World leading supplier of engineering teaching equipment ......World leading supplier of engineering...

8
World leading supplier of engineering teaching equipment [email protected] Fluid Mechanics Range Air Flow and Aerodynamics Hydraulics Fluid mechanics is the branch of physics concerned with the mechanics of fluids – in this case liquids and gases - and the forces on them. It has applications in a wide range of disciplines, including mechanical, civil and chemical engineering. The P.A. Hilton fluid mechanics products offer an extensive range of teaching equipment for the comprehensive delivery of courses in fluid dynamics. In most instances, a modular base unit allows tutors to change the individual experiment modules on a single, self -contained, base unit. This reduces the cost, experiment set-up time and footprint requirements.

Transcript of World leading supplier of engineering teaching equipment ......World leading supplier of engineering...

  • World leading supplier ofengineering teachingequipment

    [email protected]

    Fluid Mechanics Range

    Air Flow and Aerodynamics

    Hydraulics

    Fluid mechanics is the branch of physics concerned with the mechanics of fl uids – in this case liquids and gases - and the forces on them. It has applications in a wide range of disciplines, including mechanical, civil and chemical engineering.

    The P.A. Hilton fl uid mechanics products offer an extensive range of teaching equipment for the comprehensive delivery of courses in fl uid dynamics.

    In most instances, a modular base unit allows tutors to change the individual experiment modules on a single, self -contained, base unit. This reduces the cost, experiment set-up time and footprint requirements.

    Air Conditioning Combustion Air Flow and Aerodynamics

    Heat Transfer UTM Magnus

    Mechanisms Propulsion Steam Structures

    Theory of Machines

    Vibration Vocational Training

    Strength of materials

    Forces (HFC)

    Refrigeration

    Renewable Energy

    Friction Hydraulics

    Air Conditioning Combustion Air Flow and Aerodynamics

    Heat Transfer UTM Magnus

    Mechanisms Propulsion Steam Structures

    Theory of Machines

    Vibration Vocational Training

    Strength of materials

    Forces (HFC)

    Refrigeration

    Renewable Energy

    Friction Hydraulics

  • HB100A Free and Forced Vortices

    • Abenchtopunitdesignedtohelpstudentsvisualiseandanalysekeyprinciplesrelatingtofreeandforcedvorticesusedaspartofthefollowingstudyareas:• Bernoulli’stheorem• Irrationalflow• Turbulentflow• VectorAnalysis• Helmholtz’sTheorem

    HB100B Bernoulli’s Theorem Demonstrator

    • Bernoulli’stheoremconcernstheconservationofmassandenergythroughaflowingsystemandtherelationshipbetweentheflowvelocityandpressure,suchthatasthevelocityoftheflowincreasesthepressuremustdecrease.

    • Theunitallowsstudentstolookattheconversionofenergyindivergent/convergentpipeflowaswellasthepressure/velocitydistribution,whilstrecognisingthefrictioneffectsthatexistswithinpipeflow.

    HB100 Base Unit

    • TheHB100HydraulicsBenchisthemainsourceofwatersupply/flowforalltheadditionalmoduleswithintheHBseries.

    • Mountedonlockablecastorwheelsandconstructedaroundasturdyframeworkontowhichallelementsofthehydraulicsbencharemounted,includingwaterstoragetank.

    • On/offcontrolonthefrontoftheframe,togetherwithasafetycutouttocontrolthepump.

    • Closedsystem,whichminimisesthelocalwaterrequirementbutallowslargeflowratesandpressurerangestobeaccommodated.

    • Duetoitssizetheunitmaybestoredunderasuitablysizedlaboratorybenchtosavespace.

    • Spaceisprovidedfortheinclusionofasecondpumptoboostthewaterflowrateandallowseries/parallelpumpexperimentstogetherwithotheroptionalitems

    www.pahilton.co.uk

    Pressure in a vortexThe fl uid motion in a vortex creates a dynamic pressure (in addition to any hydrostatic pressure) that is lowest in the core region, closest to the axis, and increases as one moves away from it, in accordance with Bernoulli’s Principle. One can say that it is the gradient of this pressure that forces the fl uid to follow a curved path around an axis.https://en.wikipedia.org/wiki/Vortex

  • HB100D Pressure Losses in Bends and Fittings

    • Comprisesdifferentdiameter,roughnessandmaterialpipes,alongwithlongandshortradiusbends,parallelsectionsandconstrictions.

