WorkFlow: · 2017. 7. 13. · 4.2 Oyster Mushroom (Pleurotus Species) 60 4.2.160 Introduction 4.2.2...

30

Transcript of WorkFlow: · 2017. 7. 13. · 4.2 Oyster Mushroom (Pleurotus Species) 60 4.2.160 Introduction 4.2.2...

Page 1: WorkFlow: · 2017. 7. 13. · 4.2 Oyster Mushroom (Pleurotus Species) 60 4.2.160 Introduction 4.2.2 Reproductive Biology 61 4.2.362 Germplasm 4.2.4 Genetic Variability
Page 2: WorkFlow: · 2017. 7. 13. · 4.2 Oyster Mushroom (Pleurotus Species) 60 4.2.160 Introduction 4.2.2 Reproductive Biology 61 4.2.362 Germplasm 4.2.4 Genetic Variability

Chapter No.: 1 Title Name: <TITLENAME> ffirs.inddComp. by: <USER> Date: 27 Jun 2017 Time: 07:24:46 PM Stage: proof WorkFlow:<WORKFLOW> Page Number: ii

Page 3: WorkFlow: · 2017. 7. 13. · 4.2 Oyster Mushroom (Pleurotus Species) 60 4.2.160 Introduction 4.2.2 Reproductive Biology 61 4.2.362 Germplasm 4.2.4 Genetic Variability

Chapter No.: 1 Title Name: <TITLENAME> ffirs.inddComp. by: <USER> Date: 27 Jun 2017 Time: 07:24:46 PM Stage: proof WorkFlow:<WORKFLOW> Page Number: i

Edible and Medicinal Mushrooms

Page 4: WorkFlow: · 2017. 7. 13. · 4.2 Oyster Mushroom (Pleurotus Species) 60 4.2.160 Introduction 4.2.2 Reproductive Biology 61 4.2.362 Germplasm 4.2.4 Genetic Variability

Chapter No.: 1 Title Name: <TITLENAME> ffirs.inddComp. by: <USER> Date: 27 Jun 2017 Time: 07:24:46 PM Stage: proof WorkFlow:<WORKFLOW> Page Number: ii

Page 5: WorkFlow: · 2017. 7. 13. · 4.2 Oyster Mushroom (Pleurotus Species) 60 4.2.160 Introduction 4.2.2 Reproductive Biology 61 4.2.362 Germplasm 4.2.4 Genetic Variability

Chapter No.: 1 Title Name: <TITLENAME> ffirs.inddComp. by: <USER> Date: 27 Jun 2017 Time: 07:24:46 PM Stage: proof WorkFlow:<WORKFLOW> Page Number: iii

Edible and Medicinal Mushrooms

Technology and Applications

Edited by

Diego Cunha ZiedUniversidade Estadual Paulista (UNESP), Brazil

Arturo Pardo-GiménezCentro de Investigación, Experimentación y Servicios del Champiñón (CIES), Spain

Page 6: WorkFlow: · 2017. 7. 13. · 4.2 Oyster Mushroom (Pleurotus Species) 60 4.2.160 Introduction 4.2.2 Reproductive Biology 61 4.2.362 Germplasm 4.2.4 Genetic Variability

Chapter No.: 1 Title Name: <TITLENAME> ffirs.inddComp. by: <USER> Date: 27 Jun 2017 Time: 07:24:46 PM Stage: proof WorkFlow:<WORKFLOW> Page Number: iv

This edition first published 2017

© 2017 John Wiley & Sons Ltd

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

The right of Diego Cunha Zied and Arturo-Pardo Giménez to be identified as the authors of the editorial material in this work has been asserted in accordance with law.

Registered OfficeJohn Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

Editorial Offices111 River Street, Hoboken, NJ 07030, USA 9600 Garsington Road, Oxford, OX4 2DQ, UK The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of WarrantyThe publisher and the authors make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of fitness for a particular purpose. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for every situation. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. The fact that an organization or website is referred to in this work as a citation and/or potential source of further information does not mean that the author or the publisher endorses the information the organization or website may provide or recommendations it may make. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the publisher nor the author shall be liable for any damages arising here from.

Library of Congress Cataloging-in-Publication Data applied for

9781119149415

Cover design by WileyCover image: Courtesy of Antonio Martínez Carrasco

Set in 10/12pt WarnockPro by SPi Global, Chennai, India

10 9 8 7 6 5 4 3 2 1

Page 7: WorkFlow: · 2017. 7. 13. · 4.2 Oyster Mushroom (Pleurotus Species) 60 4.2.160 Introduction 4.2.2 Reproductive Biology 61 4.2.362 Germplasm 4.2.4 Genetic Variability

Chapter No.: 1 Title Name: <TITLENAME> ftoc.inddComp. by: <USER> Date: 27 Jun 2017 Time: 07:25:52 PM Stage: proof WorkFlow:<WORKFLOW> Page Number: v

v

List of Contributors xixAcknowledgments xxiiiPreface xxv

1 Mushrooms and Human Civilization 1Behari Lal Dhar

1.1 Domestication of Mushrooms 2 References 3

2 Current Overview of Mushroom Production in the World 5Daniel J. Royse, Johan Baars and Qi Tan

2.1 Lentinula edodes 62.2 Pleurotus spp. 82.3 Auricularia spp. 102.4 Agaricus bisporus 102.5 Flammulina velutipes 112.6 Outlook 11 References 12

3 Mushrooms: Biology and Life Cycle 15Eustáquio Souza Dias and Manuela Rocha de Brito

3.1 Life Cycle of Fungi 153.2 The Subkingdom Dykaria 173.2.1 Dikaryosis: Concepts 173.3 Homothallism, Heterothallism, and Amphithallism 183.4 Heterothallism 193.5 Homothallism 193.6 Amphithallism 203.7 Mating-Type Genes 213.8 Agaricus brasiliensis (Syn = A. subrufescens or A. blazei): An Intriguing Example

of Amphithallism 223.9 Life Cycle of Uncultivated Mushrooms 243.10 The Truffles 253.11 Morels 253.12 The Chanterelles 263.13 The Matsutake 273.14 Porcini 27

Contents

Page 8: WorkFlow: · 2017. 7. 13. · 4.2 Oyster Mushroom (Pleurotus Species) 60 4.2.160 Introduction 4.2.2 Reproductive Biology 61 4.2.362 Germplasm 4.2.4 Genetic Variability

