WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist...

59
ELEMENT IB10 WORK ENVIRONMENT RISK AND CONTROLS NIST INSTITUTE PVT LTD 514

Transcript of WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist...

Page 1: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  

WORK  ENVIRONMENT  RISK  AND  CONTROLS

NIST INSTITUTE PVT LTD

514

Page 2: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

IB10.1  The  need  for,  and  factors  involved  in,  the  provision  and  maintenance  of  temperature  in  both  moderate  and  extreme  thermal  environments    BODY  HEAT  BALANCE  Ordinarily  the  body  remains  at  a  fairly  constant  temperature  of  98.6°F.  It  is  very  important  that  this  body  temperature  be  maintained  and,  since  there  is  a  continuous  heat  gain  from  internal  body  processes,  there  must  also  be  a  continuous  loss  to  maintain  body  heat  in  balance.  Excess  heat  must  be  absorbed  by  the  surrounding  air  or  lost  by  radiation.  As  the  temperature  and  humidity  of  the  environment  vary,  the  human  body  automatically  regulates  the  amount  of  heat  it  gives  off.  However,  the  body’s  ability  to  adjust  to  varying  environmental  conditions  is  limited.  Furthermore,  although  the  body  may  adjust  to  a  certain  (limited)  range  of  atmospheric  conditions,  it  does  so  with  a  distinct  feeling  of  discomfort.  The  following  discussion  will  help  you  understand  how  atmospheric  conditions  affect  the  body’s  ability  to  maintain  a  heat  balance.    Body  Heat  Gains  The  human  body  gains  heat  (1)  by  radiation,  (2)  by  convection,  (3)  by  conduction,  and  (4)  as  a  by-­‐product  of  the  physiological  processes  that  take  place  within  the  body  (for  example,  the  conversion  of  food  into  energy).  Heat  gain  from  radiation  comes  from  our  surroundings.  However,  heat  always  travels  from  areas  of  higher  temperature  to  areas  of  lower  temperature.  Therefore,  the  human  body  receives  heat  from  those  surroundings  that  have  a  temperature  higher  than  body  surface  temperature.  The  greatest  source  of  heat  radiation  is  the  sun.  Some  sources  of  indoor  heat  radiation  are  heating  devices,  operating  machinery,  and  hot  steam  piping.  Heat  gain  from  conviction  comes  only  from  currents  of  heated  air.  Such  currents  of  air  may  come  from  a  galley  stove  or  an  operating  diesel  engine.  Heat  gain  from  conduction  comes  from  objects  with  which  the  body  comes  in  con-­‐tact.  Most  body  heat  comes  from  within  the  body  itself.  Heat  is  produced  continuously  inside  the  body  by  the  oxidation  of  food,  by  other  chemical  processes,  and  by  friction  and  tension  within  muscle  tissues.    Body  Heat  Losses  There  are  two  types  of  body  heat  losses:  loss  of  sensible  heat  and  loss  of  latent  heat.  Sensible  heat  is  given  off  by  (1)  radiation,  (2)  convection,  and  (3)  conduction.  Latent  heat  is  given  off  by  the  breath  and  by  evaporation  of  perspiration.    WHAT  IS  THERMAL  COMFORT?  -­‐  DEFINITION    Thermal  comfort  is  defined  in  British  Standard  BS  EN  ISO  7730  as:    ‘That  condition  of  mind  which  expresses  satisfaction  with  the  thermal  environment.’  So  the  term  ‘thermal  comfort’  describes  a  person’s  psychological  state  of  mind  and  is  usually  referred  to  in  terms  of  whether  someone  is  feeling  too  hot  or  too  cold.    Thermal  comfort  is  very  difficult  to  define  because  you  need  to  take  into  account  a  range  of  environmental  and  personal  factors  when  deciding  what  will  make  people  feel  comfortable.    These  factors  make  up  what  is  known  as  the  ‘human  thermal  environment.'    The  best  that  you  can  realistically  hope  to  achieve  is  a  thermal  environment  that  satisfies  the  majority  of  people  in  the  workplace  or  put  more  simply,  ‘reasonable  comfort.'    