    • Theunitalsohasanexpandabletopsectionforlookingatdifferentoptionsorstudents’owndesigns.

    • DeterminationofReynoldsnumberinavarietyofpipesizes

    • CalculationoftheoreticalpressurelossinapipeusingBernoulli’sequation–comparisonwithpracticalmeasuredpressuredrop.

    HB100C Flow Measurement Demonstrator

    • Theunitdemonstratesthetheoryofflowthroughdifferenttypesofmeters.

    • Therelationshipbetweentheflowvelocityandpressurecanclearlybestudiedandunderstoodthroughthispracticaldemonstration.

    • Theunitallowsstudentstolookatthepressure/velocitydistribution,whilstrecognisingthefrictioneffectsthatexistswithinpipeflow.

    HB100E Stability of Floating Bodies

    • Theunitcomeswith3differenthulldesignsforcomparisontesting.Acalibratedweightsetissuppliedaswellasanintegraldigitalinclinometer.

    • Determinationofthemetacentricheightandthecentreofbuoyancybyanalyticalmeans.

    • Calculatingtherightingmomentforanglesupto10°

    • Experimentaldeterminationofthemetacentricheight

    HB100F Centre of Pressure Module

    • Abenchmountedunitwithagraduatedscaleonthesideofthefloatmeasuringinmillimetres.

    • AsetofweightsissuppliedfortestingaswellasthecounterbalanceloadingsystemandanInstructionmanualformeasuringthehydrostaticpressureinliquids.

    • Animportantexperimentforshipbuilding,maritimestructures,chemicalengineeringandtankdesign.

    HB100G Impact of a Jet

    • TheapparatuscanbeoperatedfromHB100HydraulicsBenchorindependentlyfromalocalwatersource.

    • Itisusedtoinvestigatetheforcesappliedondifferentdesigneddeflectorsbeingimpactedbyaconstantjetofwater.

    HB100J Osborne Reynolds Apparatus

    • TheapparatuscanbeoperatedfromHB100HydraulicsBenchorindependentlyfromalocalmainswatersource.

    • TheApparatusisusedfortheillustrationandinvestigationofLaminarandTurbulentflowwiththeactiveflowvisiblethankstoadyeinjectionsystem.

    LaminarFlow

    TurbulentFlow

    HB100K Flow Meter Module

    • AvariableareaflowmeterformeasuringtheflowratefromtheHB100andcanbemountedwitheaseontopofthestandardframe.

    • Theunitcomeswithagraduatedscaleontheclearplasticcasingmeasuringinlitres/minute.

    • TheHB100Kisessentialforoperationofcertainmodules.

    HB100M Pressure and Throttle Module

    • CanbemountedwitheaseontheHB100andleftinpositionifrequired.

    • WiththeadditionoftheHB100Kthepressureandflowcharacteristicsofthestandardpumpmaybeinvestigated.

    • WiththefurtheradditionoftheHB100L,theclassicexperimentsinvestigatingpressureandflowcharacteristicsofseriesandparallelpumpmaybeperformed.

    HB100L Series /Parallel Pump Module

    • Thismodulecanbemountedwitheaseontheexistingunitwithpre-existingholesforsimpleandquickinstallation.Additionalpipeworkandvalvesallowtheunittobesimplyswitchedbetweenseriesandparallelmodes.Theadditionalpumpallowsanincreaseintheflowrate/pressuretoenablerawiderrangeofexperimentstobeperformedacrossalloftheoptionsavailablewiththeHB100.

    • WiththeadditionofoptionsHB100KandHB100Mtheclassicexperimentsinvestigatingpressureandflowcharacteristicsofseriesandparallelpumpmaybeperformed.

  • F110 Pressure Measurement Bench

    • TheHiltonF110PressureMeasurementBenchallowsstudentstoinvestigatemeasurementofoneofthefundamentalparametersthatwillbepresentinalmosteverybranchofengineeringandphysics.Theunitisbenchmountedandself-containedhavingitsownmeansofpressuregeneration.

    • Theunitallowstheinvestigationof,manometerpressuremeasurementmethods,pressuresaboveandbelowatmosphericpressureandtheinvestigationofmanometerfluiddensityeffect.

    • Abenchtop,panelmountedUtubeandinclinedtubemanometertogetherwithapositivepressureBourdontubepressuregaugeandcompound(positiveandnegative)pressuregauge.