Contents vi

3.15 Decreased Production of Mycorrhizal Mushrooms in the Northern Hemisphere 28

3.16 Fitness of Filamentous Fungi 283.17 Final Considerations 30 References 31

4 Genetic Aspects and Strategies for Obtaining Hybrids 35Manjit Singh and Shwet Kamal

4.1 Agaricus bisporus 364.1.1 Introduction 364.1.2 Understanding Reproductive Biology 374.1.2.1 Different Mating Systems in the Genus Agaricus 394.1.2.2 Different Mating Systems within Agaricus bisporus 394.1.3 Understanding and Collecting Variability 414.1.3.1 Distribution 414.1.3.2 Germplasm Collection 424.1.3.3 Natural Variability 424.1.4 Utilizing Variability 434.1.4.1 Direct Selection of Natural Variants 434.1.4.2 Tissue Culture, Multispore, and Single Spore Cultures 434.1.4.3 Mutations by Ionizing Radiation or Chemical Mutagens 454.1.4.4 Strain Mixing to Achieve Hybridization 454.1.5 Exploiting Variability Through Hybridization 454.1.5.1 Genetic Parameters: Heritability, Combining Ability, and So On 474.1.5.2 Genome Analysis 474.1.5.3 Variation in Isoenzymes, RAPD, RFLP, and Other Molecular Traits 484.1.6 Identification of Parental Strain 484.1.6.1 Economically Important Traits 484.1.6.1.1 Yield and Fruit Morphology 494.1.6.1.2 Cap Color 494.1.6.1.3 Bruising Sensitivity 504.1.6.1.4 Disease Resistance 504.1.6.1.5 Temperature Tolerance 514.1.7 Production and Identification of Homokaryons 514.1.7.1 Use of Non‐Fertility as a Marker in Single Spore Isolates 514.1.7.2 Micromanipulation 514.1.7.3 Growth Rate and Downward Linear Growth on Compost 514.1.7.4 Environmental Factors Enhancing Tetrasporic Basidia 524.1.7.5 Use of the BSN Gene to Promote Production of Homokaryons 524.1.7.6 Molecular Methods – RAPD, ISSR, and So On 524.1.7.7 Protoplast Methods to Develop Homokaryons 524.1.8 Hybridization: Intermating of Homokaryons/Heterokaryons 534.1.8.1 Intermating of Homokaryons 534.1.8.2 Hybridization using Resistance Markers 534.1.8.3 Hybridization using Auxotrophs as Markers 544.1.8.4 Somatic Hybridization/Protoplast Fusion 564.1.8.5 Di‐Mon Mating 574.1.8.6 Identification of Hybrids using Isoenzyme/Molecular Markers 584.1.9 Genetic Manipulation: Transformation 58

Page 9: WorkFlow: · 2017. 7. 13. · 4.2 Oyster Mushroom (Pleurotus Species) 60 4.2.160 Introduction 4.2.2 Reproductive Biology 61 4.2.362 Germplasm 4.2.4 Genetic Variability

Contents vii

4.1.10 Selection 594.1.10.1 Direct Selection 594.1.10.2 Selection by Rejection 594.1.10.3 Marker‐Assisted Selection (MAS) 594.2 Oyster Mushroom (Pleurotus Species) 604.2.1 Introduction 604.2.2 Reproductive Biology 614.2.3 Germplasm 624.2.4 Genetic Variability 624.2.5 Genetic Parameters: Heterosis, Heritability, Combing Ability 644.2.6 Hybridization 654.2.6.1 Conventional Breeding 654.2.6.1.1 Intra-Strain Hybridization 654.2.6.1.2 Inter-Strain/Intra-Specific Hybridization 654.2.6.1.3 Interspecific Hybridization 664.2.6.3 Protoplast Fusion 674.2.6.4 Di‐Mon Mating 684.2.6.5 Non‐Conventional Breeding 684.2.6.5.1 Genetic Transformation 694.2.7 Desired Traits 694.2.7.1 Yield 694.2.7.2 Sporelessness 704.2.7.3 Wide Temperature Range 714.2.7.4 Chemical Tolerance 724.2.7.5 Bioactive Molecules 724.2.7.6 Other Traits 724.2.7.3.7 Environmental Bioremediation 724.3 Conclusion 72 References 73

5 Spawn Production 89Kasper Moreaux

5.1 Our Spawn Industry Today 895.2 Basics 905.2.1 Terminology 905.2.2 The Mushroom Production Pyramid 915.3 Spawn Production Techniques 925.3.1 Grain/Sawdust Spawn Production in Small Bags 925.3.2 Grain Spawn in Large Bags 945.3.2.1 Individual Bags 955.3.2.2 Bulk 975.3.3 Liquid Spawn 995.3.4 Liquefied Spawn 1015.3.5 Grain Spawn in Plastic Bottles or Glass Jars 1015.4 Strain Selection 1015.5 Strain Preservation and Degeneration 1025.5.1 Deep Freezing 1035.5.2 Cooling 1045.5.3 Subculturing 105

Page 10: WorkFlow: · 2017. 7. 13. · 4.2 Oyster Mushroom (Pleurotus Species) 60 4.2.160 Introduction 4.2.2 Reproductive Biology 61 4.2.362 Germplasm 4.2.4 Genetic Variability

Contents viii

5.5.4 Strain Refreshment 1055.6 Production of Mother Cultures and Mother Spawn 1075.6.1 Making Agar 1075.6.2 Subculturing 1075.6.3 Making Mother Spawn 1095.6.4 Product Flow and Hygiene Rules in the Mother Spawn

Department 1125.7 Hygiene 1145.8 Sterilization, Disinfection, and Filtration 1165.8.1 Heat Treatment 1165.8.2 Chemical Treatment 1205.8.3 Mechanical Treatment – Filtration 1205.8.4 UV Treatment 1215.8.5 Radiation Treatment 1225.9 Substrate Composition 1225.10 Incubation 1235.10.1 Temperature 1245.10.2 pH 1255.10.3 Gas Concentration 1255.10.4 Inoculation Method and Mixing 1255.10.5 Incubation Rooms 1265.11 Conservation and Transport 127 References 128

6 Compost as a Food Base for Agaricus bisporus 129Jos Buth

6.1 The Place of Agaricus strains in Nature 1296.1.1 Bacteria 1296.2 Compost Process Phase I 1306.3 Preparing Raw Materials 1326.3.1 Prewetting 1326.3.2 Mixing and Mixing Systems 1346.3.3 Different Systems of Fermentation 1366.3.4 Aerated Floors 1366.4 Phase II 1386.4.1 What Phase II Means and What Happens in Tunnels During

the Process 1386.4.2 Systems 1406.4.3 Tunnel Building for Phase II 1426.5 Phase III 1446.5.1 Spawning 1446.5.2 Spawn Run 146 References 147