515

Page 3: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

The  UK  HSE  considers  80%  of  occupants  as  a  reasonable  limit  for  the  minimum  number  of  people  who  should  be  thermally  comfortable  in  an  environment.    As  a  consequence,  it  can  be  seen  that  thermal  comfort  is  not  measured  by  air  temperature,  but  by  the  number  of  employees  complaining  of  thermal  discomfort.    To  better  understand  why  air  temperature  alone  is  not  a  valid  indicator  of  thermal  comfort,  see  the  ‘six  basic  factors’  -­‐  following.      WHY  IS  THERMAL  COMFORT  IMPORTANT?    People  working  in  uncomfortably  hot  and  cold  environments  are  more  likely  to  behave  unsafely  because  their  ability  to  make  decisions  and/or  perform  manual  tasks  deteriorates.  For  example;  • People  may  take  short  cuts  to  get  out  of  cold  environments,  or    • Workers  might  not  wear  personal  protective  equipment  properly  in  hot  environments  increasing  the  risks,  or    • The  workers'  ability  to  concentrate  on  a  given  task  may  start  to  drop  off  and  increases  the  risk  of  errors  

occurring.  As  an  employer,  you  should  be  aware  of  these  risks  and  make  sure  the  underlying  reasons  for  these  behaviours  are  understood  and  taken  into  account.    Addressing  the  underlying  reasons  for  these  behaviours  is  also  likely  to  improve  morale  and  productivity  as  well  as  improving  health  and  safety.    ADAPTING  TO  THE  THERMAL  ENVIRONMENT  People  employ  adaptive  strategies  to  cope  with  their  thermal  environment,  e.g.  donning  or  removing  clothing,  unconscious  changes  in  posture,  choice  of  heating,  moving  to  cooler  locations  away  from  heat  sources,  etc.    The  problems  arise  when  this  choice  (to  remove  the  jacket,  or  move  away  from  heat  source)  is  removed,  and  people  are  no  longer  able  to  adapt.  In  many  instances  the  environment  within  which  people  work  is  a  product  of  the  processes  of  the  job  they  are  doing,  so  they  are  unable  to  adapt  to  their  environment.    SIX  BASIC  FACTORS  The  most  commonly  used  indicator  of  thermal  comfort  is  air  temperature  -­‐  it  is  easy  to  use,  and  most  people  can  relate  to  it.  But  although  it  is  an  important  indicator  to  take  into  account,  air  temperature  alone  is  neither  a  valid  nor  an  accurate  indicator  of  thermal  comfort  or  thermal  stress.    Air  temperature  should  always  be  considered  in  relation  to  other  environmental  and  personal  factors.    The  six  factors  affecting  thermal  comfort  are  both  environmental  and  personal.  These  factors  may  be  independent  of  each  other  but  together  contribute  to  a  worker’s  thermal  comfort.    ENVIRONMENTAL  FACTORS:    • Air  Temperature    • Radiant  Temperature    • Air  Velocity    • Humidity    

 

516

Page 4: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

 PERSONAL  FACTORS:    • Clothing  Insulation    • Metabolic  Heat    

 

         THE  EFFECTS  OF  WORKING  IN  HIGH  AND  LOW  TEMPERATURES  AND  HUMIDITY  WORKING  IN  COLD  CONDITIONS  If  the  body's  core  temperature  of  37°C  is  allowed  to  drop  by  no  more  than  4°C,  serious  problems  can  occur,  potentially  leading  to  death.    With  decreasing  temperature  the  worker's  performance  decreases  significantly.    Manual  dexterity  suffers,  both  as  a  result  of  the  loss  of  sensation  to  the  fingers  and  also  as  a  result  of  wearing  gloves  to  combat  the  cold.    Ultimately  the  person  can  suffer  hypothermia  where  the  body's  core  temperature  drops  from  its  normal  level  of  37°C  to  below  35°C.  As  a  result  of  the  effects  of  cold  on  the  body,  the  worker's  ability  to  move  and  lift  items  is  also  significantly  impaired  by  a  factor  that  must  be  taken  into  account  in  manual  handling  assessments.    The  extra  stress  caused  by  coping  with  the  lowered  working  temperatures  also  reduces  the  worker's  ability  to  concentrate,  thus  increasing  the  error  rate.    If  hypothermia  starts  to  set  in,  this  level  of  impairment  to  thought  processes  becomes  dramatically  significant  and  can  make  any  attempt  to  continue  working  dangerous  and  pointless.  When  working  in  cold  conditions  -­‐  either  inside  or  outdoors  -­‐  it  is  important  that  the  worker  is  issued  with  the  correct  personal  protective  equipment  appropriate  to  control  the  risks.    In  the  most  severe  conditions,  it  will  be  necessary  to  cover  the  body,  hands  and  face  to  avoid  frostbite.    However,  in  most  cold  conditions  it  is  only  necessary  to  ensure  that  the  chilling  effect  of  the  wind  and  the  extra  cooling  effects  of  wet  clothes  against  the  skin  are  avoided.  To  achieve  suitable  wind  and  waterproofing,  it  is  necessary  to  repel  exterior  water  -­‐  such  as  rain  -­‐  and  to  remove  dampness  generated  inside  the  wet  weather  gear  from  perspiration.    

