.

It might be found by taking 85$ of the median F2-4000-MUF(R) and

85$ of the median F2-zero-MUF(R), but it is simpler just to take

85$ of the median F2-MUF for which the distance interpolation has

already been made. Both" methods can be seen to yield the same

results.

III. INSTRUCTIONS FOR USE OF WORLD PREDICTIONMAPS, PREDICTION CHARTS AND AIDS

A good deal of the material in this section has been takeniirectly from National Bureau of Standards Circular 465.^ This

circular is probably familiar to many users of this report and

it was felt that as it has stood the test of many years of serT

vice that, where applicable, the use of the same text would aid

in determining F2-layer MUFs from the material included herein.

It is suggested that this report be placed in a standard three

-

ring, looseleaf notebook and the staples removed so that the

pages will lie flat.

1. Determination of Great-Circle Distances andLocations of Transmission Control Points

Figure k is a map of the world. Figure 5 is a chart to the

same scale as Figure 4, on which the solid-line curves crossing

the equator at two points l80° apart represent great circles.

The numbered dot-dash lines crossing the great circles indicate

distances along them in thousands of kilometers. In using Fig-

ures k and 5, proceed as follows:

(a) Place a piece of transparent paper over the map,

Figure 4, and draw the equatorial line (zero degrees) and the

120 °W longitude line. Place dots over the locations of the

transmitting and receiving stations. Also mark the Greenwich

meridian (0°) for use in determining GMT from the prediction

charts of slope of regression line of M-^000 factor on RASSN.

(b) Place this transparency over the chart, Figure 5, and,

keeping the equatorial line of the transparency always on the

equatorial line of Figure 5, slide the transparency horizontally

until the terminal points marked on it either fall on the same

great circle or are the same proportional distance between adja-

cent great-circle curves Q Draw in the great-circle path which

passes through the terminal points. The paths between Washing-

ton, D. C. and Miami, Florida, and Washington, D u C. and Trieste

Page 17: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

- 5 -

are shown in their correct positions on Figure 2.

(c) For paths shorter than 1+000 km, locate the midpoint of

the path, keeping the transparency in position on Figure 5 and

using as a distance scale the points at which the numbered lines

in Figure 5 cross the path as drawn on the transparency. The

midpoint of the Washington-Miami path is at M on Figure 5.

(d) For paths longer than ^000 km, designating the ends as

the A-end and B-end, respectively, locate on the path and mark

with a dot the following "control points", scaling the distances

as in (c) above:

Points A and B, 2000 km from each end. These points

for the Washington Trieste path are shown in Figure 5«

2. Calculation of Maximum Usable Frequenciesand Optimum Working Frequencies

2.1 Determination of MUF and 0WF for distances lessthan or equal to ^000 km

(a) The use of a work sheet similar to that of Figure 7 is

suggested. Put a check in the space "Path less than or equal to

i+000 km "

.

(b) To determine the MUF:

(l) Place the great circle transparency over the map

of foF2 at RASSN 50 for 0000 hours GMT and keep the equa-

torial line of the transparency over the equatorial line of

the map and the 120 °W line of the transparency over the

120°W line of the map (ignoring the Greenwich meridian for

the present).

(2) Read the value of foF2 for the midpoint of the

path and enter as f(50) in Column a. of Figure 7«

(3) Repeat for the 0200, 0^00, 0600, etc. maps.

(h) Repeat steps (l), (2), and (3) for the maps of

the slope of the regression line of foF2 on RASSN and again

for the maps of M-1+000 factor at RASSN 50 and enter values

as b„ in Column b. and as M(50) in Column e., respectively,

of Figure 7.

(5) Compute the value of (R-50), using the predicted

value of R for the desired month, and enter this value in

Columns c. and g. of Figure 7«

(6) From Figure k, determine the geographical coordin-

ates of the communication path midpoint which was located

in Section l(c) above. Table 2 is then used to find the

geomagnetic latitude of the midpoint. Geographic latitude

is located along the vertical axis of Table 2 and geographic

longitude is located along the horizontal axis. From l80°E

to 36O °E longitude on Table 2 corresponds to the same seg-

ment of the earth as from l80°W to 0° longitude,,

(7) Place the great circle transparency over the pre-

diction chart of the slope of the regression line of M-4000

factor on RASSN and keeping the equatorial line of the trans-

parency over the equatorial line of the chart, mark the geo-

magnetic latitude by a dot on the meridian passing through

the midpoint determined in Section l(c). In other words,

Page 18: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

- 6 -

place the dot at the correct geomagnetic latitude, using

the vertical scale of the prediction chart as a guide, on

a line perpendicular to the equatorial line and passing

through the path midpoint, already on the transparency.

(8) Again keeping the equatorial line of the trans-

parency over the equatorial line of the chart, slide the

transparency horizontally until the Greenwich meridian of

the transparency coincides with 0000 hours on the local

time (LT) scale.

Note that all points on the great-circle path are in their

proper LT relationship to Greenwich because 2k hours on the

time scale of the prediction chart is drawn to the same

scale as 360 of longitude on the world map.

(9) Read the value of the slope of the regression

line of M-14-000 factor on RASSN for the location of the dot

determined in Instruction (7) above and enter as bw inMColumn f . of Figure 7.

Note that on the prediction chart (-) refers to an alge-

braic increase in a negative direction of values inside the

contour so specified while (+) refers to an algebraic

decrease in a negative direction of values inside of the

contour so specified.

(10) Repeat for 0200, 0^00, 0600, etc. on the time

scale. Frequently it will be necessary to make the Green-

wich meridian of the transparency coincide with an imagined

2600, 2800, 3000, etc. on the time scale. A convenient aid

is to place marks at two hour intervals on the equatorial

line of the transparency.

(11) Compute the values for Columns d, h, and i. of

Figure 7 from the equation at the heading of each of these

columns. The equation from Column d. is f (R) = f (50) +

(R-50)b . It might be noted that f(R) and f (50) indicate

the median foF2 as a function of RASSN R and RASSN 50,

respectively, while (R-50)b indicates a multiplication of

the factor (R-50) times b , the rate of change of median

foF2 with RASSN.

(12) Use the value of geomagnetic latitude of the

path midpoint found in Instruction (6) above to obtain one-

half of the gyrofrequency (f_) from Table 1. Add thisn

value of f /2 to the value of median foF2 for all even

hours to obtain median F2-zero-MUF(R) and insert the values

in Column j. of Figure 7.

(13) For each hour place a straightedge between the

values of F2-zero-MUF(R) and F2-^000-MUF(R) at the left-

hand and right-hand sides, respectively, of the grid nomo-

gram, Figure 6, and read the value of the MUF for the

actual path length at the intersection point of the

straightedge with the appropriate vertical distance line,

interpolating between the oblique lines. Enter the values

in Column k. of Figure 7.

(Ik) Calculate the F2-0WF by multiplying each value

of median F2-MUF in Column k. by the factor 0.85 or by

Page 19: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

- 7 -

using the conversion scale contained in Figure 6. Enter

the values in Column 1. of Figurer

J.

2.2 Determination of MUF and OWF for distancesgreater than 4000 km

(a) General Considerations:

The procedure outlined below is based on the follow-

ing assumptions:

(1) That there are F2-layer control points A and B.

(2) That the highest frequency that can be propa-

gated from the A-end to the B-end is the lower of the two

frequencies of A and B above.

(3) That the frequency obtained in (2) is the same

for propagation from the B-end to the A-end.

(b) The use of a work sheet similar to Figure 7 is sugges-

ted. Two sheets should be used with one for the A-end and one

for the B-end. Put a check on both sheets in the space on the

top of the sheet entitled "Path greater than ^000 km ".

For the first sheet, place a check in "A-end " and for the

second sheet, place a check in "B-end ". Column j. will

not be used in either sheet. The lower of A and B will be

entered in Column k. of one of the sheets and the OWF will be

computed from this and entered in Column 1. of the same sheet.

Columns k. and 1. in the second sheet can remain blank or be

filled in with the same information as the first sheet in order

to provide a more complete record.

(c) Locate the control points A and B as explained in

Section 1. For very long paths the "short route" (minor arc of

the great-circle path) and the "long route" (major arc) need be

considered.

(d) To determine the MUF:

(1) Place the great circle transparency over the map

of foF2 at RASSN 50 for 0000 hours GMT and keep the equa-

torial line of the transparency over the equatorial line

of the map and the 120 °W line of the transparency over the

120%/ line of the map (ignoring the Greenwich meridian for

the present).

(2) Read the value of foF2 for control point A and

enter as f(50) in Column a. of Figure r

J. The designation

"A-end" at the top of the work sheet will have been checked

for this work sheet in Instruction 2.2(b) above.

(3) Repeat for the 0200, 0^00, 0600, etc. maps.

(k) Repeat steps (l), (2), and (3) for the maps of

the slope of the regression line of foF2 on RASSN and

again for the maps of M-^000 factor at RASSN 50 and enter

values as b in Column b. and as M(50) in Column e, respec-

tively, of Figure 7.

(5) Compute the value of (R-50), using the predicted

value of R for the desired month, and enter this value in

Columns c. and g. of Figure 7»

Page 20: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

- 8 -

(6) From Figure k, determine the geographical coor-

dinates of the location of control point A which was loca-

ted in Section l(d) above. Table 2 is then used to find

the geomagnetic latitude of A. Geographic latitude is

located along the vertical axis of Table 2 and geographic

longitude is located along the horizontal axis. From l80°E

to 360°E longitude on this chart corresponds to the same

segment of the earth as from 180 W to 0° longitude.

(7) Place the great circle transparency over the pre-

diction chart of the slope of the regression line of M-^000

factor on RASSN and keeping the equatorial line of the

transparency over the equatorial line of the chart, mark

the geomagnetic latitude by a dot on the meridian passing

through control point A determined in Section l(d). In

other words, place the dot at the correct geomagnetic lati-

tude, using the vertical scale of the prediction chart as a

guide, on a line perpendicular to the equatorial line and

passing through control point A, already on the transpar-

ency.

(8) Again keeping the equatorial line of the trans-

parency over the equatorial line of the chart, slide the

transparency horizontally until the Greenwich meridian of

the transparency coincides with 0000 hours on the local time

(LT) scale.

Note that all points on the great-circle path are in their

proper LT relationship to Greenwich because 2k hours on the

time scale of the prediction chart is drawn to the same

scale as 36O of longitude on the world map.

(9) Read the value of the slope of the regression

line of M-^000 factor on RASSN for the location of the dot

determined in Instruction (7) above and enter as b in

Column f . of Figure 7.

Note that on the prediction chart (-) refers to an alge-

braic increase in a negative direction of values inside of

the contour so specified while (+) refers to an algebraic

decrease in a negative direction of values inside of the

contour so specified.

(10) Repeat for 0200, 0^00, 0600, etc. on the time

scale. Frequently it will be necessary to make the Green-

wich meridian of the transparency coincide with an imagined

2600, 2800, 3000, etc. on the time scale. A convenient aid

is to place marks at two hour intervals on the equatorial

line of the transparency.

(11) Compute the values for Columns d, h, and i. of

Figure 7 from the equation at the heading of each of these

columns.

(12) Repeat steps (l) through (ll) for control point

B. The second work sheet which has a check, from Instruc-

tion 2.2(b) above, in the designation "B-end " at the

top of the work sheet will be used to record the values

from control point B»

Page 21: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

- 9 -

(13) For each of the even hours compare the two

values of median F2-lK)00-MUF(R), Column i. of Figure 7,

from the two work sheets representing control point A and

control point B. The lower of the two values, the MUF for

the A-end and the MUF for the B-end, is the MUF for a given

even hour for the transmission path. Record this median

F2-MUF for the path in Column k. of one of the two work

sheets. The same information may be recorded in Column k.

of the other work sheet for a more complete record.

(lk) The values in Column k. are then multiplied by

0.85 or fitted to the conversion scale in Figure 6 in order

to find the F2-0WF for the path. The values obtained are

inserted in Column 1. of the one sheet (or both sheets if

desired) that has the values of median F2-MUF for the path

in Column k.#

IV. SAMPLE MUF AND OWF CALCULATIONS

1. Short Path

The MUF and OWF for the great-circle communication path

between Washington, D. C. (39.0°N, 77-5 °W) and Miami, FLorida

(25.7°N, 80.5 °W) have been determined for average conditions for

the month of June using a RASSN of 35. This was the observed

RASSN for June of 1955 and so the values that have been computed

would correspond to the conditions encountered during that

period. This of course does not mean that this is the value of

RASSN that would have been predicted. It is possible that the

predicted value would fit the conditions encountered more pre-

cisely than the observed RASSN.

The values that have been calculated are shown in Figure 1.

It will be noted here that the values recorded in Columns a, b,

e, and f . of Figure 1 will always apply for the above communica-

tion path for the month of June. The values in Columns c. and

g. will vary from year to year with changes in the value of RASSN,

The values for Columns a, b, e, and f . could therefore be scaled,

for a given month and transmission path, well in advance of the

receipt of the predicted value of RASSN.

2. Long Path

The MUF and OWF for the great-circle communication path

between Washington, D. C. (39.0°N, 77-5°W) and Trieste (^5.7°N,

I3.8 °E) have been determined for average conditions for the

month of December using a RASSN of 8l. This was the observed

RASSN for December of 1955 and so the values that have been

computed would correspond to the conditions encountered during

that period. Again, this does not mean that this is the value

of RASSN that would have been predicted. It is again possible

that the predicted value would fit the conditions encountered

more precisely than the observed RASSN.

The values that have been calculated for the control point

A are shown in Figure 2 and the values calculated for control

point B are shown in Figure 3. Column j. is not used and

Columns k. and 1. contain the same values for both sheets.

Page 22: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

- 10 -

Again, it will be noted that the values recorded in Columns a,

b, e, and f . of both Figures 2 and 3 "will always apply for the

above communication path for the month of December. The values

in Columns c, and g. will vary from year to year with changes in

the value of RASSN. The values for Columns a, b, e, and f

.

could therefore be scaled, for a given month and transmission

path, well in advance of the receipt of the predicted value of

RASSN.

REFERENCES

1. Crow, E. L. and Zacharisen, D. H., "The error in prediction

of F2 maximum usable frequencies by world maps based on

sunspot number", Rroc . of the Symposium on Statistical

Methods in Radio Wave Propagation (U.C.LoA. June 18-2),

1958) W. C. Hoffman ed. Pergamon Press (^7 ms. pp., in

press).

2 Radio Physics Laboratory Report No 1-1- 3, "Prediction of

optimum traffic frequencies for northern latitudes", Defence

Research Board, Canada, November 195^-.

3. NBS Circular 462, "ionospheric radio propagation", U. S. Govt

Printing Office, 19^9.

k. NBS Circular 465, "instructions for the use of basic radio

propagation predictions", U. S. Govt Printing Office, 19^7.

5. Vestine, E. H., Laporte, L., Lange, I., Cooper, C, Hendrix,

W. C, "Description of the earth 1 s main magnetic field and

its secular change 1905-I945", Carnegie Institution of

Washington Publication 578, Washington, D. C D , 1948, pp.

28-33.