    • Ameansofcreatingmeasurablepressuresisalsoprovided.ThemanometersallowinvestigationoftheuseofUandinclinedtubesforpressuremeasurementanddemonstratetheuseoffluidsofdifferentdensity.

    • Allofthemanometersandthepanelmountedpressuregaugesmaybeinterconnectedandlinkedtothecommonpressuresourcesupplied.Theactionofthesuppliedpressuresourcemaybereversedtogeneratepressuresbelowatmosphericpressure.Thisallowstheconceptof“gauge”andabsolutepressuretobeinvestigated.

    F110A Optional Extra Deadweight Tester

    • Anoptionalbenchmounteddeadweighttester(F110A)withweightsandaBourdontubepressuregaugewithclearfrontpaneltoallowviewingofthedialmechanismisalsoavailabletoillustratethecalibrationofaBourdontubepressuregauge.

    • ThedeadweightcalibratorF110AintroducesstudentstotheconceptofPressure=Force/AreabyallowingcalibrationofaBourdontubepressuregauge.Asetofprecisionweightsallowdiscretepointsofknownpressuretobegenerated.ToassistinstudentunderstandingtheBourdongaugehasaclearfront,allowingviewingofthetubeandpointermechanism.

    The Bourdon pressure gauge uses the principle that a flattened tube tends to straighten or regain its circular form in cross-section when pressurised. This change in cross-section may be hardly noticeable, involving moderate stresses within the elastic range of easily workable materials. The strain of the material of the tube is magnified by forming the tube into a C shape or even a helix, such that the entire tube tends to straighten out or uncoil elastically as it is pressurised. Eugène Bourdon patented his gauge in France on 1948, and it was widely adopted because of its superior sensitivity, linearity and accuracy.

    F110B Optional Extra Pressure Transducer & Digital Display

    • TheF110BwhenconnectedtotheF110Aallowsstudentstocalibrateanelectronictransducerandrelatethepressurepointstotheelectronicsignal

    F100 Airflow system

    • ThisflexibleAirFlowSystemhasanexpandablerangeofoptionalexperimentalmodulesdesignedforstudentuse.InconjunctionwiththeF100baseunit,theoptionalmodulesallowtheinvestigationofthefundamentalaspectsofairflow,aerodynamicsandheattransfer.

    F100 Base unit

    • Thebaseunitconsistsofasmallfootprint,highvolumehighpressurecentrifugalfanwithadjustableflowcontrol,inletandoutletcouplings.TheHiltonAirflowSystemF100isavailablewithanextensiverangeofoptionalaccessoriesthatmakestheunitaveryflexibleandeconomicinvestment

    F100A Multi tube manometer

    • Multi-tubemanometerwithacommonreservoirthatmaybeusedtogiveagraphicdisplayofpressuredistributiononmulti-pointpressuretapings.Thedeviceallowsupto16pressurestobemonitoredsimultaneouslyeitherrelativetoatmosphericpressureoranotherpressure,viathecommonreservoir.

    • Thisunitisarecommendedaccessoryforallofthefollowingoptionalitems(exceptfortheF100H)andisessential,ifasimilarunitisnotavailablelocally.

    F100B Bernoulli’s Equation

    • AconvergentdivergentductsectionthatconnectstotheHiltonAirflowSystemF100usingaflexiblecoupling.Thedevicehasapitot-statictubethatcanbemovedaxiallyalongtheducttoallowtotalandstaticpressureduetothevariationinductcrosssection.

    • ThemeasuredpressurechangesmaybecomparedwiththeBernoulliequationpredictions.

    F100C Boundary layer investigation

    • Areversibleflatplatelocatedinsidearectangularduct.Theplatehasonesmoothandoneartificiallyroughenedface.Theducthasremovableprofileplatesthatcanestablishanincreasingordecreasingpressuregradientinthedirectionofflow.

    • Toinvestigatethegrowthoftheboundarylayerprofileinavarietyofconditionsalongtheplateamicro-pitottubeisprovided.Thismaybemovedtowardtheplateinmeasuredintervalsusingamicrometeradjustmentallowingthegrowthoftheboundarylayeralongtheplatetobeinvestigated.

    www.pahilton.co.uk

    *NoteBaseshownwithF100Baccessorywhichissoldseparately

  • F100D Round Turbulent Jet Investigation

    • Aroundparalleltubewithasharp-edgeddischargeisusedtocreateaturbulentjetusingtheairfromtheAirflowSystemF100.Apitottubeisattachedtoameasuringframethatallowsthedevicetobetraversedhorizontallyandaxiallyoverthewholeflowfield.