Source:  hse.gov.uk   Source:  hse.gov.uk  

Source:  pinterest.com  

517

Page 5: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

As  a  result,  it  may  be  necessary  to  issue  wet  or  cold  weather  gear  that  will  adequately  control  both  the  sources  of  dampness.  It  must  be  stressed  that  great  care  must  be  taken  in  restoring  warmth  to  over-­‐cooled  workers  as  the  effects  of  rubbing  or  sudden  application  of  heat  can  cause  serious  injury.    Anyone  suspected  of  suffering  from  cold  should  be  warmed  slowly.    If  mild  frostbite  has  occurred,  the  part  affected  (usually  a  hand  or  foot)  should  be  dried  and  warmed  slowly,  perhaps  by  immersion  in  warm  water  then  dabbed  dry  (do  not  rub).    If  the  person  is  suffering  from  hypothermia,  they  should  be  removed  from  the  cold  and  put  into  dry  clothing  or  blankets  -­‐  no  direct  heat,  such  as  hot-­‐water  bottles,  should  be  used  directly  onto  the  person's  skin.    Warm  drinks  may  be  given  if  the  person  is  conscious,  but  not  alcohol.    Where  the  effects  of  cold  are  severe,  the  affected  person  should  receive  medical  attention.    

  Physiological  Effects   Work  Examples  Heat  Stress  

Skin  Burns  Cataracts  Dehydration  Heat  Cramps  Raised  Heart  Rate  Headaches  Confusion  Vomiting  Fainting  

High  air  temperatures  High  levels  of  humidity  Outside  of  working  in  hot  climates  

Cold  Stress  

Lowered  Heart  Rate  Hypothermia  Loss  of  Concentration  Shivering  Frost  Bite  Increased  Risk  of  Strains  and  Sprains  

Cold  Stores  Food  Preparation  Areas  Outside  of  working  in  cold  climates  

     HUMIDITY  Humidity  is  a  measure  of  water  vapour  in  the  surrounding  air.    Air  can  only  hold  so  much  water  vapour,  and  the  maximum  is  used  as  a  relative  measure  to  give  a  relative  humidity  (RH)  out  of  100%.    Since  the  air  can  only  carry  a  certain  amount  of  water  vapour,  high  levels  of  humidity  -­‐  usually  in  excess  of  80%  RH  -­‐  can  seriously  impede  the  evaporation  of  sweat,  thus  restricting  the  body's  ability  to  lose  heat.  