6. McNish, A. G., and Lincoln, J. V., "Prediction of sunspot

numbers", Trans, of the Amer. Geophys. Union, Vol. 30,

pp. 673-685, 19^9

o

Page 23: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

- 11 -

SOLUTION OF F2-LAYER TRANSMISSION PROBLEM

From Washington, P. C To Miami, Florida Distance 1500 km. Predicted for June 19

Check correct ones:Path less than or equal to (^) 4000 km„ __X

Path greater than (>) km ; A-end or B-end

Geomagnetic latitude for path midpoint 43 °N ; or for control point A _One-half gyrofrequency for path midpoing 0.6 Mc; or for control point A

or control point B _Mc or control point B Mc

Note : All frequencies are in Megacycles

GMT f(50) bf

(R-50)f GO =

f(50) + (R-50)bf

M(50) bM

(R-50)M(R) =

M(50) + (R-50)bM

[f(R)][M(R)] =

medianF2-4000-MUF(R)

f(R) + fH/2 =

medianF2-zero-MUF(R)

median F2-MUF forpath

F2-0WFfor

patha b c d e f g h i J k 1

frocedurc Scale Scale Compute Compute Scale Scale Compute Compute Compute Compute

Scale for ^4000 km.

Lower of A and B

for > 4000 km.

Compute

00 7*2 o023 -15 6.9 3.42 -.0043 -15 3.48 24o0 7.5 14.0 11.9

02 6.5 .026 -15 6.1 3.35 -.0051 -15 3.43 20.9 6.7 12.3 10.5

04 5.2 .029 -15 4.8 3.25 -.0052 -15 3.33 16.0 5.4 9.6 8.2

06 4.7 .030 -15 4.2 3.21 -.0042 -15 3.27 13.7 4.8 8.3 7.1

08 4.2 .025 -15 3.8 3.32 -.0042 -15 3.38 12.8 4.4 7.8 6.6

10 4.0 o021 -15 3.7 3.35 -.0043 -15 3.41 12.6 4o3 7.6 6.5

12 5*3 .019 -15 5.0 3.40 -.0042 -15 3.46 17o3 5.6 10.3 8.8

14 6.1 .021 -15 5.8 3.23 -.0042 -15 3.29 19.1 6.4 11.4 9.7

16 6.4 .024 -15 6.0 3.14 -.0043 -15 3.20 19.2 6.6 11.6 9.9

18 6.7 .025 -15 6.3 3.16 -.0041 -15 3.22 20.6 6.9 12.3 10.5

20 6.7 .025 -15 6.3 3.18 -.0039 -15 3.24 20.4 6„9 12.3 10.5

22 7.1 .023 -15 6.8 3.25 -.0040 -15 3.31 22.5 7.4 13.4 11.4

Done by

Checked

Solution of short-path transmission problem (less than or equal to 4000 km) - use one work sheet.

Solution of long-path transmission problem (greater than 4000 km) - use two sheets, one for control point A and one for control point B.

FIGURE 1

Page 24: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

- 12 -

SOLUTION OF F2-LAYER TRANSMISSION PROBLEM

From Washington, D. C. To Trieste Distance, 7100 km. Predicted for December 19

Check correct onesPath less than or equal to (^) 4000 km

Path greater than (>) 4000 km X J A-end_ X or B-end

Geomagnetic latitude for path midpoint __

One-half gyrofrequency for path midpoint

; or for control point A 60 °N or control point B

Mc; or for control point A 0.7 Mc or control point B Mc

Note: All frequencies are in Megacycles

GMT f(50) bf

(R-50)fOO =

f (50) + (R-50)bf

M(50) bM

(R-50)m(r) =

m(50) + (R-50)bM

[f(R)J[M(R)J =

medianF2-4000-MUF(R)

f (R) + fH/2 =

medianF2-zero-MUF(R)

median F2-MUF forpath

F2-0WFfor

path

a b c d e f g h i J k 1

Procedure Scale Scale Compute Compute Scale Scale Compute Compute Compute

Scale for ^4000 km.

Compute - jOWer of a and Bfor > 4000 km.

Compute

00 3.7 .028 31 4.6 3.30 -.0028 31 3.21 14.8 9.5 8.1

02 3.0 .015 31 3-5 3.21 -.0029 31 3.12 10.9 10o0 8.5

04 2.9 .013 31 3.3 3.21 -.0029 31 3.12 10.3 9*4 8.0

06 2.8 .016 31 3.3 3.23 -.0029 31 3.14 10.4 8.5 7.2

08 2.8 .016 31 3.3 3.30 -.0029 31 3.21 10.6 10.6 9.0

10 2.7 .015 31 3.2 3.34 -.0029 31 3.25 10.4 10.4 8.8

12 5.2 .029 31 6.1 3.70 -.0030 31 3*61 22.0 22.0 18.7

l4 7.6 .048 31 9.1 3.76 -.0040 31 3.64 33.1 33.1 28.1

16 8.1 .051 31 9.7 3.68 -.0041 31 3.55 34.4 31.4 26.7

18 8.1 .051 31 9.7 3.65 -.oo4i 31 3.52 34.1 20.3 17.3

20 6.7 .047 31 8.2 3.62 -.0035 31 3.51 28.8 13.6 11.6

22 4.8 .039 31 6.0 3.50 -.0029 31 3.41 20.5 10.5 8.9

Done by

Checked

Solution of short-path transmission problem (less than or equal to 4000 km) - use one -work sheet.Solution of long-path transmission problem (greater than 4000 km) - use two sheets, one for control point A and one for control point B.

FIGURE 2

Page 25: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

- 13 -

SOLUTION OF F2-LAYER TRANSMISSION PROBLEM

From Washington, D. C. To Trieste Distance, 7100 km. Predicted for December 19

Check correct ones:Path less than or equal to (^) 4000 km.

Path greater than (>) 4000 km. X ; A-end or B-end X

Geomagnetic latitude for path midpoint __

One-half gyrofrequency for path midpoint

; or for control point A__

Mc; or for control point A

or control point B 57°N

Mc or control point B 0.6 Mc

Note : All frequencies are In Megacycles

GMT f(50) bf

(R-50)

fGO =

f(50) + (R-50)bf

M(50) bM

(R-50)M(R) =

M(50)+(R-50)bM

[f(R)][M(R)] =

medianF2-4000-MUF(R)

f (R) + fH/2 =

medianF2-zero-MUF(R)

median F2-MUF forpath

F2-0WFfor

path

a b c d e f g h i J k 1

Procedure Scale Scale Compute Compute Scale Scale Compute Compute Compute Compute

Scale for ^4000 km.

Lower of A and Bfor > 4000 km.

Compute

00 2.9 .008 31 3.1 3.16 -.0030 31 3.07 9.5 9.5 8.1

02 3.0 .009 31 3.3 3.13 -.0030 31 3.04 10.0 10.0 8.5

04 2.8 .010 31 3.1 3.12 -.0030 31 3.03 9.k 9A 8.0

06 2.4 .011 31 2.7 3.24 -.0030 31 3.15 8.5 8.5 7.2

08 2.9 .018 31 3.5 3.31 -.0030 31 3.22 11.3 10.6 9.0

10 6.5 .038 31 7.7 3.79 - . 0040 31 3.67 28.3 10.4 8.8

12 8.0 .050 31 9.5 3.83 -.0042 31 3.70 35.2 22.0 18.7

14 7.9 .052 31 9.5 3c 73 - . 0043 31 3.60 3^.2 33.1 28.1

16 7.3 .048 31 8.8 3.70 -.0042 31 3.57 3iA 31

A

26.7

18 4.7 .037 31 5-8 3.60 -.0032 31 3.50 20.3 20.3 17.3

20 3.5 .022 31 4.2 3.3^ -.0029 31 3.25 13.6 13.6 11.6

22 3.0 .014 31 3.k 3.19 -.0029 31 3.10 10.5 10.5 8.9

Done by

Checked

Solution of short-path transmission problem (less than or equal to 4000 km) - use one work sheet.

Solution of long-path transmission problem (greater than 4000 km) - use two sheets, one for control point A and one for control point B.

FIGURE 3

Page 26: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

- Ik -

V. FIGURE AND TABLES

Page 27: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

-15-

MAP OF THE WORLD

90°i—80° 100° 120° 140° 160° east 180° west 160° 140° 120° I00 c 80 c 60 £ 40° 20° WEST 0° EAST 20c 40°

90

)0°

CRPL BASE MAP•ooirito cimoiuc*!. »*oj(ctio«

60° 80° 100° 120° 140° 160° east I80°west 160° 140° 120° 100° 80° 60° 40° 20° west 0° east 20° 40 £ «?0°

FIGURE 4

Page 28: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

-16-

GREAT CIRCLE CHART CENTERED ON EQUATOR. SOLID LINES REPRESENT GREAT CIRCLES. NUMBERED DOT-DASH LINES INDICATEDISTANCES IN THOUSANDS OF KILOMETERS.

FIGURE 5

Page 29: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

- 17 -

ii-

oJ J_ "^T^r

Z> U.

I*<Ooo

dfllAJ 0001? LU OOO

LUO2<h-co

QI 'i

c 6rOCO

m CO —o O eu b

6 m CO

r-

ou> ID Ji

o ~ 6

JT — =>

t 3'i'

=O ->

u. <3

u. 9:O I-

«=2

5*5

00t>002

JDIAI 0d3Z

IOOJ

Oh-

u_3

cr

>oo00l-Ll

o1 &o y-

o 92O Q

IBQ 00

i

ocrUJN

< .

cr ooH UJ

LUO

<I LU LU

cr ll-

cd LUz. \~ o2 - §cr *U_ < O£oo*

UJ £==> h-O Q.LU OcrLi- C9z

§£«S8

FIGURE 6

Page 30: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

- 18 -

SOLUTION OF F2-LAYER TRANSMISSION PROBLEM

From To Distance, km. Predicted for 19

Check correct ones:Path less than or equal to (^) 4000 km.

Path greater than (>) 4000 km. ; A-end or B-end

Geomagnetic latitude for path midpoint _One -half gyrofrequency for path midpoint

; or for control point A

Mc; or for control point Aor control point B

Mc or control point B Mc

Note: All frequencies are in Megacycles

GMT f(50) \ (R-50)f(R) =

f (50) + (R-50)bf

M(50)M

(R-50)M(R) =

M(50) + (R-50)!^

[f(R)][M(R)] =

medianF2-4000-MUF(R)

f (R) + fH/2 =

medianF2-zero-MUF(R)

median F2-MUF for

path

F2-0WFfor

path

a b c d e f g h l i k 1

Erocedure Scale Scale Compute Compute Scale Scale Compute Compute Compute Compute

Scale for ^^000 km.

Lower of A and Bfor > 4000 km.

Compute

00

02

0U

06

08

10

12

Ik

16

18

20

22

Done by

Checked

Solution of short-path trans

Solution of long-path transn

mission problem (less than or equal to 4000 km) - use one work sheet.lission problem (greater than ^000 km) - use two sheets, one for control point A and one for control point B.

FIGURE 7

Page 31: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

- 19 -

An Approximate Value of One-halfthe Gyrofrequency (fjj) as a Function

of Geomagnetic Latitude

(For use with values of foF2 sufficiently large with respect to f )rl

\ Gyrofrequency (fR ) Geomagnetic Latitude

0.8 81 °N - 90 °N

0.7 60°N - 80 °N

0.6 4o°N - 59°N

0.5 21°N - 39°N

O.k 20°N - 20°S

0.5 21°S - 39°S

0.6 ^0°S - 59 °S

o.7 6o°s - 8o°s

0.8 8l°S - 90°S

TABLE 1

Page 32: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

- 20 -

' 1

JJco r- in » nr- p- p- p- p-

ri oi p- in *p io io in ioW O CO O ttto to in m m n h oi p in

in in *»• «!• »»•tO rH en p- in* * to to to

to rH oi r- mIO tO CM Ol Ol

tO rl O. 00 COCM CM rl rl rl

* CM O CO COrl rl rl

* CM O CM *1 1

CO CD O CM *r-l r-l r-l

1 1 1 1 1

CO 00 O Ol *ri ri CM Ol CM

1 1 1 1 1

,

to CO O CM toCM ol to to to

1 1 1 1 1

in o en ri ioto to to * *

1 1 1 1 1

ID O Ol rl tO* * * ID ID1 1 1 1 1

IDMDONID ID ID IO CO

1 1 1 1 1

* to CD en r-t

co co co to r~1 1 1 1 1

10 * ID P- 00p- p- c^ S p-

1 1 1 1 1

Oi oi en oit- t^ O p'III

iT)