    • Bythismethodthevelocityprofileatvariousaxialdistancesfromthejet,thepressurelossandentrainedmassmaybeinvestigated.

    F100E Flow Around a Bend Investigation

    • A90-degreebendofconstantcrosssectionhasairblownthroughitfromtheAirflowSystemF100.Alongtheinnerandouterradiusatstrategicpoints,staticpressuretappingpointsarelocated.Whenconnectedtoasuitablemulti-tubemanometerthestaticpressureprofilealongtheinnerandouterradiusofthebendmaybemeasuredatarangeofairvelocities.

    F100F Jet Attachment Investigation

    • ArectangularslitdirectsanairjettowardsaYshapedductwithtwooutletpassages.TheshapeoftheductmaybechangedbytiltingandslidingmoveableelementstoallowstudentstoinvestigatetheCoandaeffectofjetattachmenttoawall.ByblowingairfromonesideoranotheratthejettheairflowcanbedirecteddowneitheroftheYshapedpassagesasinapneumaticflip-flop.

    F100G Drag Force Investigation.

    • Ashortductwithintegralloadbalanceallowsthedragofabodytobedirectlymeasuredatarangeofapproachvelocities.Thebodiesincludeanaerofoil,cylinderandplate.Thecylinderhasaradialtappingtoallowinvestigationofthepressuredistributionaroundthecylinder.

    • Theunitallowsthedeterminationoftheboundarylayerdragoncircular(andnon–circular)cylinder(s)usingthePitot–TraversemethodandDirectforcemeasurement

    • PracticalexperienceintheuseofPitottubeswhichshouldgivestudentsanunderstandingoftheroleprobealignmenthasonaccuracyinthecollectionofpressuredata.

    F100H Flow Visualisation Investigation.

    • TheOptionalFlowVisualisationInvestigationducthasbeendesignedforoperationwiththeHiltonAirflowSystemF100.Theductallowsstudentstoinvestigatesimpleflowvisualisationtechniquesincludingsmokeandcottonthread.

    • Asmokegeneratorgeneratesavisualoilmistthatisintroducedintotheairstreamaheadofthetestshapethroughanumberoffinenozzles.Theresultingsmokefilamentsclearlyshowstreamlinesaroundthetestshapes.

    F100J Principles of Airflow, Pressure and Velocity Distribution (Pitot-Traverse

    • APitottubemaybetraversedacrosstheairductinboththefreestreamconditionandbehindacylinderincrossflowallowingthevelocitydistributiontobemeasured.Acylinderwithlocalstaticpressuretappingallowsthepressuredistributionaroundacylinderincrossflowtobemeasuredandcomparedwiththetheoreticaldistribution.

    F100K Principles of Airflow, Friction Losses in Bends, and Pipe Elements

    • Aseriesofstraightpipesections,bendsanddifferentairinletshapesthatareequippedwithstaticpressuretapingstoallowairpressuredropsduetopipefrictiontobemeasuredatarangeofairvelocities.Theairflowratemaybemeasuredusingastandardorificeusingthedifferentialpressure.

    F100M Principles of Airflow, Fan Test and Flow Measurement

    • Measurementoffanairflowrateusinganintakeorificeplate,andanirisdiaphragmatarangeofairflowratesinordertodeterminethefancharacteristics.

    • Thecomponentsallowstudentstoquantitativelyinvestigatethreemethodsofflowmeasurement,theorificeplate,conicalinletandpitotstatictube.Theunitalsoallowsstudentstoutilisetheflowmeasuringdevicesinconjunctionwiththefanthrottlesuppliedinordertoestimatethefanperformanceunderarangeofconditions.

  • F300G Pipe Friction Module

    • AseriesoffourstraighttubesofdifferentdiameterswithendpressuretapingsallowpressurelossesinastraightpipetobeinvestigatedatarangeofReynoldsnumbers.Bends,suddenenlargementsandcontractionsareincludedtoallowinvestigationofpressurelossandrecovery.

    • Theunitisdrivenbyanejector(jetpump)allowinginvestigationofentrainmentratioandejectorperformance.

    • Thepressures,temperaturesandairflowratearerecordedbyacombinationofinstrumentationontheCompressibleFlowRangeF300baseunitandtheoptionalmodule.Adigitalhandheldmanometerisalsosupplied.