7 Casing Materials and Techniques in Agaricus bisporus Cultivation 149Arturo Pardo‐Giménez, José Emilio Pardo González and Diego Cunha Zied

7.1 General Aspects of Casing and Fruiting 1497.2 Casing Materials 1537.2.1 Materials of Mineral Origin 153

Page 11: WorkFlow: · 2017. 7. 13. · 4.2 Oyster Mushroom (Pleurotus Species) 60 4.2.160 Introduction 4.2.2 Reproductive Biology 61 4.2.362 Germplasm 4.2.4 Genetic Variability

Contents ix

7.2.1.1 Natural Materials 1537.2.1.2 Processed Materials and Waste Products 1547.2.2 Materials of Vegetal Origin 1547.2.2.1 Natural Materials 1547.2.2.2 Processed Materials and Waste Products 1557.2.3 Synthetic Materials 1567.2.4 Other Materials 1577.3 Casing Related Techniques 1587.3.1 Reuse of Casing 1587.3.2 Ruffling 1597.3.3 CACing Technique 1607.3.4 Commercial Casing Inoculums 1617.3.5 Other Techniques 1627.3.5.1 Supplementary Casing Material Addition (“Patching”) 1627.3.5.2 Compacting 1627.3.5.3 Double Cropping: Casing Substitution 1627.3.5.4 Double Cropping: Re‐Supplementing and Re‐Casing 1627.3.5.5 Plastic Film Coverage 1637.3.5.6 Sandwich Technique 1637.3.5.7 Ditch Technique 163 References 163

8 The Bag or Block System of Agaricus Mushroom Growing 175Raymond Samp

8.1 Overview of the System 1758.2 Bags and Blocks in Use 1768.3 Practical Use of the System – Phase I and Phase II 1788.4 Practical Use of the System – Spawning and Phase III 1788.5 Practical Use of the System – Casing through

Cropping 186 References 195

9 The Mushroom Industry in the Netherlands 197Jos Buth

References 209

10 New Technology in Agaricus bisporus Cultivation 211Arcadio Gómez

10.1 Introduction 21110.2 Stages and Operations of the Production System 21110.2.1 Compost Phase I, II, and III 21110.2.2 Supplementation 21310.2.3 Trays 21310.2.4 Casing 21410.2.5 Growing Rooms and Cultivation Cycle Management 21610.2.6 Production and Harvest 21710.2.7 Compost Discard 21910.3 Conclusion 220 References 220

Page 12: WorkFlow: · 2017. 7. 13. · 4.2 Oyster Mushroom (Pleurotus Species) 60 4.2.160 Introduction 4.2.2 Reproductive Biology 61 4.2.362 Germplasm 4.2.4 Genetic Variability

Contents x

11 Insect, Mite, and Nematode Pests of Commercial Mushroom Production 221Danny Lee Rinker

11.1 Fly Pests 22111.1.1 Dark‐Winged Fungus Gnat 22111.1.1.1 Damage 22211.1.1.2 Identification 22211.1.1.3 Life History 22311.1.1.4 Management Strategies 22311.1.1.4.1 Monitoring 22311.1.1.4.2 Cultural Practices 22411.1.1.4.3 Biological/biorational Control 22511.1.1.4.4 Chemical Control 22511.1.2 Gall Midges, Cecids 22611.1.2.1 Damage 22611.1.2.2 Identification 22611.1.2.3 Life History 22711.1.2.4 Management Strategies 22711.1.2.4.1 Cultural Management 22711.1.2.4.2 Biocontrol/Biorational Control 22711.1.3 Phorid Flies 22711.1.3.1 Damage 22811.1.3.2 Identification 22811.1.3.3 Life History 22811.1.3.4 Management Strategies 22911.1.3.4.1 Monitoring 22911.1.3.4.2 Biological/Biorational Control 22911.1.3.4.3 Cultural Practices 22911.1.3.4.4 Chemical Control 22911.2 Mite Pests 23011.2.1 Pyemotid mites 23011.2.1.1 Damage 23011.2.1.2 Identification 23011.2.1.3 Life History 23011.2.1.4 Management Strategies 23111.2.1.5 Chemical Management 23111.2.2 Gamasid Mites 23111.2.3 Other Mites Associated with Mushroom Cultivation 23111.3 Nematode Pests 23111.3.1 Saprophytic Nematodes 23211.3.1.1 Symptoms and Signs 23211.3.1.2 Causal Agents 23211.3.1.3 Disease Cycle and Epidemiology 23211.3.1.4 Management Strategies 23311.3.2 Parasitic Nematodes 23311.3.2.1 Causal Agents 23311.3.2.2 Symptoms and Signs 23311.3.2.3 Disease Cycle and Epidemiology 23311.3.2.4 Management Strategies 23411.3.3 Beneficial Nematodes 234

Page 13: WorkFlow: · 2017. 7. 13. · 4.2 Oyster Mushroom (Pleurotus Species) 60 4.2.160 Introduction 4.2.2 Reproductive Biology 61 4.2.362 Germplasm 4.2.4 Genetic Variability

Contents xi

11.3.3.1 Endoparasitic Nematodes 23411.3.3.2 Entomopathogenic Nematodes 234 References 235

12 Mushroom Diseases and Control 239Francisco J. Gea and María J. Navarro

12.1 Introduction 23912.2 Fungal Diseases 23912.2.1 Dry Bubble 23912.2.1.1 Control 24112.2.2 Wet Bubble 24212.2.2.1 Control 24312.2.3 Cobweb 24412.2.3.1 Control 24512.2.4 Trichoderma Diseases 24512.2.4.1 Control 24812.2.5 False Truffle 24912.2.5.1 Control 25012.2.6 White Plaster Mold 25112.2.6.1 Control 25112.2.7 Brown Plaster Mold 25212.2.7.1 Control 25212.3 Bacterial Diseases 25312.3.1 Bacterial Blotch or Brown Blotch 25312.3.1.1 Control 25412.3.2 Internal Stipe Necrosis 25512.3.2.1 Control 25512.4 Viral Diseases 25612.4.1 La France Disease or Die‐Back 25612.4.1.1 Control 257 Further Reading 257

13 Harvesting and Processing of Mushrooms 261Juan Valverde

13.1 Introduction 26113.2 Manual Harvesting 26213.3 Mechanical Harvesting 26513.4 Automatic Harvesting Systems 26513.5 Washing Mushrooms 26713.6 Canning Mushrooms 26813.7 Conclusions 268 References 269

14 Mushroom Farm Design and Technology of Cultivation 271Behari Lal Dhar

14.1 Selection of Site and Pre-Requisites 27214.2 Components of a Mushroom Farm 27314.2.1 General Layout/Location of Various Units 27414.2.2 Composting Unit 275