Source:  CSS  

Source:  ompaperconservation.com  

518

Page 6: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

At  the  other  end  of  the  scale,  low  humidity  -­‐  usually  below  30%  RH  -­‐  can  dry  out  mucous  membranes,  such  as  those  of  the  throat  and  eyes,  giving  rise  to  soreness  and  a  higher  susceptibility  to  coughs  and  colds  as  a  result  of  the  loss  of  protection  this  causes.    A  side  effect  of  low  humidity  levels  in  offices  is  a  higher  level  of  airborne  dust  than  would  otherwise  be  the  case.    This  can  exacerbate  the  health  problems  caused  by  the  already  compromised  bodily  defences,  creating  a  greater  risk  of  respiratory  illness.    Another  side  effect  of  low  humidity  is  the  increase  in  static  electricity  from  carpets  and  furniture.    This  is  unlikely  to  cause  a  serious  hazard,  but  can  cause  great  discomfort,  both  while  working  at  a  desk  and  also  if  the  static  discharges  as  a  spark  when  touching  metal  objects,  such  as  filing  cabinets.  A  particular  occupational  issue  from  humidity  arises  with  the  use  of  personal  protective  equipment  (PPE).    Whether  the  PPE  is  waterproof  or  not,  it  will  trap  some  air  near  the  body  (note  that  this  is  just  as  applicable  to  smaller  items  such  as  hats  and  gloves  as  it  is  to  whole  body  clothing).    The  effect  of  trapping  these  small  pockets  of  air  is  to  create  a  'micro-­‐climate'  at  these  points.    The  small  pockets  of  air  will  saturate  with  water  vapour  and  thus  inhibit  loss  of  heat  locally.    Thus,  although  the  RH  may  be  within  reasonable  limits  outside  the  PPE,  it  could  pose  a  serious  risk  to  the  health  of  the  wearer  through  heat  stress  as  a  result  of  reduced  ability  to  lose  heat.    The  more  all-­‐encompassing  and  waterproof  the  PPE  the  worse  will  be  the  effect.    WORK  IN  VERY  HOT  ENVIRONMENTS  It  is  sometimes  necessary  to  work  in  very  hot  environments,  at  least  for  short  periods.    In  these  circumstances,  every  effort  must  be  made  to  cool  the  body  and  maintain  the  internal  body  temperature  below  102°F  (39°C).    This  can  be  achieved  by  the  use  of  individual  cooling  fans,  by  wearing  reflective  garments  which  minimise  the  radiant  heat  load,  air  cooled  suits  or  pocketed  waistcoats  containing  ice  packs.    Workers  should  only  enter  hot  environments  for  short  periods  (depending  on  the  actual  temperatures  experienced)  with  long  rest  pauses  between  periods  of  exposure.    The  worker  must  be  carefully  monitored  to  ensure  that  he  or  she  does  not  exceed  safe  exposure  times.  A  good  guide  to  the  worker's  physiological  response  is  the  pulse  rate.    This  can  be  recorded  after  an  initial  short  period  of  exposure  with  the  time  that  the  pulse  rate  takes  to  return  to  normal  also  being  noted.    Depending  on  pulse  rate  and  recovery  time,  judgments  may  be  made  as  to  the  length  of  the  next  period  of  exposure  and  of  the  rest  period  required  between  exposures.    At  very  high  temperatures,  e.g.  over  122°F  (50°C),  dry  air  may  be  tolerated  in  circumstances  where  any  degree  of  humidity  could  result  in  skin  burns  of  the  respiratory  tract.  In  general,  it  has  to  be  said  that  work  in  very  hot  environments,  over  113°F  (45°C),  requires  the  employment  of  experienced  workers  in  circumstances  where  skilled  and  experienced  physiological  supervision  is  available.    HEAT  STRESS  /  SYNCOPE  /  STROKE  A  major  hazard  for  the  body  at  higher  temperature  is  the  adverse  effect  on  physiological  and  biochemical  processes.  

Source:  foundryservice.com  

519

Page 7: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

 HEAT  STRESS  Heat  stress  reflects  the  normal  physiological  response  to  work  in  a  hot  environment.    Muscle  work  causes  the  body  temperature  to  rise  and  is  normally  controlled  by  a  number  of  cooling  mechanisms.    These  include  direct  cooling  by  vasodilatation  of  blood  vessels  at  the  surface  and  by  evaporative  cooling  -­‐  perspiration.    A  major  component  of  heat  stress  is  dehydration  when  the  loss  of  evaporative  cooling  exceeds  the  resources  available  to  the  body.    It  is  compounded  by  humidity,  high  humidity  adversely  affecting  the  efficiency  of  evaporative  cooling.    As  the  body  gets  hotter  the  ability  to  think  and  react  is  compromised.  This,  in  turn,  can  present  additional  hazards,  including  the  undertaking  of  unsafe  actions.    Cramping  of  muscles  may  also  occur  -­‐  mostly  due  to  the  loss  of  essential  ions  through  the  sweating  process  coupled  with  the  redirection  of  blood  supply  to  the  skin.    HEAT  SYNCOPE  Heat  syncope  (heat  exhaustion)  -­‐  occurs  when  the  circulation  is  unable  to  cope  with  the  impact  of  heat  generated  by  metabolic  processes  (work)  and  the  environment.    Syncope  (fainting)  occurs  as  the  body  diverts  blood  to  the  periphery  in  an  attempt  to  respond  to  the  increased  cooling  required.      HEAT  STROKE  Heat  stroke-­‐  is  a  potentially  fatal  condition.  It  represents  a  complete  breakdown  in  the  protective  mechanisms  for  dealing  with  heat.    Sweating  ceases,  and  the  metabolic  heat  (core  body  temperature)  dramatically  increases  with  loss  of  consciousness.    The  body  appears  cold  and  'clammy'  although  the  core  temperature  is  dangerously  high.  The  following  table  shows  heat  exposure  limits  in  terms  of  the  relatively  simple  effective  temperature  assessment.    