    Note that the F865 Two Stage Compressor Unit can be used as a suitable air supply for the entire Compressible Flow Range.

    F300F Vortex Tube Refrigerator Module

    • Acompressedairvortextubehastwooutletportsthatcanbeadjustedtovarytheproportionofflowthatleavesfromthehotandcoldexitpoints.

    • Usingacommoncompressedairsourceatambienttemperature,thecoldstreamcanreachtemperaturesbelow-30°Candthehotstreamtemperaturesabove50°C.

    • Theeffectofairsupplypressureontheperformancecanbeinvestigatedtogetherwiththeoverallrefrigeratingeffect.Thepressures,temperaturesandairflowratearerecordedbyacombinationofinstrumentationontheCompressibleFlowRangeF300baseunitandtheoptionalmodule.

    F300E Fluidisation / Fluid Bed Heat Transfer Module

    • Aglasscylindricalchamberwithanairdistributionplateatthebottomendallowsthegranularmaterialsuppliedtobefluidisedbyacontrolledandmeasuredairflow.Anadjustablecylindricalheaterwithsurfacethermocoupleandpowermetercanbeimmersedatanylevelin,oroutofthebedtoallowmeasurementofthelocalheattransfercoefficient.

    • Amoveablepressuretappingandseparatethermocoupleallowthepressureandtemperaturewithinthebedatanydepthtobemeasured.Thepressures,temperaturesandairflowratearerecordedbyacombinationofinstrumentationontheCompressibleFlowRangeF300baseunitandtheoptionalmodule.

    F300D Experimental Reaction Turbine Module

    • ApplicationoftheFirstlawofThermodynamicstoasimpleopensystemundergoingasteadyflowprocess.

    • Asinglestage,radialflow,twojetreactionturbineswithathrottlevalveandbeltbrakedynamometer.Inletandoutletairpressures,temperaturesandairflowrate,turbinetorqueandspeedarerecordedbyacombinationofinstrumentationontheCompressibleFlowRangeF300baseunitandtheoptionalmodule.

    F300C Experimental Impulse Turbine

    • ApplicationoftheFirstlawofThermodynamicstoasimpleopensystemundergoingasteadyflowprocess

    • Featuresanimpulseturbinewith4separatenozzlesandcontrolvalves,athrottlevalveandbeltbrakedynamometer.Inletandoutletairpressures,temperaturesandairflowrate,turbinetorqueandspeedarerecordedbyacombinationofinstrumentationontheCompressibleFlowRangeF300baseunitandtheoptionalmodule.

    F300B Nozzle Pressure Distribution Module

    • Twoconvergent-divergentnozzlesofwiththesamethroatdiameterbutdifferentdischargeareaandasingleconvergentnozzlehavingthesamediameteraresuppliedandfitinthecommontestsection.Allthreenozzleshaveaxialstaticpressuretapingsallowingtheapproach,throatanddivergentsectionpressurestobemeasured.Thevariationofpressureratioandmassflowmaybeinvestigatedforallthreenozzles.

    • Standardunitincludesconvergent–divergentductsdesignedtoproduceMach1.0atthethroatandsupersonicvelocitiesdownstream.

    F300A Nozzle Performance Test Module

    • Aseriesofconvergentandconvergent-divergentnozzlesmaybeinstalledinoneoftwolocationsinahigh-pressuremeasuringchamber.Apressureregulator,throttlevalveandbackpressurevalveallowtheairflowrate,inletanddischarge(orback)pressuretobevaried.

    • Standard unit includes convergent – divergent ducts designed to produce Mach 1.0 at the throat and supersonic velocities downstream.

    • Inletandoutletairpressures,temperaturesandairflowratearerecordedbyacombinationofinstrumentationontheCompressibleFlowRangeF300baseunitandtheoptionalmodule.

    www.pahilton.co.uk

    F300 Base Unit

    • Themainunitconsistsofaninstrumentationandcontrolconsolethatsuppliesavariableflowofcompressedairtotherangeofoptionalmodules.Theunitprovidescommoninstrumentationforalloftheoptions.Specialisedinstrumentsareincludedasrequiredwiththemodules.