Page 14: WorkFlow: · 2017. 7. 13. · 4.2 Oyster Mushroom (Pleurotus Species) 60 4.2.160 Introduction 4.2.2 Reproductive Biology 61 4.2.362 Germplasm 4.2.4 Genetic Variability

Contents xii

14.2.2.1 Covered Outdoor Composting Platform 27514.2.2.2 Pasteurization Facility 27614.2.2.2.1 Peak Heating Chamber 27614.2.2.2.2 Bulk Pasteurization Chamber/Tunnel 27714.2.2.3 Cooling in Tropical Areas of Compost in Summer Months: Special Requirements

in the Compost Bulk Chamber 27814.2.2.4 Casing Pasteurization Chamber 27914.2.3 Spawn Unit 27914.2.4 Cropping Unit 28014.2.4.1 Seasonal Cropping Rooms 28014.2.4.2 Structural Details Special to Low Cost Growing Rooms 28114.2.4.2.1 Environmental Conditions for Seasonal Growing 28114.2.4.2.2 Forced Air Circulation 28214.2.4.3 Environmentally Controlled Cropping Rooms 28214.2.4.4 Structural Details Special to Cropping Rooms 28314.2.4.4.1 Floor 28314.2.4.4.2 Walls 28314.2.4.4.3 Roof 28414.2.4.4.4 Doors/Vents 28414.2.4.4.5 Lighting Arrangement 28414.2.4.4.6 Water Connection and Sewers 28414.2.4.4.7 Gallery 28414.2.4.4.8 Requirement of Environment Control and Forced Air Circulation in the Cropping

Rooms 28414.2.4.4.9 Climate Controls for Environmentally Controlled Growing 28514.3 Mushroom Cultivation Technology 28614.3.1 Substrate Preparation/Composting 28614.3.2 Materials 28614.3.2.1 Base Materials 28714.3.2.2 Recommended Formulations for Composting in India (One Ton Base

Material) 28714.3.2.3 Earlier Formulations Recommended in India (European Adoptions) 28814.3.3 Composting Procedure 28814.3.3.1 Phase I 28914.3.3.1.1 Pre-Wetting: Six-Day Process 28914.3.3.1.2 Outdoor Composting 28914.3.3.2 Phase II 29014.3.3.2.1 Pasteurization/Conditioning 29014.3.3.2.2 Composting Procedure for Single Phase Composting without Steam

Pasteurization 29114.3.3.2.3 Spawning and Spawn Run 29114.3.3.2.4 Casing and Case Run 29114.4 Environmental Crop Management 29314.4.1 Watering 29314.4.2 Harvesting and After Care 29414.5 Cultivated Edible Specialty Mushrooms 29514.5.1 Gray Oyster Mushroom 29614.5.1.1 Substrate Materials 29614.5.1.2 Substrate Preparation 297

Page 15: WorkFlow: · 2017. 7. 13. · 4.2 Oyster Mushroom (Pleurotus Species) 60 4.2.160 Introduction 4.2.2 Reproductive Biology 61 4.2.362 Germplasm 4.2.4 Genetic Variability

Contents xiii

14.5.1.3 Spawning and Spawn Run 29714.5.1.4 Opening of the Bags for Cropping 29714.5.1.5 Cropping and Crop Management 29714.5.1.6 Post‐Harvest Handling and Marketing in India 29814.5.2 Black Oyster Mushroom 29814.5.3 White Oyster Mushroom 29914.5.4 Pink Oyster Mushroom 29914.5.5 Yellow Oyster Mushroom 29914.5.6 King Oyster Mushroom 30014.5.6.1 Substrate Materials 30014.5.6.2 Substrate Preparation 30014.5.6.3 Spawning and Spawn Run 30014.5.6.4 Opening of Bags for Fruiting 30114.5.6.4.1 Cropping and Crop Management 30114.5.6.4.2 Post-Harvest Handling 30114.5.7 Black Ear Mushroom 30214.5.8 Buna Shimeji Mushroom 30214.5.9 Shiitake Mushroom 30314.5.10 Milky Mushroom 30314.5.11 Paddy Straw Mushroom 30414.5.12 Enoki Mushroom 30414.5.13 Portobello Brown 30514.5.13.1 Raw Materials Used 30514.5.13.2 Composting Procedure 30514.5.13.2.1 Phase I 30514.5.13.2.2 Phase II 30614.5.13.3 Spawning and Spawn Run 30614.5.13.4 Casing and Case Run 30614.5.13.5 Airing/Pinhead Formation/Cropping 30714.5.13.6 Harvesting 307 References 307

15 Cultivation of Mushrooms in Plastic Bottles and Small Bags 309Katsuji Yamanaka

15.1 Introduction 30915.2 Characteristics of Mushroom Cultivation in Plastic Bottles and Small Bags 31015.2.1 Plastic Bottles 31015.2.2 Small Bags 31015.2.3 Cultivation Containers 31015.2.4 Substrate Materials 31215.2.5 Mushroom Cultivation Processes in Plastic Bottles and Small Bags 31215.2.5.1 Substrate Mixing and Filling 31315.2.5.2 Sterilization 31515.2.5.3 Cooling and Inoculation 31615.2.5.4 Spawn Run (Incubation) 31715.2.5.5 Scratching (Kinkaki) in Bottle Cultivation 31715.2.5.6 Growing (Seiiku) 31715.2.5.7 Harvesting and Packaging 31815.2.5.8 Emptying the Substrate 318

Page 16: WorkFlow: · 2017. 7. 13. · 4.2 Oyster Mushroom (Pleurotus Species) 60 4.2.160 Introduction 4.2.2 Reproductive Biology 61 4.2.362 Germplasm 4.2.4 Genetic Variability