r

OO tO lD tO CMp- p- r- r- p-

o oo r~ m toP- lO to IO CO

ri 01 P- CO *to lO in in in

N O CO IO Vin m * * * CM O CO IO *

»}• * to to IOCM O CO CO *tO tO CM Ol Ol

10 rl en P IDCM Ol rl rl rl

IO rl Ol P- IDr-t r-t

tO ri ri tO ID

1 1 1

p oi -i to inri rl rl

1 1 1 1 1

r>- en ri to idri rl CM O) Ol

1 1 1 1 1

p- en ri ol *CM CM tO IO IO

1 1 1 1 1

to oo o oi «rtO IO * * fl-it 1 1 1

to 00 O CM ** * ID ID ID1 1 1 1 1

to to en ri toID ID ID CO CO

1 1 1 1 1

CO CO CO P- p-1 • 1 1 1

* ID CO CO 01t> p- p- p- r-

1 1 1 1 1

oi o o oilP- 00 CD pI'll

Oi

m•a

C- «o io to rHp- p- r- p- p-

O CO IO * NP- IO IO to to

o oi p- in toto in m m in

h oi p in ioin t -J tf * h oi p in io

* to io to torH O 00 tO *io to oi oi oi

Ol O 00 CO *Ol Ol rl rl rl

CM O CO CO *rl rl

CM O CM * CO

1 1 1

CO O CM * COrl rl rl rl

1 1 1 1 1

CO O CM * tori CM CM CM CM

1 1 1 1 1

co en ri to idCM CM IO to tO

1 1 1 1 1

P- Ol rl tO IDIO IO TT * *

1 1 1 1 1

P- Ol ri to ID* * ID ID ID1 1 1 1 1

P fll O N *ID lift co CO CO

1 f 1 1 1

CO 00 O ri IOCO to P- P- P-

1 1 1 1 1

ID CO P- CO Olp- p- (^ t^ p-

1 1 1 1 1

o o o 01CO CO CO NIII

r- <o * to >->

p- p- t- r- r-o> p- to * cmto IO IO IO tO

O CO IO * CMio in io in m O CO to «r CM

ID -<T T *T <H oi P U) IO* io to to IO

h oi p in iotO CM CM CM CM

h oi p m wCM rl rl rl rl

ri oi p in iorl

ri ri to m P1 1 1 1

en ri io m p-ri rl rl rl

1 1 1 1 1

en n ol * tori CM CM Ol Ol

1 1 1 1 1

to O CM * tooi to to to to

1 1 1 1 1

oo o oi t toIO * * TT *

1 1 1 1 1

00 O CM * CO* ID ID ID ID

1 1 1 1 1

00 Ol ri IO IDID ID CO CO CO

1 1 1 1 1

P- Ol rl CM *ID IO P P p

1 1 1 1 1

tO P- CO Ol op- r- p- p- oo

1 1 1 1 1

ri ri O OCO CD CD CO'III

o'O

r- to * cm op- p- r- p- p-

en p- in io 1-4

to tO *o CO IOoi c^ in * cmin in in in m o to IO V Ol

ID C"f •! * O CO IO * CM* IO CO to IOO 00 CO * CMto CM CM Ol Ol

O CO to * CMCM rH rl rl rl

O 00 to * CM O CM * CO 00

1 1 1 1

Ol rl io m Pr-l r-t r-l r-l

1 1 1 1 1

en ri to in p-ri CM 01 Ol CM

1 1 1 1 1

en ri to id p-Ol io to to to

1 1 1 1 1

01 rl IO ID P-to * * * *

1 1 1 1 1

Ol rl IO ID P-* ID ID ID ID1 1 1 1 1

CO O CM * COID CO CO CO CO

1 1 1 1 1

00 O CM IO ID<o p- P- P- P-

1 1 1 1 1

CO CD 01 O rir^ p- t^ oo oo

1 1 1 1 1

ri rH r-t OCO CO CO COI'll

hiin

p- m * cm op- p- p- p- p-

CO IO <f I*) HIO IO IO lO IO

oi p- m io r-t

m in m in inoi p- m to r-tT*tr*-» Ol P- ID IO rH

to to to to to 01 Ol Ol Ol OlOl CO CO * CMrl rl rl rl rl

O 00 CO * CMrl

O CM * CO CO

1 1 1 1

O CM * to COri ri ri ri ri

1 1 1 1 1

O CM * CO 00CM CM CM CM CM

1 1 1 1 1

O CM T CO COto to to to rt

1 1 1 1 1

O Ol * CO 00*****1 1 1 1 1

o cm * in o-m in id id ui1 1 1 1 1

Ol r-t IO lO P-ID CO CO CO CO

1 1 1 1 1

Ol rl Ol * toto P- P- p- p-

1 1 1 1 1

p- oi o ri oiP P CO CO 001 1 1 1 1

CM CM ri OCD CD CO COI'll

Oid

P- lO to CM op- p- p- p- p-

co io T M OIO IO IO io IO

00 to * CM oin m in in m en p- m to r-i

^ f «• ** »tOl P- ID IO <-H

to to to to tooi p in w hCM Ol CM Ol Ol

Ol P ID IO Hrl rl rH rl rl

oi p m to ri h to in p oi

1 1 1 1 1

ri to in p- enrl rl rl rl rl

1 1 1 1 1

H 10 Kl p OlOl CM CM CM Ol

1 1 1 1 1

ri tO ID P- Olto to to to to

1 1 1 1 1

ri IO ID CO CD*****1 1 1 1 1

O CM * CO 00ID ID ID ID ID

1 1 1 1 1

O Ol * CO 00to tO cO co co

1 1 1 1 1

o oi to id r-P- P- P- O P-

1 1 1 1 1

CO O rl CM IOP CO CO CO CO1 1 1 1 1

tO CM rl OCD 00 Q0 CO

1 1 1 1

U>Trl

oH

ri

iHinCMl-H

o

P- lO to rl OlP- P- P- p- <o

CO IO » Cll o(O IO lO IO IO

CD CO T CM oin m m in in

CO IO "f 01 ot •* ^ »* ^r

oo to * CM oto to to to to

00 CO * Ol oCM CM CM CM CM

CO CO * CM Orl rH rl rl rl

CO CO * CM O CM * CO CO Orl

1 1 1 1 1

ri io in p oi

1 1 1 1 1

h to in p oiCM CM CM CM CM

1 1 1 1 1

n to id p- ento io to to to

1 1 1 1 1

ri io id p- en*****1 1 1 1 1

ri tO ID P- Olm in m m in1 1 1 1 1

h io m p oiCO tO tD CO CO

1 1 1 1 1

ri Ol * CO 00p- p- p- p- p-

1 1 1 1 1

Ol rl Ol IO *p CO CO CO CO1 1 1 1 1

10 10 CM O00 CO 00 CD

1 1 1 1

r- m to -h enP- P- P- p- to

h m n h oiio to to io m c- to * cm o

in in in in m CO IO T CM o* 'V -d- •"»• f CO tO * CM Oto io to to to

CO tO * CM OCM CM CM Ol Ol

CO CO * CM Orl rH rl rl rl

CO CO * CM O CM * CO 00 Ori

1 1 1 1 1

CM * CO CO Orl rl rl rl CM

1 1 1 1 1

CM * tO CD OCM CM Ol Ol tO

1 1 1 1 1

Ol * CO CO oto to to to *

1 1 1 1 1

CM * to 00 o* t * * in1 1 1 1 1

Ol * CO 00 oID lO ID ID CO

1 1 1 1 1

cm * io p- enCO CO CO CO CO

1 1 1 1 1

ri IO ID P- OlP- P- O P- P-1 f 1 1 1

O Ol IO * TTCO CO CD CO CD

1 1 1 1 1

* to CM OCD CO CO CD'III

p- io to i-i enP- P- P- P- IO

P- lO CO r-t Olto to to to in

o in io r-i atin in m m * PlD IO H Ol

^ ^ ^- * tot^ tO tO r-l OltO tO IO tO CM

p in io h oiOl CM CM Ol r-t

p- ID tO n OirH rl rl rl

P- IO tO rl rl

1

to * to oo orl

1 1 1 1 I

CM * CO CO Orl rl rl rl CM

1 1 1 1 1

Ol * to CO oCM CM Ol CM IO

1 1 1 1 1

CM * CO CO Oio to to to *

1 1 1 1 1

CM * CO CO O* * * * m1 1 1 1 1

Ol * CO 00 oID ID ID ID CO

I 1 1 1 1

CM * CO 00 oCO CO CO CO C^

1 1 1 1 1

CM * CO 00 Olp- p- p- r^ p-

1 1 1 1 1

-I to * in in00 CO CO 00 to

1 1 1 1 1

m to cm oCD CO CO CD1 1 1 1

p m n h idP- P- P- p- to

p in w h oiio io io io m

p- in to r-t oiin in in in « p m io h oi

•«!• T «!•'* tOr- ID IQ rH Olto to to to CM

p- in to r-t enCM Ol CM CM r-t

O ID IO n Olrl rl rl rl

P- in tO rl ri

1

io in p oi riri

1 1 1 1 1

to in p en hr-l r-t r-t r-t CM

1 1 1 1 1

io m p oi hCM CM Ol CM tO

1 1 1 1 1

to id p- en rito to to to *

1 1 1 1 1

io in p oi ri* * * * in1 1 1 1 1

IO lO P Ol rlID ID ID ID to1 1 1 1 1

to id p- en rHCO CO CO CO P-

1 1 1 1 1

CM * to 00 oP- P- P- P- 00

1 1 1 1 1

CM * in to eg00 CD CD CD CD

1 1 1 1 1

lO * 01 oCO CO CO CO

1 1 1 1

p- io to <-t enP- p- p- p- to

p- in to r-i oito io co to in

p- in to r-i oim m m m * P ID IO H Ol

«! «f ^ »!• topm io h oito to 10 to CM

> in io h oiCM CM CM Ol rH

C- ID tO rl Olrl rl rl rl

P- ID tO rl rl

1

io m p oi rirl

1 1 1 1 1

to m p- oi rirl rl rl rl CM1 1 1 1 1

tO ID P- Ol rlCM CM CM CM tO

1 1 1 1 1

io id p- en r-i

to to to to *1 1 1 1 1

tO ID P- Ol rl* * * * ID

1 1 1 1 1

io m p oi riid m in in co

1 1 1 1 1

io m p oi hto CO ID CO P-

1 1 1 1 1

tO ID P- Ol riP- P- P- P- 00

1 1 1 1 1

to * to r^ p-C0 CD CO CO 00

1 1 1 1 1

tO * CM OCO CO CO CD

1 1 1 1

p m n h enP- P- P- P- to

p m w h oito to to to m r- m to r-i oi

n in m m * p m io h oif * <t f IO

P- ID 10 r-t OltO IO tO IO CM

P- lO tO rH OlCM Ol Ol Ol rH

P- ID tO rl 01rl rl rl rl

r- in to ri ri io in p oi hr-l

1 1 1 1 1

to in p- oi riri r-t rl r-l Ol

1 1 1 1 1

IO in P oi riCM CM CM CM tO

1 1 1 t 1

to in p oi rito to to to *

1 1 1 1 1

to id p- en -!* * * * in

1 1 1 1 1

to m p oi riID ID ID ID CO

1 1 1 1 1

to id p- en riCO CO CO CO P-

1 1 1 1 1

tO ID f> 01 riP- P- P- P- 00

1 1 1 1 1

tO ID P- CD COCD O0 CD CO CO

1 1 1 1 1

CO * CM OCO CD CD CO

1 1 1 1

in io m io h oP- P- P- p- * p m io h oi

to io to to iop in io h oim m in m *

p- in to r-t en<• *r ^r «* to

C- ID IO rH OltO tO 10 IO CM

P- in IO rH OlOl Ol CM Ol rH

P- ID tO rl Olr-l r-l r-t r-t

t> in to ri ri

1

io m p- oi ri

1 1 1 1 1

IO ID C^ Ol rlr-t r-l r-t r-l Ci

1 1 1 1 1

io m p oi riCM CM CM CM tO

1 1 1 1 1

to in o en rito to to to *

1 1 1 1 1

to in p oi ri* * * * m

1 1 1 1 1

to in p- en riID ID ID ID CO

1 1 1 1 1

io id p- en riCO CO CO tO P-

1 1 1 1 1

to m p oi hP- P- P- P- 00

1 1 1 1 1

io m p oi toCD CO CO 00 00

1 1 1 1 1

tO * CM OCO CD 00 CO'III

1)

a-

o to io to n enP- P- P- P- lO

p- m to r-t o>io to to to m

p- in to -t oim m m in * P ID IO H Ol* «f < * 10

p m io n oitO tO 10 IO CM

P- in IO rH enCM Ol Ol Ol r-t

P- ID IO rH 01rl rl rl rl

p- m to rH ri

1

to m p- en rir-t

1 1 1 1 1

to id p- en rir-l r-l r-l ri CM

1 1 1 1 1

io in p oi hCM CM CM CM tO

1 1 1 1 1

to in p oi hto to to to *

1 1 1 1 1

to in p- oi ri* * * * in

1 1 1 1 1

to id p- en nID ID ID ID CO

1 1 1 1 1

io id p- en riCO to CO CO p-

1 1 1 1 1

to m p- en r-t

P- P- C- P- CD1 1 1 1 1

tO ID P- Ol CDCO CD CO 00 00

1 1 1 1 1

IO * to oCO CD CO CO

1 1 1 1

III

o p- m to -* oiP- P- P- P- lO

p. in to r-i oito to io to m p m io h oi

IO 1(1 ID lO * P- ID 10 r-t en«* »»• "!• «*" IO

P- in to r-t oiIO tO tO tO CM

p m io h oiOl Ol CM Ol r-t

p m io h oirl rl rl rl

t> ID tO ri ri

1

to m p- en rirl

1 1 1 1 1

to m p oi rir-l r-l r-l r-l (Si

1 1 1 1 1

tO ID P- 01 rlCM CM CM CM tO1 1 1 1 1

to in p- oi rito io to to *

1 1 1 1 1

io in p oi h* * * * m1 1 1 1 1

to in p oi riID ID ID ID to

1 1 1 1 1

IO ID P- 01 rico co io to r-

1 1 1 1 1

to m p oi hP- P- P- P- 00

IO ID P- CD COCO CO CO CO CO

1 1 t 1 1

CO * CM O00 CO 00 CD

1 1 1 1

i:oo p- io to ri oiS p- p- p- to

P- in tO r-l CTl

to to to to m p m io h oiin m id m <t

PlDIOHOl* «* * tJ- to

P- in tO rH OltO IO IO tO CM

P- in IO rH OlCM Ol Ol Ol rH

t^ ID IO rl OlrH rl rl rl

P- ID 10 ri ri

1

to m p- oi rirl

1 1 1 1 1

to m p- en rir-l r-l ri r-l CM

1 1 1 1 1

IO ID P- Ol riCM CM CM CM tO

1 1 1 1 1

tO ID P- Ol rito to to to *

1 1 1 1 1

to in p- en rH* * * * m io in p oi riid id m m co

1 1 1 1 1

to id r> en nCO CO CO CO P-

1 1 1 1 1

to m p- en rHC^ P- P- P- CO

1 1 1 1 1

io m to © hCO CD CD CO CO

1 1 1 1 1

CO * CM O00 00 CD CD

1 1 1 1

a.

nIII

01p- m to r-i enP- p- p- p- to

p in io h oito to io to m p m to h oi

id id m m * P- ID tO r-t Ol«t f f * to

P- in IO rH OlIO tO tO IO CM

p in io h oiCM Ol Ol CM rH

p m io ri oirl rl rl rl

C~ ID IO ri rl

1

to io p- en ri

1 1 1 1 1

to in p- en rirl rl ri ri CM

1 1 1 1 1

tO ID P- Ol riCM CM CM CM tO

1 1 1 1 1

to in p- en rHto to to IO *

1 1 1 1 1

to in p- oi ri* * * * m1 1 1 1 1

to id p- en rHID ID ID ID CO

1 1 1 1 1

IO ID P Ol rito CO CO CO p-

1 1 1 1 1

to in P oi oP- P- P- P- 00

1 1 1 1 1

oi * id t^ r-CO CO CD CD CO

1 1 1 1 1

ID * CM OCD CD CO CO1 1 1 1

it

c3

o0)