    • OptionaldataacquisitionisavailableforF300C,F300D,F300E,F300F

    F300 Compressible Flow Range

    • Thephenomenonofcompressibleflow,sonicvelocityandsupersonicflowispossiblyoneofthemostdemandingareasofstudyformanystudents.TheHiltonCompressibleFlowrangeF300anditscollectionofoptionalaccessoriesenablestudentstosafelyandclearlyinvestigatethefundamentalsofcompressibleflow,airturbinesandavarietyofheattransferexperiments.

  • B500 Ventilation Trainer

    • Arealisticallyscaledventilationtrainingunitcapableofenablingstudentstostudybothbasicairflowandfluidmechanicsaswellasthemorecomplexprocessofcommissioningandbalancingamulti-ductedairdistributionsystem.

    • Theunitconsistsofaforwardcurvedvariablespeedcentrifugalfanandintegralcontrolconsoletogetherwitharectangularairintakeandfilterholder.

    • Aportablemanometer,pitotstatictubeandhandheldanemometerallowalargerangeofexperimentstobeundertaken.

    F865 Two Stage Compressor Test Unit

    • AllowsInvestigationofaSingleandTwoStageCompressor(with,orwithoutintercooling)ataRangeofDeliveryPressures.

    • SafeandSuitableforStudentOperation.• InstrumentationAllowsDetailedAnalysisof

    CompressorPerformance.• OptionalComputerisedDataAcquisition

    Upgrade

    F860 Single Stage Compressor Test Unit

    • AllowsInvestigationofaSingleStageCompressorataRangeofDeliveryPressures.

    • SafeandSuitableforStudentOperation.• InstrumentationAllowsDetailedAnalysisof

    CompressorPerformance.• OptionalComputerisedDataAcquisition

    Upgrade

    Compressors and pumps, when undergoing a steady-flow process, consume power. The isentropic efficiency of a compressor or pump is defined as the ratio of the work input to an isentropic process, to the work input to the actual process between the same inlet and exit pressures.

    B500B (Optional Extra)

    • TheoptionalextraductconfigurationB500Ballowstheadditionofathirdparallelbranchandtwoairsupplyunits.

    B500C (Optional Extra)

    • TheoptionalextraductconfigurationB500Callowstheadditionofa6mbranchandtwoairsupplyunits.

    A polytropic process is any thermodynamic process that can be expressed by the following equation: pVn = constant

    The polytropic process can describe gas expansion and compression which include heat transfer.

    https://en.wikipedia.org/wiki/Polytropic_process

    A

    A

    A

    A

    B500 Component Layouts

    Configuration for line balance experiments

    Configuration for branch balancing experiments

    An additional 200mm bend is suppliedin case room area is tight

    Components are supplied for either configurationto be used downstream of Arrow ‘A’

    Fan and transition

    duct

    Adjustment Unit

    Female Connector

    Male Connector

  • Hilton Data Acquisition

    • AvailableforspecificunitswithintheF300rangeofunits–F300C,F300D,F300E,F300FwhenusedwithadataloggedF300baseunit.

    • Softwarecanmeasurerelevantperformanceareasdependentuponexperimentbeingutilised,suchastemperature,watts,loadairflowspeedandpressure.Theseparameterscanbemeasureddisplayed,recorded,printedandgraphically/numericallydisplayedonahostcomputerorlaptop.

    • Datafilescanbeexportedtoaspreadsheetprogramme.• Allowsforrapiddataacquisitionwhereequipmentmaybebeingused

    forresearch.

    All brand and/or product names are trademarks of their respective owners. Specifi cations and external appearance are subject to change without notice.

    Copyright © 2018 P.A. Hilton Limited. All rights reserved. This technical leafl et, its contents and/or layout may not be modifi ed and/or adopted, copied in part or in whole and/or incorporat-ed into other works without the prior written permission of P.A. Hilton Limited. Hi-Tech Education is registered trade mark of P.A. Hilton Limited.

    P. A. Hilton Ltd, Horsebridge Mill, Kings Somborne, Stockbridge, Hampshire, SO20 6PX UK. www.pahilton.co.uk

    Maximise students per session, so more

    effi cient use of lab and student time.

    In engineering analysis, isentropic effi ciency is a parameter to measure the degree of degradation of energy in steady-fl ow devices. It involves a comparison between the actual performance of a device and the performance that would be achieved under idealized circumstances for the same inlet and exit states. Although there exists heat transfer between the device and its surroundings, most steady-fl ow devices are intended to operate under adiabatic condition. Hence, normally an isentropic process is chosen to serve as the idealized process.