Contents xiv

15.3 Cultivation Methods 31915.3.1 Flammulina velutipes (Enokitake) 31915.3.1.1 Substrate and Filling 32015.3.1.2 Inoculation and Spawn Run 32015.3.1.3 Scratching and Sprouting (Medashi) 32015.3.1.4 Preceding Period of Growth 32015.3.1.4.1 Acclimation (Narashi) 32015.3.1.4.2 Restriction (Yokusei) 32115.3.1.4.3 Applying the Plastic Collar 32115.3.1.5 Late Period of Growth 32115.3.1.6 Harvesting and Packing 32115.3.2 Hypsizygus marmoreus (Buna‐shimeji) 32315.3.2.1 Substrate and Filling 32315.3.2.2 Inoculation and Spawn Run 32315.3.2.3 Scratching and Growing 32315.3.2.4 Harvesting and Packaging 32415.3.3 Pleurotus eryngii (King Oyster) 32515.3.3.1 Substrate and Filling 32515.3.3.2 Inoculation and Spawn Run 32515.3.3.3 Scratching and Growing 32515.3.3.4 Harvesting and Packaging 32615.3.4 Pholiota nameko (Nameko) 32715.3.4.1 Substrate and Filling 32715.3.4.2 Inoculation and Spawn Run 32715.3.4.3 Growing and Harvesting 32715.3.5 Pleurotus ostreatus (Oyster Mushroom, Hiratake) 32715.3.5.1 Substrate and Filling 32715.3.5.2 Inoculation and Spawn Run 32815.3.5.3 Growing and Harvesting 32815.3.6 Grifola frondosa (Maitake) 32815.3.6.1 Substrate and Filling 32915.3.6.2 Inoculation and Spawn Run 32915.3.6.3 Growing and Harvesting 33015.3.7 Lentinula edodes (Shiitake) 33015.3.7.1 Substrate and Filling 33115.3.7.2 Inoculation and Spawn Run 33115.3.7.3 Primordia Formation 33115.3.7.4 Growing and Harvesting 33115.3.7.4.1 Entire Surface Flushing Method 33215.3.7.4.2 Top Surface Flushing Method 33215.3.7.5 Resting 33315.4 Diseases in Mushroom Cultivation in Plastic Bottles and Small Bags 33315.4.1 Fungal Diseases 33315.4.1.1 Trichoderma Diseases 33315.4.1.2 Cobweb Disease, Cladobotryum Infection 33415.4.1.3 Other Fungal Diseases 33515.4.2 Bacterial Diseases 33515.5 Pests in Mushroom Cultivation in Plastic Bottles and Small Bags 337 References 338

Page 17: WorkFlow: · 2017. 7. 13. · 4.2 Oyster Mushroom (Pleurotus Species) 60 4.2.160 Introduction 4.2.2 Reproductive Biology 61 4.2.362 Germplasm 4.2.4 Genetic Variability

Contents xv

16 Cultivation of Pleurotus ostreatus 339Alma E. Rodriguez Estrada and John Pecchia

16.1 Pleurotus Species as Edible Fungi 33916.2 Pleurotus spp. as Recyclers 33916.3 Cultivation of Pleurotus ostreatus 34216.3.1 Pleurotus ostreatus Strains (Cultures) 34316.3.2 Spawn 34416.3.3 Substrate 34516.3.4 Delayed‐Release Nutrients 34716.3.5 Substrate Pasteurization 34716.3.6 Alternative Methods of Substrate

Preparation 34716.3.7 Substrate Packing 34816.3.8 Inoculation 34916.3.9 Incubation 34916.3.10 Primordia Formation and Development of Mature

Basidiomata 34916.3.11 Harvesting 35016.3.12 Spent Substrate 35116.4 Diseases and Pests 35116.4.1 Green Mold Diseases 35116.4.2 Dry Bubble 35216.4.3 Brown Blotch Disease 35216.4.4 Pink Mold 35316.4.5 Scarids 35316.4.6 Phorids 35416.4.7 Cecids 35416.4.8 Springtails (Collembola) 35516.4.9 Viral Diseases 35516.5 Pleurotus spp. in Biotechnology 35516.6 Future Challenges 355 References 356

17 Characteristics, Production, and Marketing of the Sun Mushroom: The New Medicinal Cultivated Mushroom 361Diego Cunha Zied, José Emilio Pardo González, Eustáquio Souza Dias and Arturo Pardo-Giménez

17.1 Introduction 36117.2 Morphological Characteristics 36217.3 Spawn Production 36317.4 Compost (Phase I and II) 36417.4.1 Other Methods for Compost Production 36717.5 Spawning and Mycelium Run 36817.6 Casing Layer 36817.7 Facilities used in the Production Process 37017.8 Pinning and Harvest 37117.9 Post-Harvest and Marketing 37317.10 Medicinal and Chemical Characteristics

of Mushrooms 375

Page 18: WorkFlow: · 2017. 7. 13. · 4.2 Oyster Mushroom (Pleurotus Species) 60 4.2.160 Introduction 4.2.2 Reproductive Biology 61 4.2.362 Germplasm 4.2.4 Genetic Variability

Contents xvi

17.11 Diseases and Pests 37817.12 Spent Mushroom Substrate (SMS) 382 Acknowledgments 382 References 382

18 Cultivation of Ganoderma lucidum 385Xuan‐Wei Zhou

18.1 Introduction 38518.2 Growing Conditions of Lingzhi 38618.2.1 Nutritional Factors 38618.2.1.1 Carbon Sources 38618.2.1.2 Nitrogen Sources 38618.2.1.3 Inorganic Salts 38718.2.1.4 Growth Factors 38718.2.1.5 Moisture Content 38718.2.2 Environmental Factors 38718.2.2.1 Temperature Range 38718.2.2.2 Moisture Requirement 38718.2.2.3 Oxygen Level 38718.2.2.4 Light Conditions 38818.3 Cultivating Patterns 38818.3.1 Production of Fruiting Bodies 38818.3.1.1 Wood‐Log Cultivation 38818.3.1.2 Substitute Cultivation 38918.3.2 Production of Mycelial Biomass 39018.3.2.1 LSF 39118.3.2.2 SSF 39118.4 Production of the Substrate 39218.4.1 Preparation of Logs 39218.4.1.1 Tree Species and Log Size 39218.4.1.2 Bagging and Sterilization 39318.4.2 Preparation of Substrates 39318.4.2.1 Substrate Formulations 39318.4.2.2 Packaging Substrate and Sterilization 39318.5 Preparation of Spawn and Inoculation 39418.5.1 Preparation of Spawn 39418.5.2 Inoculation 39418.6 Facilities 39518.6.1 General Facilities 39518.6.2 Equipment System for Preparation of Substrate 39518.6.3 Mechanization and Automation Control

System 39518.6.4 Other Facilities 39618.7 Genetic Breeding 39718.7.1 Selective Breeding 39718.7.2 Cross Breeding 39718.7.3 Mutation Breeding 39818.7.4 Protoplast Fusion for Breeding 39818.7.5 Gene Engineering Breeding 399

Page 19: WorkFlow: · 2017. 7. 13. · 4.2 Oyster Mushroom (Pleurotus Species) 60 4.2.160 Introduction 4.2.2 Reproductive Biology 61 4.2.362 Germplasm 4.2.4 Genetic Variability