P W IO H 01P- P- p- p- <o

p io n h oiio to to io in

p- in to r-t oiin m m in * P- ID tO r-l Ol

*> * «t ij> top in io ri oiIO tO tO tO CM

P- CO IO rH enOl Ol CM CM rH

t^ m to ri oirl rl rl rl

P- ID tO rl ri

1

io in p oi rirl

1 1 1 1 1

to in p- en rir-l ri ri ri CM

1 1 1 1 1

tO ID P- Ol riOl Ol CM CM tO

1 1 1 1 1

tO if) P Ol Hio to to to *

1 1 1 1 1

to in p- oi ri* * * * in

1 1 1 1 1

IO ID P- CO OID ID ID ID ID

1 1 1 1 1

CM * CO 00 oCO CO CO CO (>-

1 1 1 1 1

CM * CO 00 op- r- p- c- oo

1 1 1 1 1

CM to lO to IO00 00 CO CD 00

1 1 1 1 1

ID * CM O00 00 00 CD1 1 1 1

o

00P- lO tO rl OlP- p- p- p- to

p- in to <-t oito to o to m p- in to r-i oi

in m m in <tP- ID IO rH Ol•cf * * * IO

P lO * CD Oto to to to to

00 CO * CM O01 Ol Ol Ol Ol

00 CO * CM Orl rl rH rl rl

00 to * CM o CM * CO CO Or-t

1 1 1 1 1

CM * tO 00 Or-t r-l r-l r-l (St

CM * tO CD OCM CM CM CM tO

CM * CO 00 Oto to to to * CM * tO CO O

* * * * m CM * CO 00 OID ID ID ID tO

1 1 1 1 1

CM * CO 00 oCO to CO CO P-

1 1 1 1 1

cm * in r^ enp- p- p- p- r^

1 1 1 1 1

ri CM * ID ID00 CO CO CD CO

1 1 1 1 1

* 10 CM O00 00 CO CD

1 1 1 1

oCO

p- in to r-t enP- P- p- p- to

p- m * cm oto to to to to

to to «f N oid id m io m CO IO 4 N O

•*•<* ^ •* •*00 ID * CM Oio to to to to

CO to * CM OCM CM Ol CM CM

CO CO * CM Orl rl rl rl rl

00 CO * CM o CM * CO CD Orl

1 1 1 1 1

CM * CO 00 Orl rl ri ri CM

CM * tO CO OCM CM Ol oi to

1 1 1 1 1

CM * CO OO oto to to to * CM * CO 00 o* * * * in

ri to id p- enID ID ID ID ID

1 1 1 1 1

ri to lO P- OlCD CO CO CO CO

1 1 1 1 1

h io in p cop- p- p- p- p-

1 1 1 1 1

O CM tO * *CO CD CO CO CD

1 1 1 1 1

* 10 CM OCO 00 00 CD

1 1 1 1

B

fr-

p- lO to --i op- p- p- p- p-

CO IO * CM oto to IO to to

co to * cm oID ID ID ID ID

CO to <f Ol o***** oo to * CM oto to to to to

00 CO * tO rHoi oi cm oi oi

oi t> m to r+rl rl rH rH rl

01 p- ID tO ri h to m p oi

1 1 1 1 1

ri to m r- oi h io in p oiCM Ol CM CM Ol

1 1 1 1 1

n to in p- ento to to to to

h to m p oi*****1 1 1 1 1

ri to id p- enID ID ID tO ID

n to * CO 00tO CO c0 CO CO

1 1 1 1 1

O CM * CO t>p- p- p- p- p-

1 1 1 1 1

en ri oi to toP CO CO CD CO1 1 1 1 1

tO CM rH OCO CD CO CD

1 1 1 1

•X,

o$

O c^ in * cm op- p- p- p- p-

CO to * CM Oto tO to to to

CO p m to rlio id m in m en r- id to r-i***** Ol p- ID tO rH

to to to to toOl P- ID 10 rHCM Ol Ol Ol Ol

oi p m io rirl rl rl rl rl

Ol P- ID IO r-t <-! to m p- en ri to m t> enrl rl rl rH rl

r-t 10 * CO 00CM CM CM CM CM

O CM * CO 00to to to to IO

O CM * CO CD***** O Ol * CO 00in id id io m O Ol * IO p

CO CO CO CO toen ri io in coid p- p- r- p-

1 1 1 1 1

00 O rl CM CMP CO CO CO CO

1 1 1 1 1

CM CM rH O00 CO CD CD

1 1 1 1

p in >t n op- p- p- p- p-

oo p- in IO rHtO to to io to

en p- m to r-im in in m inOl P ID IO H***** Ol 00 CO * CM

to to to to toO 00 CO * CMto CM Ol Ol Ol

O 00 to * CMCM rl rl rl rl

O 00 CO * CMr-l

O CM * to 00 O CM * CO 00ri ri rl rl rl

O CM * CO CDCM CM Ol Ol CM

O CM * CO 00to to to to to

o oi io m p***** oi h io in p* in m id idoi h w in pID CO CO CO CO

CO O Ol * COCO P- P- p- P-

1 1 1 1 1

p 01 O rl 01P- P- CD 00 CD

1 1 1 1 1

CM CM rl OCO CD CD CD

1 1 1 1

tor- to * cm rip- p- p- p- p-

oi p- in to /-i

to IO to tO tOO 00 IO «>• CMto m in in m O CD to * CM

in * »r * * O 00 CO * Ol* to to to too oo to * OltO CM CM Ol CM

O CO P ID IOCM rl rl rl rl

r-t en p- id tor-l

rH ri to in p-

1 1 1 1

oi ri io in pr-l r-l r-t r-l

1 1 1 1 1

Ol ri IO ID P-rl CM Ol Ol CM

1 1 1 1 1

en ri to in p-oi to to to to

1 1 1 1 1

Ol ri tO ID P-lO * * * *

1 1 1 1 1

00 O CM * CO* in in in in

1 1 1 1 1

CO O CM * COID CO CO CO CO

1 1 1 1 1

CD 01 ri IO IDID to C^ f> C^

1 1 1 1 1

tO CD Ol O rip p P CO CO

1 1 1 1 1

ri ri o o00 OO 00 03

1 1 1 1

II)

IIIP- CO * IO rHp- p- p- p- p-

01 CO IO * CMto tO to tO 00

o 00 to «* CMto m m in m

-1 Ol P- ID IOlO * * * *

ri en p m io* to to to to

rH Ol P- ID 10tO Ol CM CM CM

ri oi p m toCM rl rl rl rl

ri oi p- m to rl O CM * CO

1 1 1

CO O CM * COri ri ri rl

CD O Ol * COri Ol Ol Ol Ol

00 O CM * tooi to to to to

00 O CM * tOto * * * * co o ri to m* in in in in

p oi h io inid in co to co

P- CO O CM *tO to P- p- P-

1 1 1 1 1

ID P- CO Ol Ot^ p- r^ c~ oo

1 1 1 1 1

O O O 01

CO CO CD P1 1 1 1

o11)

p io io n hp- p- p- p- p-

o oo to * toP- tO to to to

r-i oi p- in toto in in in in

r-l Ol P- ID *ID * * * *

Ol O CO CO ** * to to toCM O 00 CO *to to Ol Ol CM

CM O 00 to *Ol Ol r-t r-l r-t

CM O 00 to *rl rl

CM O Ol * tO oo en ri to idr-l r-l r-l

p- en ri to idri ri CM CM CM

p oi ri io mCM CM tO tO tO

t^ en ri to idto to * * * P- Ol rl CM ** * m in in

CO CO O CM *ID ID CO IO CO

co r^ en ri toco co co r- p-

* (O p CO Olp- p- p- p- p-

1 1 1 1 1

O O O 01

CO CD CD P1 1 1 1

10 co io in « cop- p- p- p- p-

o oi c- m toP- IO IO IO to

H OID ID *IO IO ID ID ID

CM O 00 IO *m in * * * CM O CO P- ID* * to to totO rH Ol t^ IDtO IO CM Ol CM

to r-t en p- mCM Ol rl rl rl

tO r-l Ol o in to ri ri to m P- 01 ri to *r-t r-t r-l

CO CO O Ol *ri rl CM 01 CM

CO CO O CM *CM CM tO tO tO

CO 00 O Ol *to to * * *

ID CD O ri tO* * ID ID IDID P- 01 ri IOID ID m CO CO

m io co o oito CO CO p- P-

tO ID CO P- 00t^ p- p- p- r~

1 1 1 1 1

oi en oi en

p p p p1 1 1 1

o* oo p- m * top- S p- p- p-

H O) CO IO «t[>. to to IO IO

CM O CO P- IDto to ID ID m IO H Ol P IDm m * * *

io ri oi p m* * to to to* CM O CO toIO 10 tO CM CM

* CM O CO COCM Ol Ol rl rl

* CM O CO COrl rl rl

* Ol O Ol * CO CO O CM *ri rl rl

m p- en ri tori ri ri Ol Ol

id p- en rH toCM CM CM IO tO

ID P- Ol ri tOto to to * * id p- en o cm* * * ID ID

* CD 00 O CMm in m co co* in p oi hto CO CO tO p-

CM * ID CO P-p- p- p- p- p-

00 Ol 01 01p- p p p

1 1 1 1

8 oo p- to m top- p- p- p- p-

cm o oo io inp p to IO IOIO H Ol P IOIO lO ID ID ID

* CM o oo toin in m * * * CM O CO CO

* * * to to* N rl Ol Pto to to oi oi

ID IO H Ol P01 Ol Ol rl rl

m to ri oi pri r-t r-l

in to ri ri to

1 1

in p- en r-t iori r-l

in CO CD O CMn ri ri CM CM* IO CD O OlCM CM CM 10 IO

* CO OO O CMto to to * * * CO CO O rl* * * in m to m p- oi ri

m in m m coIO * CO CO otO CO CO CO P-

rl tO * CO P-c^ c^ p- P- r»

1 1 1 1 1

CO CO 01 01

o cd p- <o m *p- P- p- p- p-

CM r-t Ol P- lOP P IO IO IO

^ CM O 00 totO to IO ID ID

in to r-i en r~in in in * * ID 10 rH Ol P-* * * to IO

ID tO rl O COto to to to CM

CO * Ol O CDOl CM CM Ol rl

CO * CM O 00r-l r-t r-t r-l

tO * CM O CM

1

* CO CD O Olr-l r-l

1 1 1 1 1

* tO p Ol Hri rl rl rl CM1 1 1 1 1

to id p- en riCM Ol CM CM IO

1 1 1 1 1

tO ID P- Ol rito to to to *

1 1 1 1 1

to id p- en o* * * * ID1 1 1 1 1

CM * CO CO Oin in m m co

1 1 1 1 1

oi to in p oiID to CO CO ID

1 1 1 1 1

O 01 tO ID COP- P- P- C^ P-

1 1 1 1 1

p- oo oo oi

S p p p1 1 1 1

a CO 00 p- IO itp- p- P- p- p-

IO H O CO IOp- p- p- to to

ID tO r-l Ol r-to CO fO ID ID

in * cm o oolO ID ID ID *

to * oi o oo* * * * totD * Ol O Olto to to to Ol

P ID 10 ri 01CM Ol Ol Ol rl

p- id to ri enri rl ri ri

r~ in to ri ri to in p- en rirl

tO ID tO CO Ori rl rl rl CM

CM * CO 00 OCM CM CM Ol tO

CM * CO 00 Oto to to to * cm * co oo en***** h io in p tnm m in m m r-t CM * CO 00

CO CO CO CO COoi n to * inCO P- P- P- P-

to f- CO 00p- p- p p

1 1 1 I

oo oo p- to iop- p- p- p- p-

<f N H Ol pp- p- r- to to

in ^t cm o ooto to to to in

lO ID tO rH Olm m in in *p in io h oi* * * * to

t> ID IO rl Oto to to to to

00 CO * CM OCM Ol Ol CM Ol

CO CO * CM Or-l r-l r-l r-t r-l

CO CO * CM O CM * CO 00 Orl

cm * id r^ enri rl rl rl rl

h io in P oiCM CM CM CM CM

1-1 to id p- ento to to to to

•-I to id r~ co***** O CM * ID 00id m in m m

O CM tO ID P-IO cO CO CO cO

oi o cm to mcO t> P- P- C-

to r- co co

p- p- p pIII'm Ol CO CO P IO

p- p- p- p- p-<t flHOCOP- P- P- P- IO

IO in tO rH Olto to to to in

p to « CM oin in in in in

00 to * CM o***** CD CO * CM rHto to to to to

oi p m w hCM Ol CM CM Ol

en o id to rHr-l r-l r-t r-l r-l

oi p in io ri ri to in p- en ri IO * IO COrl rl ri rl rH

O CM * to COCM CM CM CM CM

O CM * CO OQto to to to to

O CM * CO CO***** o> h to in p* in in m inen ri cm * coID CO CO CO CO

00 Ol ri IO *IO IO P P P

ID CO P J)c^ P- r- p

1 1 1I

or-l

cft en co r- iop- p- p- p- p-

m * oi h oiP- P- P- p- to

t^ to «t CM oto to to to IO

co to m to riin in in in m Ol C~ IO tO rH***** oi p m io oi

to to to to too oo co * oiio oi oi oi oi

O CO CO * CMCM ri rl ri rl

O CO CO * CMrl

O CM * CO 00 O Ol * ID P-rl rl rl rl rl

en rH to in p-ri Ol Ol Ol Ol

oi h io in pcm to to to to

en rl to ID p-to * * * *

CO O CM * to* ID ID ID ID

00 O Ol IO IDID tO CO CO CO

p oi o oi toIO IO P P P

m io p- tp

t^ p- p- r;

1 1 1 1

U)CT> Ol CB tD P-C^ P- P- P- P-

io in to cm oP- P- P- p- P-

00 r^ in to r-l

to to to to toen r^ to * cmm in in m m O CD tO * CM

in * * * * O op co * to* to to to tori oi t> in toIO CM Ol Ol ol

ri en o id toCM ri rl rl rl

h oi p m torl

rH rl IO ID P- 01 ri tO ID COr-t r-t r-l r-t

00 O CM * COri CM CM CM CM

00 CJ CM * COCM to IO to IO

00 O Ol * COto * * * * CO O ri IO ID* ID ID ID ID

P- Ol ri IO *in in id co to

tO CO O ri toCO CO p- t^ t^

*ep Jr. f- P PIII'C

01 o> Ol 0> COp- p- p- p- p-

pio * n hp- p- p- p- p-

Ol CO IO « OlCO tO CO 10 to

o co p- in toto m in in m ri oi p- m to

IO * * * *n en t^ in IO* to to to to

CM O CO CO *10 to CM CM Ol

CM O 00 CO *Ol Ol rl rl ri

CM O CO CO *rl r-l

CM O Ol * CO

1 1 1

CO O CM * tor-l r-l r-l r-l

1 1 1 1 1

to en ri to iori ri CM CM CM

1 1 1 1 I

P- Ol ri tO IDCM Ol tO IO IO1 1 1 1 1

c~ oi r-1 to into to * * *

1 1 1 1 1

p- Ol rl CM ** * ID ID ID1 1 1 1 1

CO 00 O CM *ID ID CO CO CO

1 1 1 1 1

ID P- 01 ri CMCO CD CO P- P-

1 1 1 1 1

" " C" 2

1'-

Ic

•i

aM

It

oa to *f cm oCO CO CO CO CO* + + +

CD CO * CM Op- c- p- p- r-+ + + + +

CO to ^J- CM OCO tO tO to to+ + + + +

CO to * CM oin in in in in+ + -- + +

00 CO * Ol o*****+ + + + +

CO to * CM oto to to 10 to+ + + + +

00 CO * CM OCM Ol CM CM Ol+ + + + +

00 CO * CM Orl ri rl rl rl+ + + + +

CO CO * CM O+ + + +

Ol * CO CO Orl

1 1 1 1 1

CM * to CO orl r-l r-l r-l Ol

1 1 1 1 1

Ol * CO to oOl CM Ol Ol tO

1 1 1 1 1

Ol * CO 00 oto to to IO *

1 1 1 1 1

oi * to on o* * * * ID1 1 1 1 1

Ol * CO CO oID ID ID ID CO

1 1 1 1 1

CM * tO 00 OtO CO CO CO C~

1 1 1 1 1

CM * CO CO oP- P- P- C^ CO

1 1 1 1 1

CM * tO CD

00 00 CD tt

III'

TABLE 2

Page 33: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

- 21 -

K3 CM O en CO T « O IBCO 10 CM N CM N N H m o oo o <r N O N <f IO CO O CM *f CO r- en h to

i i i

ss o en i-* to m10 IO »t < >t r~ r- r- r~

CO CO CO CO CO

CO CO CD CO if)

5^ cn«*• to

^ cm o

SCO (H

CO *»• CMrr -3- T7

<o in to

8S

CO COto to

o> p-to to

38

tO to CM CM

CO t CM O COCO CO CO CO CM

CM CM rH rH

3 cm r-i a> o« N H H

10 r-i O) lO1-1 l-H

«r cm o co co

m to ^h oi r-^H r-l r-H

LO IO H O) oo.-I .H ^H

CO «• CM O CO

Ml) » H oi

n h h n in

I I I

<* « ON *I I

m to h h to

I I

CO ^ CM O CM

CO «J- CM O CM

c-- in to •-< <-i

I

o en r-i co inH r-l r-l

I I I I I

IO CO O N *I I I I I

in r> en rH tor-i r-l

I I I I I

* CO CO O CM

I I I I I

<f IO CO O NI I I I I

to in o o> r-i

r-i

I I I I I

o en r-< to tj-H H N M CMI I I I I

lO O O) --< COr-i r-i r* CM CM

I I I I I

T CO CO O CMH H H N MI I I I I

<f IO CO 01 H

to m o o> •-•

r-i r-i r-i r-i CMI I I I I

asto m r- oi r-i

CM CM CM CM coi i i i i

io ai o N »to to * « *

I I I I I

t> (71 r-t CMco to »r *»

i i i i

to in o en r-i

to to to to «ri I i i i

IO O O OI Vo- v m in in

i i i I i

T CO CO O CMc « r m u)i i I I i

co m r> a> o,-,- V . u - ;

if)