Effective  Temperature.  Heat  exposure  limits  suggested  for  personnel,  not  in  direct  sunlight     Maximum  Effective  Temperature  in  degrees  Fahrenheit  

and  Centigrade  Exposure  time   Rest  or  Sedentary   Moderate  Work   Heavy  Work  Continuous  daily  work   87  /  30.5   84  /  29   79  /  26  Intermittent  work-­‐rest        3  hours   91  /  33   86  /  30   82  /  28  2  hours   92  /  33   88  /  31   84  /  29  1  hour   95  /  35   91  /  33   87  /  30.5  30  minutes   101  /  38   96  /  35.5   91  /  33  20  minutes   105  /  40.5   100  /  38   95  /  35  

    Source:  CSS  

520

Page 8: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

TYPICAL  WORK  SITUATIONS  LIKELY  TO  LEAD  TO  THERMAL  DISCOMFORT  WHO  MAY  BE  AFFECTED  Workers  in  a  variety  of  jobs  can  be  exposed  to  extremes  of  thermal  discomfort,  being  excessively  hot  or  alternatively  excessively  cold,  Occupations  would  include  those  working  out  of  doors  –  winter  and  or  summer,  day  and  or  night  when  temperature  swings  can  be  considerable.  Outdoor  workers  who  have  to  endure  extreme  weather  temperatures  include  those  more  easy  to  identify  such  as  those  involved  in  construction,  road  maintenance  (including  snow  clearing  and  rescue)  and  others  who  do  not  always  come  readily  to  mind  such  as  life-­‐guards,  etc.  Those  working  in  occupations  such  as  foundries  and  bakeries,  smelting  plants,  glass  production  plants  endure  quite  extraordinary  high  temperatures,  these  being  further  exaggerated  by  their  locations  in  some  hot  climate  countries.  On  the  other  extreme  end  of  the  scale,  we  have  workers  who  are  employed  in  cold  stores,  ice  making  plants  and  those  working  in  other  cold,  well  below  freezing  indoor  conditions  e.g.  ice  or  snow  parks  and  resorts.  All  of  the  above  occupation  factors  can,  of  course,  be  further  complicated  when  humidity  levels  are  taken  into  consideration.  Working  in  hot  and  cold  conditions,  as  well  as  the  effects  of  humidity,  is  covered  in  more  detail  elsewhere  in  this  element.    THE  ENVIRONMENTAL  PARAMETERS  AFFECTING  THERMAL  COMFORT  ENVIRONMENTAL  FACTORS/PARAMETERS  AIR  TEMPERATURE  This  is  the  temperature  of  the  air  surrounding  the  body.  It  is  usually  given  in  degrees  Celsius  (°C)  or  degrees  Fahrenheit  (°F).      RADIANT  TEMPERATURE  Thermal  radiation  is  the  heat  that  radiates  from  a  warm  object.  Radiant  heat  may  be  present  if  there  are  heat  sources  in  an  environment.    Radiant  temperature  has  a  greater  influence  than  air  temperature  on  how  we  lose  or  gain  heat  to  the  environment.    Our  skin  absorbs  almost  as  much  radiant  energy  as  a  matt  black  object,  although  this  may  be  reduced  by  wearing  reflective  clothing.    Examples  of  radiant  heat  sources  include  the  sun;  fire;  electric  fires;  furnaces;  steam  rollers;  ovens;  walls  in  kilns;  cookers;  dryers;  hot  surfaces  and  machinery,  molten  metals,  etc.    AIR  VELOCITY  This  describes  the  speed  of  air  moving  across  the  worker  and  may  help  cool  the  worker  if  it  is  cooler  than  the  environment.    