Contents xvii

18.8 Duration, Number of Flushes 40018.8.1 Spawn Running 40018.8.2 Buried Colonized Logs in Soil 40118.8.3 Management of Fruiting Body Development 40118.8.4 Number of Flushes 40218.9 Diseases and Pests in the Cultivation of Lingzhi 40318.9.1 Main Lingzhi Diseases and Insect Pests 40318.9.1.1 Fungi and Harm Caused 40318.9.1.2 Insect Pests and Harm Caused 40318.9.2 Prevention Strategies for Diseases and Pests 40418.10 Medicinal Values 40518.10.1 Polysaccharides 40518.10.2 Triterpenes 40618.10.3 Fungal Immunomodulatory Proteins 406 Acknowledgments 407 References 407

19 Naturally Occurring Strains of Edible Mushrooms: A Source to Improve the Mushroom Industry 415Edgardo Albertó

19.1 Edible Species and Their Cultivation 41519.2 Steps for the Domestication of Naturally Occurring Species 41619.3 Finding New Species for the Mushroom Production Industry: A Look Back at

the Last Few Years 41819.4 Conclusions 423 References 423

20 Spent Mushroom Substrate Uses 427Danny Lee Rinker

20.1 Introduction 42720.2 Characteristics of Spent Substrate 42820.3 Bioremediation 42920.3.1 Air 42920.3.2 Water 42920.3.3 Soil 43020.3.4 Pesticides 43020.4 Crop Production 43120.4.1 Greenhouse Crops 43120.4.2 Field Crops 43120.4.3 General Soil Amendment/Fertilizer 43220.4.4 Nursery and Landscape 43220.5 Reuse in the Cultivation of Mushrooms 43220.5.1 Casing Material for Agaricus bisporus 43220.5.2 Cultivation Substrate for Mushrooms 43220.6 Food for Animals and Fish 43320.6.1 Aquaculture 43320.7 Pest Management 43320.7.1 Disease Management 43420.8 Other Varied Uses 434

Page 20: WorkFlow: · 2017. 7. 13. · 4.2 Oyster Mushroom (Pleurotus Species) 60 4.2.160 Introduction 4.2.2 Reproductive Biology 61 4.2.362 Germplasm 4.2.4 Genetic Variability

Contents xviii

20.8.1 Renewable Energy 43420.9 Conclusion 435 References 435

21 Chemical, Nutritional, and Bioactive Potential of Mushrooms 455Isabel C.F.R. Ferreira, Ângela Fernandes and Sandrina A. Heleno

21.1 Brief Introduction 45521.2 Chemical Composition and Nutritional Properties 45521.3 Bioactive Properties 47621.3.1 Antioxidant Properties 47621.3.2 Antimicrobial Properties 48521.3.3 Antitumor Properties 48921.3.4 Other Bioactivities 49221.4 Conclusions 493 References 493

22 Medicinal Properties and Clinical Effects of Medicinal Mushrooms 503Solomon P. Wasser

22.1 Introduction 50322.2 Current Perspectives and Advances 50522.3 Medicinal Mushroom Drugs 50722.4 Medicinal Mushroom Dietary Supplements 50822.4.1 Safety and Standardization of Medicinal Mushroom DSs 50822.4.2 Submerged Culturing as the Best Technique for Obtaining Consistent and Safe

Mushroom Products 51122.5 Evidences, Challenges, and Unsolved Problems 51122.5.1 Taxonomy and Nomenclature of MMs 51222.5.2 The Study of Culinary‐Medicinal Mushrooms in Pure Culture 51322.5.3 Medicinal Mushroom DS Problems 51422.6 Medicinal Mushroom Natural Products as an Unclaimed Source for Drug

Discovery 51522.7 Unsolved Problems in the Study of Structural Characteristics, Isolation Process,

Receptor-Mediated Mechanism and Antitumor Activity of MM β-Glucans 51722.8 Medicinal Mushroom Clinical Studies 51822.8.1 Clinical Trials 51822.8.2 Observational Studies 51922.8.3 Regulation Issues 52022.8.4 Dosage Consideration 53122.8.5 Pharmacokinetic Issues 53122.8.6 Preclinical‐Clinical Scaling 53222.8.7 Toxicity Issues 53222.9 Conclusions 533 References 534

Index 541

Page 21: WorkFlow: · 2017. 7. 13. · 4.2 Oyster Mushroom (Pleurotus Species) 60 4.2.160 Introduction 4.2.2 Reproductive Biology 61 4.2.362 Germplasm 4.2.4 Genetic Variability

Chapter No.: 1 Title Name: <TITLENAME> fbetw.inddComp. by: <USER> Date: 27 Jun 2017 Time: 07:25:58 PM Stage: <STAGE> WorkFlow:<WORKFLOW> Page Number: xix

xix

Edgardo AlbertóLaboratory of Mycology and Mushroom CultivationInstituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús (UNSAM‐CONICET)Buenos Aires Argentina

Johan BaarsWageningen UR, Plant Breeding Wageningen Netherlands

Jos ButhViña del MarRegion V Chile

Ângela FernandesCentro de Investigação de Montanha (CIMO)ESA, Instituto Politécnico de BragançaBragança Portugal

Isabel C.F.R. FerreiraCentro de Investigação de Montanha (CIMO)ESA, Instituto Politécnico de BragançaBragança Portugal

Francisco J. GeaCentro de InvestigaciónExperimentación y Servicios del Champiñón (CIES)Quintanar del Rey (Cuenca) Spain

Arcadio GómezMushiberica ConsultoresAlbacete Spain

Sandrina A. HelenoCentro de Investigação de Montanha (CIMO)ESA, Instituto Politécnico de BragançaBragança Portugal

Behari Lal DharNNMushroom Consulting India/ICAR‐Directorate of Mushroom Research Solan India

Shwet KamalICAR‐Directorate of Mushroom Research, Solan India

Kasper MoreauxMycelia, Spawn Production and School for Professionals in the Mycelium Industry Nevele Belgium

List of Contributors

Page 22: WorkFlow: · 2017. 7. 13. · 4.2 Oyster Mushroom (Pleurotus Species) 60 4.2.160 Introduction 4.2.2 Reproductive Biology 61 4.2.362 Germplasm 4.2.4 Genetic Variability

List of Contributorsxx

María J. NavarroCentro de InvestigaciónExperimentación y Servicios del Champiñón (CIES)Quintanar del Rey (Cuenca) Spain

José Emilio Pardo GonzálezEscuela Técnica Superior de Ingenieros Agrónomos y de Montes (ETSIAM)Universidad de Castilla‐La Mancha Albacete Spain

Arturo Pardo-GiménezCentro de InvestigaciónExperimentación y Servicios del Champiñón (CIES)Quintanar del Rey (Cuenca) Spain