I I I I I

7 CO CO O CMin in in co coI i t I i

«r in t> en .-i

m in in io coi i i i i

in i— co o CMco co co r^ r^

i i i i i

rr CO CD O r-l

co co co r> r-i i i i i

SlO t> Ol r-i

co co co r-

to Ifj t- o> oco co co co r^

• t»-iiIO V O CO oCO CO CO CO O

I I I I I

CM T CO CO OCO CO CO CO O

I I I I I

CO in co COr- t> r- o

to lO CO f>r> c- t- r-

IO f IO hr- t> o r-

cm t co r-r> t> t> c-

CM *r in f>r> r-- r- r~

cm to m r>c~ r> c^ c^

O CM tO tO ^co co co CO CD

tO CMCO 00

o cm to *r inco co co co co

* toCO 00

o cm to in inCO 00 CO CO CO co oo

S^f CMCO CO

£t> co 3 toCO CD CO CD

Sin toCO co

CO COCO IO

a-CO

CMcOoCO

CO COin m

o> C-CO <0

mCO

toCO CO

o> r-m m

CO CO stoCO

r-i

COOl f>in m

o> r-CO cO

inco

toco CO

cn C-m in

$ to to

SCM Oto to

in to r-i

to to to

mio hto t*5 to

in to hto to to

SCOCMSCM O

CM CM

SCO rHCM CM

m to hCM Oi CM

r- in to .-< o

CO CO <t OI o

o> t>CM CM

a> t> in co rH

cn t> m to rH

<7> o lO CO -

a> o m co <H

OI o m co -

o> r- in to r-i

CO CO * O) o

00 CO * CM O

CO CO * to H

01 MO 10 H

o> o in to r-i

o> r- in to rH

CM *» CO co or-i

I I I I I

W * CO CO orH

I I I I I

r-i to m r- o>

i i i i i

<-t to m r> o>

i i i i i

r-i to in o oi

i i i i i

r-i to m t> oi

i i i i t

.» tf IO o or-i ^H r-i r-i CMI I I I I

CM «* CO CO Or-i r-i r-i rH CM

I I I I I

to in c^ en

1

r-i

1

to

1

in

i

Ol

rH to in r> 0)

1 1

in

l

t> 01

r~l to in t> CT>

- to to o cn

rH w io o OI

r-l to m c^ .7)

i-H to in o 0)

r-l to u> c- CI

CM V IO IS OCM CM CM CM tO

I I I I I

OI 7 CO CO oCM CM CM CM COI I I I I

h to m f enCM CM CM CM CM

I I I I I

rH to m r- enCM CM CM CM CM

r-i to in o oiCM CM CM CM CMI I I I I

CM V CO 00 Oto co to to v

I I I I I

Oi f CO CO oCO CO to CO *

I I I I I

r-i co into co co

i i I

CM ^ CO CO O*r *r <• *• \n

i i i i i

r-i to in o oi«r t v *f ^"

I I I I I

^ to m r~ o>rr *r *T rT »

I I I I I

01 » CO CO OICO co cO co cO

I I I I I

rH to in o cnCO CO CO CO CO

I I I I I

rH CO in o oiCO CO co CO CO

I I I I I

h to mMjiCO CO CO CO CO

I I I I I

r-i to in r> o>CO CO CO CO CO

I I I I I

o r~ t> t>

rH co m r>r~ o t> r>

t> c- r~ r~

r-i to in r>r> r> o c~-

r-i to in r>r- r- r- r-

rH to in r-r- c~ r- t>

193

IP tO rH,i- -a- -t

lO CO rH^ -r «r

o> r> in to rHto to to to to

Ol t> lO «0 rHto to to to to

oi r- in to hto to co to to

to CO co to to

atoCM

o> r~ m co rHr-l rH r-i r-i r-l

Ol t> lO CO rH

oi o m to rH

Ol t> lO CO rH

oi o in to r-i

o> o m to r-i

Ol f> lO CO rH

O) O IO tO rH

rH co in r~ en

i i i i i

rH to in o oi

i i i i i

rH to m o oi

i i i i i

rH to in o Ol

i i i i i

rH to m o Ol

i i i i i

rH to in o Ol

I I I I I

h to in f- cnCM CM CM CM CM

rH co in t^ OlCM O) O) CM CM

I I I I I

CM CM Ol CM OlI I I I I

rH to in r> oito co to to co

i i i i i

S3

I I I I

I I I I I

513

r-i co in o oi.T «* T T T

I I I I I

r* to m r- enT T ^ ^" 't

I I I I I

rH to in c^ o>T T T <T TI I I I I

rH to in c- cn•T »T TT TT «T

I I I I I

rH to m t> Ol«r t •* »t »t

i i i i i

rH to in c^ enm m in m ini i i i i

rH to in f> Olm in m m mi i i i i

rH to m t> oiin m in m in

i i i i i

rH co in t> oiin in in in in

i i i i

r-i to in o oim in m in mi i i I i

r-i to in r> enCO CO CO co CO

I I I I I

rH tO lO O OiCO CO CO cO cO

I I I I I

rH to in r> oiCO cO CO CO CO

I I I I I

r-i to in r- enCO CO co CO CO

I I I I I

rH to in r- enCO co CO cO CO

I I I I I

r-i to in r~ oico CO co CO CO

I I I I I

t> O O f>

r-i IO in COr-- r> t> r-

rH co in r>r~ o o r>

r-i to in r>r> o o r>

r~ r- t> r-

rH to in oo t> r- r~

o oi toco oo oo co co co

CM 01CO CO

H O Ol f- oCO CO c> S t>

r-l r-i

CO COO Ol CO CO moo o r- t> t>

55CO ^

33

* ^ *

fO rH Ol»r ^ to

a to to

ssCM o

to

COtoHCO CM

SS

SCOto

t> 1/J CO rH enCM CM 01 CM rH

IO * IO H 01CM CM CM CM rH

IO « IN O COCM 01 Ol Ol rH

CO CO * CM Or-i r-i r-l r-i r-l

CO CO •»»• CM Or-i r-l r-l r-l r-i

O IO tO rH Olr-i r-l r-l r-l

o in to r-i oi•-I r-l ^ rH

CO <f CM O COr-l r-i r-l r-i

in CO r-i en f>

CO to »t CM o

CO CO * CM o

C- IO CO rH rH

I

t> IO CO rH rH

I

CO ^ CM O CM

I

IO CO rH rH CO

I I

CM »* co CO OI I I I I

ol * io m oI I I I I

co in r> oi rHr-i

I I I I I

CO in O Ol rHrH

I I I I I

T IO CO O Nr-i r-i

I I I I I

m o oi rH torH rH

I I I I I

N f CO CO OrH rH rH rH CM

I I I I I

CM * CO OD Or-l r-l r-i r-l CM

I I I I I

co m r^ oi rHr-i r-i r-i r-i CM

I I I I I

CO U> t> Ol rHr-i r-i r-i r-l CM

I I I I I

* CO CO O CMrH l-H r-l CM CM

I I I I I

m MO O MrH rH rH CM CM

I I I I I

01 * IO CO oco to co co t

I i i i i

rH co in r> en*r ^f «r «r v

i i i i i

CO ^ CO CO o>f ? ct t m

i i i i i

CM T CO 00 OT T <T T U)I I I I I

to in c-- oi r-i

CJ cm oi CM coi i i i i

<" CO CO O MCM CM CM CO COI I I I I

acO CO O 01Ol CM CO tO

I I I I I

M tr co a> oin in io in co

I i i i i

CM T CO CO Oin in in in co

I I i i i

to in mo oin in in in co

i i i i i

co in r~ en rHin m in in co

i i i i I

>-h to m r^ oico co co CO co

i i i i i

cm «r co oo oCO co co co O

I I I I I

to m r> oi <-hco co co co r>

i i i i i

rH co m r>o r> o r~i i i i

r-i to in r~r- r- c- c-

cm v m r-r~ c^ t> r>

oi <• in t>r- o t> t>

cm ^r co oc~ r- t> r-

-PCO

bOcu

fl

to

$•H-PCO

H

§CO

CU

-P•H10

OPh

to

cu

tJr^P•H-PCO

HrCj

-P

6

5

t> CO CO co

en oi en cn cor~ t> r- t> t>

oi oi en cd c^f- r- r- t> r>

01 oi co oo t>r* t> t> r- r-

oi to co r- cor~ r» o r~ t>

m m «r ^f

m in * t

3335!lO tO r-i

*t * ^,

oi t> into to to

CO tO Tto to to

CO ^ CMto CO to

tO C0 CO CM Ol

co rH en r> inC0 CO CM CM CM

CM O CO CO ^tO 10 CM CM CM

r-i oi t> in toCO CM CM CM CM

O CO CO * NCO CM 01 CM CM

cn r- in to rHCM Ol CM Ol CM

CM CM

So!

Sh§

r-l OlCM rH

O CO

CO CO01 rH rH

oi t> inH rl H

CO CO ifr-l r-l r-l

o in ^"r-l r-i r-i

CO IO COr-l r-l r-l

CO Ht CM

^ Ol O CO tor-i r-l r-l

tO r-i Ol CO COr-i r-i

to r-i en o inr-i r-i

ol o co co «rr-i r-i

r-i Ol t> in tor-i

O CO tO * CM

<t Ol O rt CO

I I

* CM O CM *I I

tO r-i r-i tO in

I I I

Ol o oi v to

I I I

l-H r-i to m t>

i i i i

O CM 'l" CO CO

I I I I

lO O Ol rH tOrH r-l

I I I I I

CO CO O CM *l-H rH rH

I I I I I

t> Ol rH to mi-H rH rH

I I I I I

CO O N 1 toi-l r-l r-l r-l

I I I I I

oi rH to in r~r-i r-i r-l rH

I I I I I

O 01 t* CO 00rH ^i r-i r-i r-i

I I I I I

m r>- en r-i corH rH rH CM CMI I I I I

r> en rH to inrH rH CM CM CM

I I I I I

c- en rH toto to «t ^

I I I I

IO CO O N 4CM CM CO CO CO

I I I I I

r> oi rH to in

O Ol «f COt »r »r tj-

m o cn r-i cmt *t *t in mi i i i i

in r~ oi rH to* * * in mI I I i i

o oi >-h to m* « in in mi 1 i i i

CD O CM "* CO<* in in in in

i i i I i

* IO O O Olin in in co co

i i i i i

m o en rH tom m m co coi i i i i

CO CO O r-i COin cn co co co

i i i i i

r> co o cm «*in m to co co

i i i i i

f to CO Ol HCO CO CO CO t>

1 I I I I

< CO 00 O r-i

CO CO co O f>I I I I I

CD 00 Ol rH COCO CO CO t> t>

I I I I I

co v co r>r- o r- r-

to in co t>r^ o t> r>

I I i I

«t in co ooo r> r- t-

^r in t> cor- t> c~ r~

in co t> ooi> t> o o

in co r~ oof> t> r> f>

cp to r~ co inc- c» o t> r-

cp r- to m Tft^ t> r> r> otp o co m coIs- o t> r- r>

jp o co t» COr~ r- o o t>

jp r- m <* cmc~ o c- t> r>

5 in to r-i cn io8toto

r-i enCO CM

to * CM O 00* O » IOCO ^to to

CMcoO COto CM

in-r

to rH en o»* >* to to

in toto to

r-i

COen r>Ol CM

301 O 00 CO«• «cf tO CO to CO

oCO

CO COCM CM

t> CO CO CO *! »* CO COoi r> inCM CM CM

CO (O « CM OCM CM CM CM CM

r> in to rH oiCM CM CM CM rH

CO ^ CM O 00CM CM CM Ol rH

in tO rH Ol oOl Ol 01 r-i r-l

SOI O CD COCM CM rH rH

tO rH Ol CO COCM Ol rH rH rH

CO COi-H r-l

t- inrH rH

CO *r-l r-l

m *"r-l r-l

in corH l-H

•<* CM

cm o COr-l rH

r-i en oi-H

O CO co

oi t> m to rH

co to <r oi o

t> US tO r-i rH

I

CO * CM O CM

in co rH r-i co

i i

"t Ol O Ol *I I

r-i to m r^ en

i i i i i

CM * » CO Or-l

I I I I I

co m o X7i r-i

r-l

I I I I I

* to CO O Ol^-1 r-l

I I I I I

in r- en rH corH rH

I I I I I

CO CO O CM «*rH rH rH

I I I I I

r-i co m o oi SCO COco to

,m «r co co orH rH rH rH CM

I I I I I

CO IO O (71 rHr-l r-l r-l r-l 0iI I I I I

* CO CO O CMrH rH rH CM Ol

I I I I I

in r- oi rH torH rH rH CM Ol

I I I I I

CO CD O CM «*r-i rH CM Ol Ol

I I I I I

CM t* CO CO O01 Ol 01 Ol CO

I I I I I

co inCM CM

rH to in t> Olt * •* *!" 5t

I I I I I

CM if CO 00 O«* *!• >* Tf CO

I I I I I

C0 lO O Ol rH» « V * IOI I I I I

<f IO to O CM» "t * 111 II)

I I I I I

CO CO O CM tOCM Ol tO CO tO

I I I I I

Sfc

o ol * in r>m in m m ini I i i i

cm ^r in o oiin m in in in

I i i i i

« co t> en rHm in m m coi i i i i

m r~ oo o cmm in m co coi i i i i

Ol rH to m CDm co co co coi i i i i

o cm v m r-co CO co CO CO

I I I I I

rH to in to coCO CO CO CO CO

I I I I I

to in t> co oCO to CO CO O

I I I I I

cocoI

oi

r-to *o o

1 1

tO O 00 00o r- r~

Ol-u

i

CM *r tor> t>

COO O 00 CO

c- r~ r-

oo ^it>

to

i

•^ coO f>

1

t>O1

00 CO CBo o r>i i 1

CM CO in CO OIs- o r> t> t>i I i i i

to rr in r> too o t> r- oi i i i i

IN CO Ol Olc- r> r- o

en Ol Ol oi

« «.C T3

o «

CO co V CM Oop CO CO CO COto to « Ol oc> t> t> r> o+ + + + +

00 CO 't 01 oCO CO CO CO co+ + H- + +

CO CO « CM Om m in in m+ + + + +

SCO ^ 01 o+ + + + +

SCO^tCMO CO CO ^ CM OOl CM CM CM HrtHHH

+ ++ + + + + + + +oo co ^r cm o+ + + +

Ol «f IO CO oI I I I

ol ^ CO CO oin in in in co

i i i i i

N n to to oto co co io o

I I I I I

TABLE 2

Page 34: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

- 22 -

VI. WORLD PREDICTION MAPS AND PREDICTION CHARTS

Page 35: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

foF2 AT RASSN 50

JANUARY 0000 HOURS GMT

P. 23

60° 120° 180°

EAST i WEST

120

LONGITUOE

cr:

WEST i EAST

Page 36: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 24 foF2 AT RASSN 50

JANUARY 0200 HOURS GMT

60(

120 180

EASTi WEST

CO

120'