Source:  jorlandoabantoquevedo.blogspot.com  

521

Page 9: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

Air  velocity  is  an  important  factor  in  thermal  comfort  because  people  are  sensitive  to  it.    Still  or  stagnant  air  in  indoor  environments  that  are  artificially  heated  may  cause  people  to  feel  stuffy.  It  may  also  lead  to  a  build-­‐up  in  odour.  Moving  air  in  warm  or  humid  conditions  can  increase  heat  loss  through  convection  without  any  change  in  air  temperature.    Small  air  movement  in  cool  or  cold  environments  may  be  perceived  as  a  draught.  If  the  air  temperature  is  less  than  skin  temperature,  it  will  significantly  increase  convective  heat  loss.    Physical  activity  also  increases  air  movement,  so  air  velocity  may  be  corrected  to  account  for  a  person's  level  of  physical  activity.  HUMIDITY  If  water  is  heated  and  it  evaporates  to  the  surrounding  environment,  the  resulting  amount  of  water  in  the  air  will  provide  humidity.  Relative  humidity  is  the  ratio  between  the  actual  amount  of  water  vapour  in  the  air  and  the  maximum  amount  of  water  vapour  that  the  air  can  hold  at  that  air  temperature.  Relative  humidity  between  40%  and  70%  does  not  have  a  major  impact  on  thermal  comfort.  In  some  offices,  humidity  is  usually  kept  between  40-­‐70%  because  of  computers.  However,  in  workplaces  which  are  not  air  conditioned,  or  where  the  climatic  conditions  outdoors  may  influence  the  indoor  thermal  environment,  relative  humidity  may  be  higher  than  70%  on  warm  or  hot  humid  days.    Humidity  in  indoor  environments  can  vary  greatly,  and  may  be  dependent  on  whether  there  are  drying  processes  (paper  mills,  laundry,  etc.)  where  steam  is  given  off.  High  humidity  environments  have  a  lot  of  vapour  in  the  air,  which  prevents  the  evaporation  of  sweat  from  the  skin.  In  hot  environments,  humidity  is  important  because  less  sweat  evaporates  when  humidity  is  high  (80%+).  The  evaporation  of  sweat  is  the  main  method  of  heat  loss  in  humans.  When  vapour-­‐impermeable  PPE  is  worn,  the  humidity  inside  the  garment  increases  as  the  wearer  sweats  because  the  sweat  cannot  evaporate.  If  an  employee  is  wearing  this  type  of  PPE  (e.g.  asbestos  or  chemical  protection  suits  etc.)  the  humidity  within  the  microclimate  of  the  garment  may  be  high.    THE  ENVIRONMENTAL  PARAMETERS  AFFECTING  THERMAL  COMFORT  -­‐  HOW  TO  MEASURE  THEM  

ASPECTS  AFFECTING  THERMAL  COMFORT  Thermal  comfort  is  not  due  solely  to  temperature.  It  is  a  combination  of  a  number  of  factors  including:  • Ambient  temperature,  which  should  not  vary  excessively  • Level  of  activity  and  thus  the  metabolic  rate  of  the  individual  • Amount  of  radiant  heat  (sunlight  or  from  hot  processes),  which  should  normally  be  

maintained  within  3°C  of  the  ambient  temperature  • The  amount  of  insulation  provided  by  the  clothing  worn  

• Air  movement,  which  should  be  less  than  0.3  m/sec  • Humidity  -­‐  the  relative  humidity  should  be  between  40%  and  60%  These  factors  are  often  combined  to  give  a  qualitative  indication  of  the  likely  effect  of  the  thermal  environment  on  the  worker.    