John PecchiaPlant Pathology and Environmental MicrobiologyPenn State UniversityUniversity Park, PA USA

Danny Lee RinkerUniversity of GuelphGuelph, ON Canada

Manuela Rocha de BritoDepartment of Biology, University of Lavras (UFLA) Brazil

Alma E. Rodriguez EstradaBiology DepartmentAurora UniversityAurora, IL USA

Daniel J. RoyseDepartment of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA USA

Raymond SampAgari‐Culture Consulting ServicesSan Marcos Texas USA

Manjit SinghICAR‐Directorate of Mushroom Research, Solan India

Eustáquio Souza DiasDepartment of Biology, University of Lavras (UFLA) Brazil

Qi TanShanghai Academy of Agricultural Sciences Shanghai China

Juan ValverdeFood Research and Technology ProgrammeResearch and Development DepartmentMonaghan MushroomsMonaghan Ireland

Solomon P. WasserInstitute of Evolution and Department of Evolutionary and Environmental BiologyFaculty of Natural SciencesUniversity of Haifa, Haifa, Israeland N.G. Kholodny Institute of BotanyNational Academy of Sciences of UkraineKiev Ukraine

Page 23: WorkFlow: · 2017. 7. 13. · 4.2 Oyster Mushroom (Pleurotus Species) 60 4.2.160 Introduction 4.2.2 Reproductive Biology 61 4.2.362 Germplasm 4.2.4 Genetic Variability

List of Contributors xxi

Katsuji YamanakaDirectorKyoto Mycological InstituteKyoto Japan

Xuan‐Wei ZhouSchool of Agriculture and BiologyEngineering Research Center of Cell & Therapeutic Antibody (Ministry of Education)Shanghai Jiao Tong UniversityShanghai People’s Republic of China

Diego Cunha ZiedUniversidade Estadual Paulista (UNESP)São Paulo Brazil

Page 24: WorkFlow: · 2017. 7. 13. · 4.2 Oyster Mushroom (Pleurotus Species) 60 4.2.160 Introduction 4.2.2 Reproductive Biology 61 4.2.362 Germplasm 4.2.4 Genetic Variability

Chapter No.: 1 Title Name: <TITLENAME> fbetw.inddComp. by: <USER> Date: 27 Jun 2017 Time: 07:25:58 PM Stage: <STAGE> WorkFlow:<WORKFLOW> Page Number: xxii

Page 25: WorkFlow: · 2017. 7. 13. · 4.2 Oyster Mushroom (Pleurotus Species) 60 4.2.160 Introduction 4.2.2 Reproductive Biology 61 4.2.362 Germplasm 4.2.4 Genetic Variability

Chapter No.: 1 Title Name: <TITLENAME> fbetw01.inddComp. by: <USER> Date: 27 Jun 2017 Time: 07:26:03 PM Stage: <STAGE> WorkFlow:<WORKFLOW> Page Number: xxiii

xxiii

We would like to thank all the people who contributed to the development of the chapters that make up this book and, in particular, to the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) in Brazil and the Patronato de Desarrollo Provincial of the Diputación de Cuenca and the Consejería de Agricultura, Medio Ambiente y Desarrollo Rural of Castilla‐La Mancha in Spain, for their financial support for our research and allow for the advancement in science.

Acknowledgments

Page 26: WorkFlow: · 2017. 7. 13. · 4.2 Oyster Mushroom (Pleurotus Species) 60 4.2.160 Introduction 4.2.2 Reproductive Biology 61 4.2.362 Germplasm 4.2.4 Genetic Variability

Chapter No.: 1 Title Name: <TITLENAME> fbetw01.inddComp. by: <USER> Date: 27 Jun 2017 Time: 07:26:03 PM Stage: <STAGE> WorkFlow:<WORKFLOW> Page Number: xxiv

Page 27: WorkFlow: · 2017. 7. 13. · 4.2 Oyster Mushroom (Pleurotus Species) 60 4.2.160 Introduction 4.2.2 Reproductive Biology 61 4.2.362 Germplasm 4.2.4 Genetic Variability

Chapter No.: 1 Title Name: <TITLENAME> flast.inddComp. by: <USER> Date: 27 Jun 2017 Time: 07:26:08 PM Stage: <STAGE> WorkFlow:<WORKFLOW> Page Number: xxv

xxv

The term Mushrooming, or mushroom cultivation, refers to the intentional and directed pro-duction of mushrooms as a substitute for wild collection in fields and forests with a harvest under defined conditions of growing, resulting in strict quality control and food safety without risk of consumption of poisonous or toxic species, and with guaranteed benefits from fungi.

Although knowledge about the cultivation of edible and medicinal mushrooms is practically the same throughout the world, there are significant differences between countries and even within the same country. These are primarily associated with different socioeconomic condi-tions. In this way, just as there are large-scale growers, other smaller-scale plants act as a com-plement to the family economy, while very basic and rustic facilities coexist with others that operate on a high technological level.

This book involves a multidisciplinary approach that includes aspects of agriculture and agronomy, microbiology, biology, biotechnology, chemistry, environmental management, food technology, and health, among others. With a global and collaborative purpose, the book con-sists of 22 chapters written by 28 authors, from 15 different countries, who are recognized experts in the different areas that compose this activity. We thank them all for their participation.

The different areas of the science of cultivation are approached, so the book can serve as a tool for researchers, professors, technical specialists, and growers, and as an introduction for both students and anyone interested in the world of mushrooming knowledge as a business opportunity or out of simple curiosity.

Diego Cunha Zied, Ph.D.Professor and Head of Centro de Estudos em Cogumelos

Faculdade de Ciências Agrárias e TecnológicasUniversidade Estadual Paulista (UNESP – Campus de Dracena)

Brazil

Arturo Pardo‐Giménez, Ph.D.Researcher of Centro de Investigación, Experimentación y Servicios del Champiñón

Patronato de Desarrollo Provincial, Diputación Provincial de CuencaSpain

Preface

Page 28: WorkFlow: · 2017. 7. 13. · 4.2 Oyster Mushroom (Pleurotus Species) 60 4.2.160 Introduction 4.2.2 Reproductive Biology 61 4.2.362 Germplasm 4.2.4 Genetic Variability

Chapter No.: 1 Title Name: <TITLENAME> flast.inddComp. by: <USER> Date: 27 Jun 2017 Time: 07:26:08 PM Stage: <STAGE> WorkFlow:<WORKFLOW> Page Number: xxvi

Page 29: WorkFlow: · 2017. 7. 13. · 4.2 Oyster Mushroom (Pleurotus Species) 60 4.2.160 Introduction 4.2.2 Reproductive Biology 61 4.2.362 Germplasm 4.2.4 Genetic Variability

Chapter No.: 1 Title Name: <TITLENAME> c01.inddComp. by: <USER> Date: 27 Jun 2017 Time: 07:26:13 PM Stage: proof WorkFlow:<WORKFLOW> Page Number: 1

1

Edible and Medicinal Mushrooms: Technology and Applications, First Edition.Edited by Diego Cunha Zied and Arturo Pardo-Giménez.© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.