L0N6ITU0E

60° 0°

WEST i EAST

60s

Page 37: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

60c

foF2 AT RASSN50JANUARY 0400 HOURS GMT

P. 25

120 180°

EASTiWEST

120'

LONGITUDE

CO

WEST i EAST

Page 38: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 26 foF2 AT RASSN 50

JANUARY 0600 HOURS GMT

60#

180*

EASTi WEST

CO

120°

LONGITUDEWEST | EAST

Page 39: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

foF2 AT RASSN 50

JANUARY 0800 HOURS GMT

P. 27

60( 120' 180°

EASTiWEST

120"

LONGITUDE

CO

60' 0°

WEST i EAST

60u

Page 40: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 28 foF2 AT RASSN 50

JANUARY 1000 HOURS GMT

60(

180°

EASTi WEST

120°

LONGITUOE

WESTI EAST

Page 41: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

60(

foF2 AT RASSN 50

JANUARY 1200 HOURS GMT

P. 29

CO

180°

EAST j WEST

120"

LONGITUDE

WEST I EAST

Page 42: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 30 foF2 ATRASSN 50

JANUARY 1400 HOURS GMT

180

EASTi WEST

120'

LONGITUDE

co

WEST | EAST

Page 43: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

foF2 AT RASSN 50

JANUARY 1600 HOURS GMT

P. 31

60' 120' 180°

EASTi WEST

120

LONGITUDE

WEST i EAST

Page 44: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 32 foF2 AT RASSN 50

JANUARY 1800 HOURS GMT

60c

180°

EASTi WEST

120°

LONGITUDE

CO

WEST | EAST

Page 45: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

foF2 AT RASSN 50

JANUARY 2000 HOURS GMT

P. 33

60 120180°

EAST i WEST

120'

LONGITUDE

oCO

WEST I EAST

Page 46: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 34 f6F2 AT RASSN 50

JANUARY 2200 HOURS GMT

60°180°

EASTi WEST

120'

LONGITUDE

co

WEST I EAST

Page 47: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

SLOPE OF REGRESSION LINE OF foF2 ON RASSN

JANUARY OOOO HOURS GMT

P. 35

60' 120 180°

EASTiWEST WEST I EAST

CO

LONGITUDE

Page 48: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 36 SLOPE OF REGRESSION LINE OF foF2 ON RASSN

JANUARY 0200 HOURS GMT

60"

CO

180°

EASTi WEST

120°

LONGITUDE

WESTi EAST

Page 49: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

60* 120°

SLOPE OF REGRESSION LINE OF foF2 ON RASSN

JANUARY 0400 HOURS GMT

P. 37

co

180°

EASTiWEST WEST i EAST

LONGITUDE

Page 50: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 38 SLOPE OF REGRESSION LINE OF foF2 ON RASSN

JANUARY 0600 HOURS GMT

60'180

EAST j WEST

120'

L0NGITU0E

WEST | EAST

Page 51: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

SLOPE OF REGRESSION LINE OF foF2 ON RASSN

JANUARY 0800 HOURS GMT

P. 3 9

oo

60° 120 180°

EAST i WEST

120

LONGITUOE

WEST i EAST

Page 52: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 40 SLOPE OF REGRESSION LINE OF foF2 ON RASSN

JANUARY 1000 HOURS GMT

60° 180°

EASTi WEST WEST i EAST

CO

LONGITUDE

Page 53: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

SLOPE OF REGRESSION LINE OF foF2 ON RASSN

JANUARY 1200 HOURS GMT

P. 41

CO

60* 120 180°

EASTiWEST

120°

LONGITUDE

WEST i EAST

Page 54: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 42 SLOPE OF REGRESSION LINE OF foF2 ON RASSN

JANUARY 1400 HOURS GMT

CO

G0C

180

EASTi WEST

120

LONGITUDE

WEST I EAST

Page 55: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

SLOPE OF REGRESSION LINE OF foF2 ON RASSN

JANUARY 1600 HOURS GMT

P. 43

60*

CO

120 180°

EAST i WEST

120°

LONGITUDE

WEST i EAST

Page 56: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 44 SLOPE OF REGRESSION LINE OF foF2 ON RASSN

JANUARY 1800 HOURS GMT

co

60(

180°

EAST j WEST

120°

LONGITUDE

WESTi EAST

Page 57: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

60'

SLOPE OF REGRESSION LINE OF foF2 AT RASSN

JANUARY 2000 HOURS GMT

P. 45

oGO

120 180°

EASTiWEST WEST i EAST

LONGITUDE

Page 58: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P 46 SLOPE OF REGRESSION LINE OF foF2 ON RASSN

JANUARY 2200 HOURS GMT

oCO

60c

180°

EASTi WEST

120'

LONGITUDE

WESTi EAST

Page 59: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

M-4000 FACTOR AT RASSN 50

JANUARY 0000 HOURS GMT

P. 47

60( 180°

EASTiWEST

120

LONGITUDE

CO

WEST I EAST

Page 60: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

R 48 M-4000 FACTOR AT RAS8N 50

JANUARY 0200 HOURS GMT

60(

180

EASTi WEST

120'

LONGITUDE

WESTi EAST

az

oCO

Page 61: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

60° 120

M-4000 FACTOR AT RASSN 50

JANUARY 0400 HOURS GMT

P. 49

180°

EAST iWEST

CO

WEST i EAST

LONGITUDE

Page 62: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 50

60c

M-4000 FACTOR AT RASSN 50

JANUARY 0600 HOURS GMT

to

180°

EASTi WEST

120°

LONGITUDE

WESTI EAST

Page 63: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

60' 120

M-4000 FACTOR AT RASSN 50

JANUARY 0800 HOURS GMT

P. 51

180°

EASTiWEST

(=>

CO

WEST i EAST

60v

LONGITUDE

Page 64: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 52 M-4000 FACTOR AT RASSN 50

JANUARY 1000 HOURS GMT

60*180

EASTi WEST

120°

LONGITUDE

CO

WEST| EAST

Page 65: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

M-4000 FACTOR AT RASSN 50

JANUARY 1200 HOURS GMT

P. 53

60(

120 180°

EAST i WEST

120'

LONGITUDE

WEST I EAST

CO

Page 66: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 54 M-4000 FACTOR AT RASSN 50

JANUARY 1400 HOURS GMT

ac

CO

180

EASTi WEST

120

LONGITUDE

60(

WESTi EAST

60*

Page 67: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

M-4000 FACTOR AT RASSN 50

JANUARY 1600 HOURS GMT

P. 55

60*180°

EAST iWEST

120'

LONGITUDE

CO

WEST IEAST

Page 68: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 5«

60°

M-4000 FACTOR AT RASSN 50

JANUARY 1800 HOURS GMT

120 180°

EASTi WEST

120°

LONGITUDE

60°

oCO

0'

WEST j EAST

60"

Page 69: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

60°

M -4000 FACTOR AT RASSN 50

JANUARY 2000 HOURS GMT

P. 57

CO

120' 180°

EAST iWEST

120'

LONGITUDE

60' 0°

WEST i EAST

60o90°

Page 70: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 5* M-4000 FACTOR AT RASSN 50

JANUARY 2200 HOURS GMT

60c

180*

EAST j WEST

120*

LONGITUOE

WESTi EAST

Page 71: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

SLOPE OF REGRESSION LINE OF M-4000 FACTOR ON RASSN

JANUARY

P. 59

LOCAL TIME

Page 72: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

p. eo foF2 AT RASSN 50

MARCH 0000 HOURS GMT

60'180"

EASTi WEST

120°

LONGITUDE

CO

WEST | EAST

Page 73: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

60(

120

foF2 AT RASSN 50

MARCH 0200 HOURS GMT

P. 61

180°

EASTiWEST

120'

LONGITUDE

co

WEST I EAST

Page 74: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 62

60*

foF2 AT RASSN 50

MARCH 0400 HOURS GMT

180

EASTi WEST

120

LONGITUOE

WEST | EAST

Page 75: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

60c

foF2 AT RASSN 50

MARCH 0600 HOURS GMT

P. 63

90l

120 180°

EAST iWEST

120'

LONGITUDE

CO

WEST I EAST

Page 76: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 64

60°

foF2 AT RASSN 50

MARCH 0800 HOURS GMT

CO

180°

EAST i WEST

120'

LONGITUOE

WEST I EAST

Page 77: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

foF2 AT RASSN 50

MARCH 1000 HOURS GMT

P. 65

60(

co

120 180°

EASTiWEST

120°

LONGITUDE

WEST i EAST

Page 78: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 66 foF2 AT RASSN 50

MARCH 1200 HOURS GMT

co

60* 180°

EASTi WEST

120°

LONGITUOE

60° 0°

WESTi EAST

60u

Page 79: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

foF2 AT RASSN 50

MARCH 1400 HOURS GMTP. 67

60(

120 180°

EASTiWEST WEST I EAST

co

LONGITUDE

Page 80: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 68 foF2 AT RASSN 50

MARCH 1600 HOURS GMT

60°180

EASTi WEST

120'

LONGITUDE

WESTi EAST

CO

Page 81: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

foF2 AT RASSN 50

MARCH 1800 HOURS GHT

P. €9

60 120180°

EAST iWEST

120"

LONGITUDE

WEST IEAST

<s>

Page 82: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 70 foF2 AT RASSN 50

MARCH 2000 HOURS GMT

60°180°

EAST j WEST

120°

L0NGITU0E

WEST I EAST

Page 83: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

foF2 AT RASSN 50

MARCH 2200 HOURS GMTP. 71

60° 120 180°

EAST iWEST

120'

LONGITUDE

WEST i EAST

oO

Page 84: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 72 SLOPE OF REGRESSION LINE OF foFt ON RASSN

MARCH OOOO HOURS GMT

60'180

EASTi WEST

120°

LONGITUDE

WESTi EAST

CO

Page 85: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

SLOPE OF REGRESSION LINE OF foFs ON RASSN

MARCH 0200 HOURS GMT

P. 73

co

60#

120' 180*

EAST iWEST

120

LONGITUDE

WESTi EAST

Page 86: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 74 SLOPE OF REGRESSION LINE OF Uh ON RASSN

MARCH 0400 HOURS GMT

180

EASTi WEST

120'

LONGITUOE

WESTi EAST

Page 87: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

60°

SLOPE OF REGRESSION LINE OF f F, ON RASSN

MARCH 0600 HOURS GMTP. 75

oCO

120 180°

EAST i WEST

120'

LONGITUDE

WEST i EAST

60u

Page 88: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 7 6 SLOPE OF REGRESSION LINE OF foFz ON RASSN

MARCH 0800 HOURS GMT

or

co

60°180

EASTi WEST

120'

L0NGITU0E

WESTI EAST

Page 89: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

SLOPE OF REGRESSION LINE OF foF2 ON RASSN

MARCH IOOO HOURS GMT

P. 7T

60 120180°

EAST iWEST

WEST i EAST

CO

LONGITUDE

Page 90: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P 78 SLOPE OF REGRESSION LINE OF foF* ON RASSN

MARCH 1200 HOURS GMT

60*180*

EASTi WEST

120*

LONGITUDE

60' 0*

WEST i EAST

. 60"

Page 91: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

SLOPE OF REGRESSION LINE OF foFz ON RASSN

MARCH 1400 HOURS GMT

P. 79

oCO

60c

120180°

EAST iWEST

120'

LONGITUDE

WEST I EAST

Page 92: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 80 SLOPE OF REGRESSION LINE OF fob ON RASSN

MARCH 1600 HOURS GMT

60c

180°

EASTi WEST

120°

LONGITUOE

WESTi EAST

Page 93: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

SLOPE OF REGRESSION LINE OF foF* ON RASSN

MARCH 1800 HOURS GMT

P. 8

60c

120180°

EAST iWEST WEST I

EAST

LONGITUDE

Page 94: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 82 SLOPE OF REGRESSION LINE OF foFt ON RASSN

MARCH 2000 HOURS 6HT

180°

EASTi WEST

120'

LONGITUOE

CO

WEST | EAST

Page 95: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

SLOPE OF REGRESSION LINE OF foF* ON RASSN

MARCH 2200 HOURS GMT

P. 83

CO

60° 120'180°

EAST iWEST

120

LONGITUDE

WEST I EAST

Page 96: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 84 M-4000 FACTOR AT RASSN 50

MARCH 0000 HOURS GMT

GO

WEST I EAST

Page 97: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

M-4000 FACTOR AT RASSN 50

MARCH 0200 HOURS GMT

P. 85

60 120180

EAST iWEST

CO

WEST IEAST

LONGITUDE

Page 98: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 86 M-4000 FACTOR AT RASSN 50

MARCH 0400 HOURS 6HT

60c

180°

EASTi WEST

120

LONGITUDEWEST | EAST

Page 99: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

M-4000 FACTOR AT RASSN 50

MARCH 0600 HOURS GMT

P. 87

60( 120'

180°

EAST iWEST

120

LONGITUOE

WEST IEAST

Page 100: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

p.

60°

M-4000 FACTOR AT RASSN 50

MARCH 0800 HOURS GMT

CO

180°

EAST j WEST

120°

LONGITUDE

WESTI EAST

Page 101: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

60c

M-4000 FACTOR AT RASSN 50

MARCH 1000 HOURS GMTP. 89

120' 180°

EASTiWEST

CO

120

LONGITUDE

WESTI EAST

Page 102: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 90

60°

M-4000 FACTOR AT RASSN 50

MARCH 1200 HOURS GMT

180°

EASTi WEST

120

LONGITUOE

60(

0'

WESTi EAST

60w

Page 103: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

60

M-4000 FACTOR AT RASSN 50MARCH 1400 HOURS GMT

P. 91

120180°

EAST iWEST

120'

LONGITUDE

WEST i EAST

CO

Page 104: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 92 M-4000 FACTOR AT RASSN 50MARCH 1600 HOURS GMT

60180

EASTi WEST

120°

LONGITUDE

60° 0°

WESTi EAST

60"

Page 105: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

60* 120'

M-4000 FACTOR AT RASSN 50

MARCH 1800 HOURS CMT

P. 93

180°

EAST iWEST

120'

LONGITUDE

WEST I EAST

CO

Page 106: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 94 M-4000 FACTOR AT RASSN 50

MARCH 2000 HOURS CMT

60#

180*

EASTi WEST

120°

LONGITUDE

CO

WEST i EAST

Page 107: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

M-4000 FACTOR AT RASSN 50

MARCH 2200 HOURS GMT

P. 95

cO

w 120180

EAST iWEST

WEST iEAST

LONGITUDE

Page 108: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 96 SLOPE OF REGRESSION LINE OF M-4000 FACTOR ON RASSN

MARCH

<_>

C9

s

Page 109: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

foF2 AT RASSN 50JUNE 0000 HOURS GMT

P. 97

60

CO

120 180°

EAST i WEST

120°

LONGITUDE

WEST i EAST

60'