Source:  kids.britannica.com  

522

Page 10: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

A  reasonable  indication  of  temperature  is  given  by  adding  the  measured  air  (ambient)  temperature  to  the  mean  radiant  temperature  and  halving  the  result,  i.e.  the  mean  of  the  two  Temperatures.  Resultant  Temperature  =  (Tamb  +  Trad)/2  Where  Tamb  is  the  ambient  air  temperature  Trad  is  the  mean  radiant  temperature  (also  known  as  the  'black  globe'  temperature)  This  resultant  temperature  should  usually  be  between  19°C  and  23°C  to  ensure  the  comfort  of  sedentary  workers.    A  worker's  ability  to  cope  with  extremes  of  temperature  can  be  assisted  by  acclimatisation.  However,  this  process  should  not  be  undertaken  lightly  and  never  without  medical  advice  on  the  ability  of  the  person  to  undertake  it.    Under  normal  working  conditions,  it  is  much  more  preferable  to  provide  external  or  engineering  means  to  assist  the  normal  worker  to  cope  with  the  thermal  environment  than  to  expect  the  worker  to  adapt  to  it.    THERMOMETERS  DRY  BULB  The  dry-­‐bulb  temperature  is  the  temperature  of  air  measured  by  a  thermometer  freely  exposed  to  the  air  but  shielded  from  radiation  and  moisture.    Dry  bulb  temperature  is  the  temperature  that  is  usually  thought  of  as  air  temperature,  and  it  is  the  true  thermodynamic  temperature.    It  is  the  temperature  measured  by  a  regular  thermometer  exposed  to  the  airstream.    Unlike  wet  bulb  temperature,  dry  bulb  temperature  does  not  indicate  the  amount  of  moisture  in  the  air.    In  construction,  it  is  an  important  consideration  when  designing  a  building  for  a  certain  climate.    WET  BULB    This  wet  bulb  thermometer  is  a  traditional  way  of  measuring  humidity.    The  simple  unit  is  made  up  of  two  glass  thermometers,  which  are  very  easy  to  read.    

One  is  attached  to  a  small  synthetic  water  container  and  a  wick,  and  the  relative  humidity  is  calculated  by  reading  both  thermometers,  then  using  a  chart  that  is  provided  with  the  thermometer  to  calculate  the  humidity.  It  may  seem  like  there  are  many  new  and  more  efficient  ways  to  calculate  humidity  than  this,  but  despite  technological  advances,  this  is  still  one  of  the  most  accurate  and  reliable  ways  to  get  a  good  reading.    

With  a  little  practice,  you  will  soon  find  that  it  is  actually  very  easy  to  operate.    

GLOBE    APPLICATIONS  For  use  by  heating  and  ventilating  engineers,  factory  inspectors,  medical  health  officers,  and  others  concerned  with  the  environmental  health  conditions  in  factories,  offices,  hospitals,  and  laboratories,  etc.  

Source:  kwalitytraders.tradeindia.com  

523

Page 11: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

In  some  environmental  conditions,  for  example  in  factories  where  hot  processes  are  carried  out,  it  is  necessary  to  measure  the  mean  temperature  of  solid  surroundings  when  attempting  to  control  or  improve  working  conditions.    This  information  will  show  whether  excessive  radiant  heat  is  reaching  workers.    Conversely,  such  measurements  would  also  show  whether  cold  surroundings  are  causing  undue  heat  loss  by  radiation  from  the  human  body.            PRINCIPLE  OF  OPERATION  A  hollow  metal  globe  coated  on  the  outside  with  matt-­‐black  paint  absorbs  the  radiant  heat  from  surrounding  objects  so  that,  after  a  time  lag,  the  temperature  at  the  centre  of  the  globe  is  a  measure  of  the  radiant  heat  and  not  of  the  air  surrounding  it.    A  temperature  sensor  inserted  into  the  globe  measures  this  temperature.  Insert  the  glass  thermometer  into  the  rubber  stopper  and  position  the  thermometer  bulb  in  the  centre  of  the  globe.    Soapy  water  may  be  used  to  lubricate  the  thermometer  when  inserting  and  removing  it  from  the  rubber  stopper.  Assemble  the  mounting  stand  and  suspend  the  thermometer  and  globe  as  shown  in  the  manufacturer’s  instructions.  Place  the  instrument  in  position,  without  any  objects  between  the  heat  source  and  the  globe.    Avoid  placing  the  instrument  where  relatively  large  air  currents  are  expected.  Wait  for  at  least  15  or  20  minutes  before  taking  an  observation.  The  difference  between  the  temperature  of  the  globe  and  the  temperature  outside  the  globe  is  called  the  actual  radiant  temperature.  The  mean  radiant  temperature  (MRT)  can  be  calculated  using  the  globe  thermometer’s  temperature  using  the  following  formula:  art  (°C)  =  tg  +  2.42V  (tg  -­‐  ta)  V:  air  current  cm/sec  ta:  temperature  of  the  air  outside  of  the  globe  tg:  globe  thermometer  temperature  Radiation  (R)  can  be  estimated  using  the  following  formula:  R  =  0.173/10-­‐8  (MRT)4  Btu/ft2h  MRT:  MRT  +  460  Btu:  British  Thermal  Unit,  a  unit  of  heat  defined  as  the  amount  of  heat  required  to  raise  one  pound  of  water  one  degree  Fahrenheit  at  one  atmosphere  pressure,  equivalent  to  approximately  252  calories    KATA    A  kata  thermometer  measures  the  cooling  power  of  the  environment;  it  is  used  to  estimate  the  personal  comfort  of  workers  (see  also  "heat  stress  monitor"  and  "personal  temperature  monitor").    A  spirit-­‐in-­‐glass  thermometer  is  usually  used:  its  bulb  is  heated  to  above  body  temperature,  removed  from  the  heat  source  and  allowed  to  cool.    The  time  taken  for  the  thermometer  reading  to  drop  from  above  to  below  normal  body  temperature  (e.g.,  from  38  °C  to  35  °C)  is  used  to  calculate  the  cooling  power  of  the  atmosphere,  using  a  calibration  factor  F  engraved  on  the  thermometer  by  the  manufacturer:  cooling  power  =  F/(time  of  cooling).  