Mention of mushrooms has been reported in ancient literature since the inception of human civilization. Mushrooms find mention because of their wide range of properties from being poisonous to being beneficial and edible. Their poisonous nature was their most intriguing quality in early history. Throughout the centuries, poisonous fungi/mushrooms have remained a useful means of disposing of adversaries. Pliny the Elder (23–79 AD) gives details of how the Emperor Claudius was poisoned by his fourth wife Julia Agrippina. Emperor Jonan followed in 364 AD, and Pope Clement VII in 1394. In addition, the antipope Urban VI, the French King Charles VI, and the  German/Spanish king Joseph Ferdinand were all poisoned with mush-rooms (van Griensven, 1988).

Knowledge about fungi developed slowly. In the fourth century BC, Theophrastus gave a scientific description of fungi and considered these fungi as part of vegetable kingdom, even though they have no buds, leaves, or roots.

With the decline of classical civilization, interest in science also declined. The scholastics of the Middle Ages made no contribution to science. Scientific study made little progress in the Western World up until the late Middle Ages. Names were given, morphological descriptions were made, and mushrooms find mention as “surplus moisture from the ground and trees, from rotting wood and other things.” This particularly applies to edible varieties, through the influence of thunder, lightning, and rain (van Griensven, 1988).

In China, however, as early as 1245 AD, Chen Yen‐Yu had published a fungus flora, describ-ing in detail the development, morphology, seasonal influence, growing method, harvesting, and preparation (as food) for 15 varieties of mushrooms (Wang, 1987). In 1588 Giambattista Porta published his Phytognomoniica. He was the first person to describe the spores of fungi. Like his contemporaries, he held the view that parasitic plants, among which he counted tree mushrooms, were unnatural and could be used against lumps and tumors on human limbs (van Griensven, 1988).

According to Theophrastus, practically everything was missing from the mushroom, and eating mushrooms was therefore harmful to human body. Clausius (1525–1609) was the first to describe the Bird’s Nest (Nidularia).

The “hidden power” of earth is responsible for the occurrence of mushrooms. That is why mushrooms were known as “excrementa terrae” in the seventeenth century. It was, of course, reprehensible to eat these excretions of the earth.

In the early seventeenth century, the Italian Count Margigi describes how a white, mold-like web appears when mushrooms and truffles are carefully dug up. He calls this web, which smells

1

Mushrooms and Human CivilizationBehari Lal Dhar

NNMushroom Consulting India/ICAR‐Directorate of Mushroom Research, Solan, India

Page 30: WorkFlow: · 2017. 7. 13. · 4.2 Oyster Mushroom (Pleurotus Species) 60 4.2.160 Introduction 4.2.2 Reproductive Biology 61 4.2.362 Germplasm 4.2.4 Genetic Variability

Edible and Medicinal Mushrooms2

of mushrooms and has tiny buds, “situs” (Lutjehmas, 1936). By this time all edible mushrooms including truffles were found in Europe, collected from the wild.

The Chinese and the Japanese were probably the first to cultivate mushrooms professionally, and a brief description of history published in English (Wang, 1987) refers to Shiitake mush-room cultivation by Wang Zeng in 1313 AD. The culture of the paddy straw mushroom Volvariella volvacea is also centuries old.

Linnaeus (1707–1778) gave the field mushroom (white button) the name Agaricus campestris. Finally, in his Systema Mycologicum (Kleiju, 1961; Poppe, 1962), Elias Fries (1707–1778) gave a methodical description of all varieties of mushrooms known at that time (van Griensven, 1988).

1.1 Domestication of Mushrooms

The mushroom is the most important horticultural cash crop grown indoors, compared to other traditional crops grown outdoors, and is the only non‐green crop grown for commerce with attractive profits. Mushroom is the fruit body of a fungus, which is neither a plant nor an animal, but has a separate kingdom of its own. Fungi as a broad group either live parasitically on plants and animals or live saprophytically on dead organic matter. Fungi cause numerous diseases of plants and animals and have been reported to cause considerable crop losses with tremendous suffering to mankind from time immemorial. The role of fungi as being beneficial to humans is of recent origin, with the generation of information on existence of microorgan-isms and their importance to man on Earth. Today, the science of study of mycological applica-tions for human welfare has touched greater heights with the application of molecular biological techniques to improve useful fungal cultures of yeasts and mushrooms.

The fact that certain fungi are edible has been known for many centuries, and in various European countries up to 80 distinct varieties of wild fungi are offered for sale on the market (Pinkerton, 1954). Though many edible fungi have been domesticated and are in production, the most commonly cultivated are shiitake (Lentinula edodes), oyster mushroom (Pleurotus spp.), white button mushroom (Agaricus bisporus), black fungus or wood-ear mushrooms (Auricularia auricula and Auricularia polytricha) and paddy straw mushroom Volvariella spp. The cultivation of shiitake by Japanese on logs dates back at least 2000 years (Ainsworth, 1976), but button mushroom cultivation is comparatively recent. Today, the button mushroom is the most widely grown in many countries, although it is the fourth mushroom most produced in quantity (see chapter 2), with most of the development of cultivation technology confined to improving this mushroom for reasons of its larger acceptability by the consumer.

The first record of (button) mushroom cultivation dates back to Abercrombie (1779), who wrote that this plant is of so very singular growth and temperature, that unless a proper idea of its nature and habit is attained, and the peculiar methods and precautions pursued in the pro-cess of its propagation and culture, little success will ensue; the whole management of it differs remarkably from that of every other species of the vegetable kingdom; and it is the most liable of any to fail without very strict observance and care in the different stages of its cultivation.

Tournefort (1707) gave a comprehensive description of the commercial production of button mushrooms. These observations recorded in earlier times bear comparison with the methods used today. At that time mushrooms were cultivated on open ground, but around 1810, Chambry (a French gardener) began to cultivate mushrooms in underground quarries in Paris, all year round. Later Callow (1831) showed that mushroom production was possible all year round in England in rooms specially heated for the purpose. Callow gave details of the design of cropping houses (crediting it to Oldacre, a garden superintendent in UK) and later success-fully grew mushrooms all year round in such a structure producing a yield of 7.3 kg m–2 in