Page 110: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 98

60

foF2 AT RASSN 50

JUNE 0200 HOURS GMT

180°

EAST i WEST

20°

LONGITUDE

(

WEST i EAST

Page 111: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

60 c 20<

foF2 AT RASSN 50

JUNE 0400 HOURS GMT

P. 99

180°

EAST i WEST

120°

LONGITUDE

WEST i EAST

Page 112: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

R 100

60

foF2 AT RAS8N 50

JUNE 0600 HOURS GMT

180°

EAST i WEST

20°

LONGITUDE

WEST l" EAST

60c

Page 113: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

60'

foF2 AT RASSN 50

JUNE 0800 HOURS GMT

p. 101

20c 180°

EAST 'IWEST

120°

LONGITUDE

WEST I EAST

Page 114: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 102

60 c

foF2 AT RASSN 50

JUNE 1000 HOURS GMT

80°

EAST i WEST

120°

LONGITUDE

WEST I EAST

Page 115: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

60'

foF2 AT RASSN 50

JUNE 1200 HOURS GMT

P 103

120 180*

EAST I WEST

20f

LONGITUDE

WEST I EAST

Page 116: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 104

60<

foF2 AT RASSN 50

JUNE 1400 HOURS GMT

180°

EAST I WEST

20°

LONGITUDE

WEST I EAST

Page 117: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

foF2 AT RASSN 50

JUNE 1600 HOURS 6MT

P. 105

60 120180°

EAST i WEST

20°

LONGITUDE

WEST I EAS

Page 118: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 106

60c

foF2 AT RASSN 50

JUNE 1800 HOURS GMT

180°

EAST i WEST

120°

LONGITUDE

WEST I EAST

Page 119: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

60 c120

foF2 AT RA8SN 50

JUNE 2000 HOURS GMT

P. 107

180°

EAST i WEST

20°

LONGITUDE

oO

WEST i EAST

Page 120: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 108

60

foF2 AT RASSN 50

JUNE 2200 HOURS GMT

180°

EAST i WEST

LONGITUDE

WEST i EAST

60*

Page 121: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

SLOPE OF REGRESSION LINE OF foF2 ON RASSN

JUNE OOOO HOURS GMT

P. 109

c/>

WEST ! EAST

Page 122: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

p. no SLOPE OF REGRESSION LINE OF foF2 ON RASSN

JUNE 0200 HOURS GMT

co

60(

180°

EAST i WEST

120°

LONGITUDE

WEST i EAST

60(

Page 123: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

SLOPE OF REGRESSION LINE OF foF2 ON RASSN

JUNE 0400 HOURS GMT

p. in

—i 90°

60 120180°

EAST i WEST

20°

LONGITUDE

WEST I EAST

Page 124: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 112

60"

SLOPE OF REGRESSION LINE OF foF2 ON RASSN

JUNE 0600 HOURS GMT

CO

180°

EASTI' WEST

120°

LONGITUDE

WEST i EAST

Page 125: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

SLOPE OF REGRESSION LINE OF foF2 ON RASSNJUNE 0800 HOURS GMT

p. 113

60 120 180°

EAST i WEST

120°

LONGITUDE

WEST i EAST

CO

60<

Page 126: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 114 SLOPE OF REGRESSION LINE OF foF2 ON RASSN

JUNE IOOO HOURS GMT

60(

80°

EAST i WEST

120°

LONGITUDE

WEST I EAST

Page 127: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

60' 120

SLOPE OF REGRESSION LINE OF f F2 RASSN

JUNE 1200 HOURS GMT

P. 115

180°

EAST I

WEST

120°

LONGITUDE

60'

WEST EAST

CO

Page 128: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 116SLOPE OF REGRESSION LINE OF f F2 ON RASSN

JUNE 1400 HOURS GMT

60'180°

EAST i WtST

LONGITUDE

WEST i EAST

Page 129: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

60' 20

SLOPE OF REGRESSION LINE OF foF2 ON RASSNJUNE 1600 HOURS GMT

P. 117

180°

EAST i WEST

120°

LONGITUDE

CO

WEST I EAST

Page 130: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 118

60'

SLOPE OF REGRESSION LINE OF foF2 ON RASSN

JUNE 1800 HOURS GMT

180°

EAST i WEST20°

LONGITUDE

WEST I EAST

Page 131: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

SLOPE OF REGRESSION LINE OF foF2 ON RASSNJUNE 2000 HOURS GMT

P. 119

60 120 180°

EAST i WEST

120°

LONGITUDE

WEST I EAST

Page 132: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 120SLOPE OF REGRESSION LINE OF foF2 ON RASSN

JUNE 2200 HOURS GMT

60'

cr:

180°

EAST i WEST

120°

LONGITUDE

WESTI EAST

Page 133: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

M-4000 FACTOR AT RASSN 50JUNE 0000 HOURS GMT

P. 121

to

60 20 180°

EAST i WEST

120°

LONGITUDE

-

WEST I EAST

60'

Page 134: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 122

120

M-4000 FACTOR AT RASSN 50

JUNE 0200 HOURS GMT

180°

EAST I WEST

120°

LONGITUDE

60' 0°

WEST i EAST

90°

60°

Page 135: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

M-4000 FACTOR AT RASSN 50

JUNE 0400 HOURS GMT

P. 123

60 20' 180°

EAST i WEST

OCO

120

LONGITUDE

60' 0°

WEST I EAST

90#

60#

Page 136: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 124 M-4000 FACTOR AT RASSN 50

JUNE 0600 HOURS GMT

or

CO

120 180°

EAST I WEST

120°

LONGITUDE

60' 0°

WEST i EAST

90°

60°

Page 137: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

60 120

M-4000 FACTOR AT RASSN 50JUNE 0800 HOURS GMT

P. 125

CO

180°

EAST i WEST

120°

LONGITUDE

WEST I EAST

90°

60°

Page 138: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 126 M-4000 FACTOR AT RASSN 50

JUNE 1000 HOURS GMT

60180°

EAST I WEST

120°

LONGITUDE

60« 0°

WEST I EAST

90°

60°

Page 139: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

M-4000 FACTOR AT RASSN 50

JUNE 1200 HOURS GMT

P. 127

CO

60 120180°

EAST I WEST

120°

LONGITUDE

WEST i EAST

Page 140: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P 128

60

M-4000 FACTOR AT RASSN 50

JUNE 1400 HOURS GMT

180*

EAST i WEST

120°

LONGITUDE

60 c

WEST i EAST

BO'

Page 141: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

M-4000 FACTOR AT RASSN 50

JUNE 1600 HOURS GMT

P. 129

60 120 180°

EAST i WEST

120°

LONGITUDE

60' 0°

WEST i EAST

Page 142: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

R 130

60'

M-4000 FACTOR AT RASSN 50

JUNE 1800 HOURS GMT

180°

EAST i WEST120°

LONGITUDEWEST I EAST

Page 143: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

M-4000 FACTOR AT RASSN 50JUNE 2000 HOURS GMT

R 13

60 120 180°

EAST I WEST120°

LONGITUDE

60'

CO

.1WEST I EAST

Page 144: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 132

60'

M-4000FACT0RATRASSN50JUNE 2200 HOURS GMT

180°

EAST i WEST

120°

LONGITUDE

WEST I EAST

J 90°

60°

Page 145: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

SLOPE OF REGRESSION LINE OF M-4000 FACTOR ON RASSN

JUNE

P. 133

£

cs

cs>

Page 146: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 134 foF2 AT RASSN 50

JULY 0000 HOURS GMT

60c

180'

EASTi WEST

120

LONGITUDEWEST | EAST

Page 147: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

60c

120

foF2 AT RASSN 50

JULY 0200 HOURS GMTP. 135

180°

EASTiWEST

120

LONGITUDE

WEST I EAST

CO

Page 148: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 136

60(

foF2 AT RASSN 50

JULY 0400 HOURS GMT

180°

EASTi WEST

120°

LONGITUOEWEST | EAST

Page 149: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

60(

foF2 AT RASSN 50

JULY 0600 HOURS GMTP. 137

120 180°

EASTiWEST

CO

WEST I EAST

LONGITUDE

Page 150: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 138foF2 AT RASSN 50

JULY 0800 HOURS GMT —i 90'

180°

EASTi WEST

120°

LONGITUDE

co

WEST IEAST

Page 151: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

foF2 AT RASSN 50

JULY 1000 HOURS GMT

P. 139

CO

60< 120180°

EAST iWEST WEST I EAST

LONGITUDE

Page 152: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 140

60*

foF2 AT RASSN 50

JULY 1200 HOURS GMT

120 180°

EAST i WEST

120

LONGITUDE

WEST i EAST

Page 153: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

foF2 AT RASSN 50

JULY 1400 HOURS GMT

P. 14

CO

60* I20( 180°

EASTIWEST

120

L0NGITU0E

60v #

WEST iEAST

- flfl

-

60^

Page 154: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 142 foF2 AT RASSN 50

JULY 1600 HOURS GMT

180°

EAST |* WEST

120°

LONGITUOEWEST | EAST

Page 155: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

foF2 AT RASSN 50

JULY 1800 HOURS GMT

P. 143

60c

120180°

EAST iWEST

120

LONGITUDE

CO

WEST IEAST

Page 156: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P 144 foF2 AT RASSN 50

JULY 2000 HOURS GMT

W 180*

EAST j IEST

120*

LONGITUDEWEST

i EAST

Page 157: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

foF2 AT RASSN 50

JULY 2200 HOURS GMT

P. 145

60180°

EASTiWEST

120

LONGITUDE

WEST I EAST

oCO

Page 158: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 146 SLOPE OF REGRESSION LINE OF foF2 ON RASSN

JULY OOOO HOURS GMT

60°180°

EASTi WEST

120°

LONGITUOEWEST | EAST

Page 159: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

SLOPE OF REGRESSION LINE OF foF2 ON RASSN

JULY 0200 HOURS GMT

P. M7

CO

60° 120 180°

EAST iWEST

120°

LONGITUDE

60#

WEST iEAST

Page 160: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 148 SLOPE OF REGRESSION LINE OF foF2

JULY 0400 HOURS GMT

ON RASSN

aro

CO

120 180°

EAST i WEST

120°

LONGITUDE

60° 0'

WESTi EAST

—'#)

60°

Page 161: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

SLOPE OF REGRESSION LINE OF f„F2 ON RASSN

JULY 0600 HOURS GMT

P. H9

CO

60 120 180

EAST iWEST

120'

LONGITUDE

WEST i EAST

Page 162: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 150 SLOPE OF REGRESSION LINE OF foF2 ON RASSN

JULY 0800 HOURS GMT

GO

60(

180°

EASTi WEST

120'

LONGITUDE

WESTI EAST

Page 163: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

SLOPE OF REGRESSION LINE OF foF2 ON RASSNJULY IOOO HOURS GMT

P. 151

CO

60c

120180°

EAST i WEST

120'

LONGITUOE

60"

WEST iEAST

Page 164: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 152SLOPE OF REGRESSION LINE OF foF2 ON RASSN

JULY 1200 HOURS GMT

60° 120 180°

EAST i WEST

120°

LONGITUDE

WEST I EAST

CO

Page 165: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

SLOPE OF REGRESSION LINE OF foF2 ON RASSN

JULY 1400 HOURS GMT

P. 153

60 120 180°

EASTiWEST

120

LONGITUDE

WEST i EAST

CO

Page 166: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 154 SLOPE OF REGRESSION LINE OF foF2 ON RASSN

JULY 1600 HOURS GMT

60(

180°

EASTi WEST

120

LONGITUDEWEST | EAST

Page 167: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

SLOPE OF REGRESSION LINE OF foF2 ON RASSN

JULY 1800 HOURS GMT

P. 155

CO

60-

120180°

EAST iWEST

120'

LONGITUOE

#

WEST i EAST

JO*

Page 168: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 156 SLOPE OF REGRESSION LINE OF foF2 ON RASSN

JULY 2000 HOURS GMT

60°180°

EASTi WEST

120'

LONGITUDE

e=>

CO

WEST| EAST

Page 169: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

SLOPE OF REGRESSION LINE OF foF2 ON RASSNJULY 2200 HOURS GMT

P. 157

60 120180°

EASTiWEST

120

LONGITUDE

WEST IEAST

CO

Page 170: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 158 M-4000 FACTOR AT RASSN 50

JULY 0000 HOURS GMT

180°

EASTiWEST

120*

LONGITUDE

WEST i EAST

90

CO

Page 171: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

M-4000 FACTOR AT RASSN 50

JULY 0200 HOURS GMT

P. 159

180°

EAST iWEST

120

LONGITUDE

oo

WEST IEAST

Page 172: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 160 M-4000 FACTOR AT RASSN 50

JULY 0400 HOURS GMT

60#

180°

EASTi WEST

120

LONGITUDE

60(

0'

WESTi EAST

60"

Page 173: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

M-4000 FACTOR AT RASSN 50

JULY 0600 HOURS GMT

P. 161

901

60c

120 180°

EASTiWEST WEST I EAST

LONGITUDE

Page 174: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 162 M-4000 FACTOR AT RASSN 50

JULY 0800 HOURS GMT

60*120 180°

EASTi WEST

120°

LONGITUDE

60' 0°

WESTi EAST

60°

.90'

Page 175: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

M-4000 FACTOR AT RASSN 50

JULY 1000 HOURS GMT

P. 183

60<

CO

120 180°

EAST i WEST

120'

LONGITUDE

WEST I EAST

Page 176: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 164 M-4000 FACTOR AT RASSN 50

JULY 1200 HOURS GMT

60* 180°

EASTi WEST

120'

LONGITUDE

WEST | EAST

90'

CO

Page 177: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

M-4000 FACTOR AT RASSN 50

JULY 1400 HOURS GMT

P. 165

180°

EAST iWEST

co

120

LONGITUDE

WEST IEAST

Page 178: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 166 M-4000 FACTOR AT RASSN 50

JULY 1600 HOURS GMT90

60°

en

CO

180°

EAST i WEST

120*

LONGITUDE

WEST I EAST

Page 179: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

60e

M-4000 FACTOR AT RASSN 50

JULY 1800 HOURS GMT

P. 167

120 180

EAST iWEST

120'

LONGITUDE

WEST IEAST

Page 180: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 168 M-4000 FACTOR AT RASSN 50

JULY 2000 HOURS GMT

180°

EASTi WEST

120'

LONGITUDE

CO

WESTi EAST

Page 181: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

M-4000 FACTOR AT RASSN 50

JULY 2200 HOURS GMT

r 169

90*

w 120' !80f

EAST | WEST

120*

10ICITU0E

NT or

•EST | EAST

Page 182: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 170 SLOPE OF REGRESSION LINE OF M-4000 FACTOR ON RASSN

JULY

CJ>

C3

<J>

Page 183: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

foF2 AT RASSN 50

SEPTEMBER 0000 HOURS GMT

P. 171

CO

60 120 180°

EAST I WEST

120°

LONGITUDE

WEST | EAST

Page 184: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 172

SO' 120

foF2 AT RASSN 50

SEPTEMBER 0200 HOURS GMT

180°

EAST I WEST

120°

LONGITUDE

60' 0°

WEST I EAST

90°60°

Page 185: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

foF2 AT RASSN 50

SEPTEMBER 0400 HOURS GMT

P. 173

60' 120 180°

EAST i WEST

120°

LONGITUDE

WEST I EAST

Page 186: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 174

6(V

foF2 AT RASSN 50

SEPTEMBER 0600 HOURS GMT

180°

EAST i WEST

120°

LONGITUDE

CO

WEST j EAST

90°

60 f

Page 187: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

60 120

foF2 AT RASSN 50

SEPTEMBER 0800 HOURS GMT

P. 175

180°

EAST i WEST

120°

LONGITUDE

WEST I EAST

Page 188: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 176 foF2 AT RASSN 50

SEPTEMBER 1000 HOURS GMT

120 180°

EAST i WEST

CO

120'

LONGITUDE

60« 0°

WEST i EAST

90°

60°

Page 189: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

foF2 AT RASSN 50

SEPTEMBER 1200 HOURS GMT

P. ITT

CO

60' 120180°

EAST I WEST

120°

LONGITUDE

WEST i EAST

90#

60°

Page 190: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 178 foF2 AT RASSN 50

SEPTEMBER 1400 HOURS GMT

60<120 180°

EAST i WEST

120°

LONGITUDE

60<

CO

WEST i EAST

—"90°60°

Page 191: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

60' 120

foF2 AT RASSN 50

SEPTEMBER 1600 HOURS GMT

P. 179

180°

EAST i WEST

120°

LONGITUDE

60 0°

WEST I EAST

90°

60°

Page 192: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 180 foF2 AT RASSN 50

SEPTEMBER 1800 HOURS GMT

60' 120 180°

EAST ( WEST

120°

LONGITUDE

S0(

WEST I EAST

60'

Page 193: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

foF2 AT RASSN 50

SEPTEMBER 2000 HOURS GMT

P. 181

60* I20c 180°

EAST I WEST

120°

LONGITUDE

60' 0<

WEST I EAST

CO

Page 194: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 182 f F2 AT RASSN 50

SEPTEMBER 2200 HOURS GMT

60' 120 180°

EAST i WEST

120°

LONGITUDE

t-O

60

WEST I EAST

Page 195: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

SLOPE OF REGRESSION LINE OF f.F2 ON RASSN

SEPTEMBER OOOO HOURS GMT

P. 183

60 120

oa

oCO

180°

EAST I WESTWEST I EAST

LONGITUDE

Page 196: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P 184 SLOPE OF REGRESSION LINE OF foF2 ON RASSN

SEPTEMBER 0200 HOURS GMT

BO' 180°

EAST I WEST

120°

LONGITUDE

WEST I EAST

Page 197: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

60c

SLOPE OF REGRESSION LINE OF foF2 ON RASSN

SEPTEMBER 0400 HOURS 6NT

P. 185

120

CO

180°

EAST "I WEST

120°

LONGITUDE

WEST I EAST

Page 198: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 18 6 SLOPE OF REGRESSION LINE OF f F2 ON RASSN

SEPTEMBER 0600 HOURS GMT

60'

CO

180°

EAST I WEST

120°

LONGITUDEWEST I EAST

Page 199: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

SLOPE OF REGRESSION LINE OF f.F2 ON RASSN

SEPTEMBER 0800 HOURS GMT

P. 187

CO

60 120180°

EAST I'WEST

120°

LONGITUDE

WEST I EAST

Page 200: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 188 SLOPE OF REGRESSION LINE OF foF2 ON RASSN

SEPTEMBER IOOO HOURS GMT

60 180°

EAST i WEST

20°

LONGITUDE

WEST I EAST

CO

Page 201: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

SLOPE OF REGRESSION LINE OF f F2 ON RASSN

SEPTEMBER 1200 HOURS GMT

P. 189

60

CO

20 180°

EAST I WEST

120°

LONGITUDE

WEST I EAST

Page 202: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 190 SLOPE OF REGRESSION LINE OF foF2 ON RASSN

SEPTEMBER 1400 HOURS GMT

60 180°

EAST I WEST

120°

LONGITUDE

60' 0°

WEST i EAST

CO

60«

Page 203: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

60' 120'

SLOPE OF REGRESSION LINE OF foF2 ON RASSN

SEPTEMBER 1600 HOURS GMT

P. 191

180°

EAST I WEST

120°

LONGITUDE

60'

CO

WEST i EAST

60'

Page 204: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 192 SLOPE OF REGRESSION LINE OF foF2 ON RASSN

SEPTEMBER 1800 HOURS GMT

60 (

120 180°

EAST I WEST

120°

LONGITUDE

60 0°

WEST I EAST

90°

60°

Page 205: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

SLOPE OF REGRESSION LINE OF foF2 ON RASSN

SEPTEMBER 2000 HOURS GMT

P. 193

60' 120'180°

EAST I WEST

120°

LONGITUDE

600°

WEST I EAST

Page 206: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 194 SLOPE OF REGRESSION LINE OF foF2 ON RASSN

SEPTEMBER 2200 HOURS GMT

60'180°

EAST i WEST120°

LONGITUDE

60'

CO

WEST f EAST60

- — - .

Page 207: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

60

M-4000 FACTOR AT RASSN 50

SEPTEMBER 0000 HOURS GMT

P. 195

CO

120 180°

EAST i WEST

120°

LONGITUDE

WEST i EAST

60(

Page 208: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 196M-4000 FACTOR AT RASSN 50

SEPTEMBER 0200 HOURS GMT90'

60180°

EAST i WEST120°

LONGITUDE

60' 0°

WESTI EAST

60*

Page 209: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

M-4000 FACTOR AT RASSN 50

SEPTEMBER 0400 HOURS GMT

P. 197

60'

CO

120" 180°

EAST I WEST

120°

LONGITUDE

60' 0'

WEST I EAST

Page 210: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P 198

60

M-4000 FACTOR AT RASSN 50

SEPTEMBER 0600 HOURS GMT

180° 120°

EAST 1 WEST

LONGITUDE

60

OO

WEST I EAST

60"

Page 211: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

M-4000 FACTOR AT RASSN 50

SEPTEMBER 0800 HOURS GMT

P. 139

60c 120

180°

EAST i WEST

120°

LONGITUDE

aso

WEST I EAST

Page 212: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 200

60

M-4000 FACTOR AT RASSN 50

SEPTEMBER 1000 HOURS GMT

180°

EAST I' WEST120°

LONGITUDE

60'0°

WEST | EAST

90°

60°

Page 213: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

60' 120

M-4000 FACTOR AT RAS8N 50

SEPTEMBER 1200 HOURS GMT

P. 20

190°

EAST ! WEST

120°

LONGITUDE

WEST I EAST

Page 214: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 202

60 120

M-4000 FACTOR AT RASSN 50

SEPTEMBER 1400 HOURS GMT

180°

EAST i WEST

120°

LONGITUDE

60' 0°

WEST I EAST

90°

60°

Page 215: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

60

M-4000 FACTOR AT RASSN 50

SEPTEMBER 1600 HOURS GMT

P. 203

120 180°

EAST I"WEST

120°

LONGITUDE

WEST I EAST

Page 216: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 204 M-4000 FACTOR AT RASSN 50

SEPTEMBER 1800 HOURS GMT90'

120 180°

EAST i WEST

120°

LONGITUDE

60fi 0'

WEST i EAST

60(

Page 217: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

M-4000 FACTOR AT RASSN 50

SEPTEMBER 2000 HOURS GMTP. 205

60« 120 18.0°

EAST I WEST120°

LONGITUDE

WEST I EAST

90°

60°

Page 218: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

R 206

60c

M-4000 FACTOR AT RASSN 50

SEPTEMBER 2200 HOURS GMT

180°

EAST I WEST120°

LONGITUDE

WEST I EAST

Page 219: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

SLOPE OF REGRESSION LINE OF M-4000 FACTOR ON RASSN

SEPTEMBER

P. 207

LU

00 02 04 06 08 10 12 14

LOCAL TIME

Page 220: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

R 208

60

f oF2 AT RASSN 50

DECEMBER 0000 HOURS GMT

80°

EAST i WEST

20°

LONGITUDE

60 c

WEST i EAST

60 c

Page 221: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

60«

foF2 AT RASSN 50

DECEMBER 0200 HOURS GMT

P. 209

120180°

EAST i WEST

120°

LONGITUDE

WEST i EAST

Page 222: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

R 210

60 (

foF2 AT RASSN 50

DECEMBER 0400 HOURS GMT

CO

180°

EAST i WEST

120°

LONGITUDE

WEST I EAST

Page 223: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

60 (

foF2 AT RASSN 50

DECEMBER 0600 HOURS GHT

P. 211

120' 180°

EAST i WEST

120°

LONGITUDE

60c 0°

WEST i EAST

60<

Page 224: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 212foF2 AT RASSN 50

DECEMBER 0800 HOURS GMT

60 180°

EAST i WEST

120°

LONGITUDE

60 c

WEST i EAST

- 90°

60°

Page 225: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

60 (

foF2 AT RASSN 50

DECEMBER 1000 HOURS GMT

P. 213

20 180°

EAST i WEST

120°

LONGITUDE

CO

WEST i EAST

Page 226: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 214

60 20

foF2 AT RA8SN 50

DECEMBER 1200 HOURS GMT

180°

EAST i WEST

120°

LONGITUDE

60 (

WEST I EAST

ce:

GO

60(

Page 227: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

60

foF2 AT RASSN 50DECEMBER 1400 HOURS GMT

P. 215

20 180°

EAST i WEST

20

LONGITUDE

60° 0°

WEST I EAST

CO

Page 228: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 216

60 120

foF2 AT RA58N 50

DECEMBER 1600 HOURS GMT

180°

EAST i WEST

120°

LONGITUDE

60(

WEST i EAST

60c

Page 229: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

foF2 AT RASSN 50

DECEMBER 1800 HOURS GMT

P. 217

60° 20 180°

EAST i WEST

120°

LONGITUDE

WEST I EAST

Page 230: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 218 foF2 AT RASSN 50

DECEMBER 2000 HOURS GMT

180°

EAST l" WEST

60< 0°

WEST I EAST

CO

90°

60°

LONGITUDE

Page 231: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

60c

foF2 AT RASSN 50

DECEMBER 2200 HOURS GMT

P. 219

20180°

EAST i WEST

20°

LONGITUDE

WEST i EAST

CO

Page 232: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P- 220

60 120'

SLOPE OF REGRESSION LIME OF foF2 ON RASSN

DECEMBER 0000 HOURS GMT.

180°

EAST I WEST

120°

LONGITUDE

60' 0°

WEST j EAST

CO

60"

Page 233: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

60

SLOPE OF REGRESSION LINE OF f«F2 ON RASSN

DECEMBER 0200 HOURS GMT

P. 221

20 180°

EAST! WEST

120°

LONGITUDE

WEST i EAST

CO

Page 234: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 222

60' 120

SLOPE OF REGRESSION LINE OF foF2 ON RASSN

DECEMBER 0400 HOURS GMT

180°

EAST i WEST

120°

LONGITUDE

60' 0°

WEST i EAST

CO

60'

Page 235: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

SLOPE OF REGRESSION LINE OF foF2 ON RASSN

DECEMBER 0600 HOURS GMT

P. 225

CO

60 120 180°

EAST i WESTWEST I EAST

LONGITUDE

Page 236: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 224 SLOPE OF REGRESSION LINE OF foF2 ON RASSN

DECEMBER 0800 HOURS GMT

60« 120 180°

EAST i WEST120°

LONGITUDE

60< 0°

WEST I EAST60«

Page 237: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

SLOPE OF REGRESSION LINE OF f F2 ON RASSN

DECEMBER IOOO HOURS GMT

P. 225

180°

EAST I WEST120°

LONGITUDE

Page 238: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 226

m

120

SLOPE OF REGRESSION LINE OF f o F2 ON RASSN

DECEMBER 1200 HOURS 6HT

180°

EAST I WEST

120°

LONGITUDE

60 ( 0°

WEST I EAST

90*

— 60'

ck:

30<

— 30'

CO

— 60<

90"

60'

Page 239: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

SLOPE OF REGRESSION LINE OF f o F2 ON RASSN

DECEMBER 1400 HOURS GMT

P 227

60 c 120' 180°

EAST I WEST

120

LONGITUDE

WEST I EAST

CO

Page 240: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 228 SLOPE OF REGRESSION LINE OF f o F2 ON RASSN

DECEMBER 1600 HOURS GMT

60 180°

EAST i WEST

60' 0'

WEST i EAST

cc

60 (

LONGITUDE

Page 241: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

SLOPE OF REGRESSION LINE OF foF2 ON RASSN

DECEMBER 1800 HOURS GMT

P. 229

90«

— 60c

— 30'

0° !=

30'

CO

— 60

60( 120' 180°

EAST i WEST

120°

LONGITUDE

60'0«

WEST I EAST

60'

90'

Page 242: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 230 SLOPE OF REGRESSION LINE OF foF2 ON RASSN

DECEMBER 2000 HOURS GMT

60' 120 180°

EAST I WEST120°

LONGITUDE

60' 0°

WEST I EAST

60'

Page 243: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

SLOPE OF REGRESSION LINE OF f.F2 ON RASSN

DECEMBER 2200 HOURS GMT

P. 231

co

60 120 180°

EAST i WEST

120°

LONGITUDE

WEST I EAST

Page 244: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 232

20

M-4000 FACTOR AT RASSN 50

DECEMBER 0000 HOURS GMT

180°

EAST I WEST

120°

LONGITUDE

60 c 0°

WEST i EAST

90°

60°

Page 245: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

M-4000 FACTOR AT RASSN 50

DECEMBER 0200 HOURS GMT

P. 233

60" 120180°

EASTiWEST

WEST iEAST

LONGITUDE

Page 246: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 234 M-4000 FACTOR AT RASSN 50

DECEMBER 0400 HOURS GMT

co

180°

EAST i WEST

120°

LONGITUDEWEST I EAST

Page 247: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

M-4000 FACTOR AT RASSN 50

DECEMBER 0600 HOURS GMT

P. 235

60< 120180°

EAST! WEST

120°

LONGITUDE

60' 0°

WEST i EAST

— 90°

60°

Page 248: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 236 M-4000 FACTOR AT RASSN 50

DECEMBER 0800 HOURS GMT

120 180°

EAST i WEST

120°

LONGITUDE

60c 0°

WEST i EAST

90°

60°

Page 249: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

M— 4000 FACTOR AT RASSN 50

DECEMBER 1000 HOURS GMT

P. 23?

60 120' 180°

EAST i WEST

120°

LONGITUDE

60'(

WEST i EAST

Page 250: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 238 M-4000 FACTOR AT RASSN 50

DECEMBER 1200 HOURS GMT

60c 180°

EAST I WEST

CO

WEST f EASTLONGITUDE

Page 251: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

60«120'

M-4000 FACTOR AT RASSN 50

DECEMBER 1400 HOURS CMT

P. 239

180°

EAST I WEST

120°

LONGITUDE

WEST I EAST

Page 252: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 240

20'

M-4000 FACTOR AT RASSN 50

DECEMBER 1600 HOURS GMT

180°

EAST i WEST

120

LONGITUDE

60' 0°

WEST i EAST

J 90°

60°

Page 253: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

60 20

M-4000 FACTOR AT RASSN 50

DECEMBER 1800 HOURS GMT

P. 24

180°

EAST i WEST

120°

LONGITUDE

WEST I EAST

Page 254: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 242M-4000 FACTOR AT RASSN 50

DECEMBER 2000 HOURS GMT

60 120 180°

EAST i WEST

120°

LONGITUDE

60< 0°

WEST I EAST

60'

Page 255: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

M-4000 FACTOR AT RAS8N 50

DECEMBER 2200 HOURS GMT

P. 243

60" 20' 180°

EAST i WEST

20

LONGITUDE

WEST j EAST

Page 256: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

P. 244 SLOPE OF REGRESSION LINE OF M-4000 FACTOR ON RASSN

DECEMBER

o° ^C9

Page 257: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission
Page 258: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

y

Page 259: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission
Page 260: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission

AU.

Page 261: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission
Page 262: World maps of F2 critical frequencies and maximum …R)=maximumusablefrequencyforatransmission distanceofzerokilometersatRASSNR. F2-^-000-MUF(R)=maximumusablefrequencyforatransmission