524

Page 12: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

 ANEMOMETERS  An  anemometer  is  a  device  for  measuring  wind  speed  and  is  a  common  weather  station  instrument.    The  term  is  derived  from  the  Greek  word  anemos,  meaning  the  wind,  and  is  used  to  describe  any  airspeed  measurement  instrument  used  in  meteorology  or  aerodynamics.    Anemometers  can  be  divided  into  two  classes:  those  that  measure  the  wind's  speed,  and  those  that  measure  the  wind's  pressure;  but  as  there  is  a  close  connection  between  the  pressure  and  the  speed,  an  anemometer  designed  for  one  will  give  information  about  both.  One  type  of  anemometer  is  a  hot-­‐wire  anemometer.  The  hot-­‐wire  anemometer  measures  the  wind  speed  based  on  variations  in  temperature  or  electric  resistance  of  a  metal  wire.  As  the  wind  speed  increases,  more  energy  is  used  to  keep  the  metal  wire  at  a  pre-­‐set  temperature.    Wind  speed  is  determined  by  measuring  the  electrical  consumption  of  the  wire.  This  device  is  not  typically  used  for  official  National  Weather  Service  wind  measurement.    Another  type  of  anemometer  and  probably  more  familiar  type  is  a  rotation  anemometer.    This  device  measures  wind  speed  based  on  the  rotation  of  a  sensing  element  such  as  a  propeller  or  spinning  cups.  As  wind  speed  increases  the  anemometer  will  rotate  faster.    Portable  versions  of  this  anemometer  are  also  available.  Different  anemometers  will  have  different  calibrations.  For  instance,  a  current  of  1mA  might  mean  1m/s,  or  it  might  mean  1cm/s,  depends  on  the  internal  setup  of  the  meter.    Any  meter  you  use  should  have  some  kind  of  calibration  markings  or  documents  with  it.    PSYCHROMETERS  (WET  AND  DRY  BULB  THERMOMETER)  A  psychrometer  is  an  instrument  commonly  used  in  laboratories  to  measure  relative  humidity.  It  is  also  referred  to  as  a  wet-­‐  and  dry-­‐bulb  thermometer.    This  instrument  consists  of  two  similar  thermometers  that  are  mounted  side  by  side.    • The  dry  bulb  has  its  bulb  exposed  to  the  air.    • The  wet  bulb  is  wrapped  in  an  absorbent  material  such  as  muslin,  which  is  immersed  in  water  and  serves  as  a  

wick.    When  the  web  bulb  is  taken  out  of  the  water,  it  cools  by  evaporation  of  the  water.    If  the  bulb  is  whirled  around  to  hasten  evaporation,  it  is  called  a  sling  psychrometer.    If  air  is  forced  past  the  bulb,  it  is  referred  to  as  an  aspirated  or  ventilated  psychrometer.  The  amount  of  evaporation,  and  consequent  cooling  of  the  thermometer  depends  on  the  humidity  of  the  atmosphere  -­‐  the  drier  the  atmosphere,  the  faster  the  water  evaporates.    Using  this  data  and  humidity  tables  or  calculations,  the  dew  point  (the  temperature  to  which  air  would  have  to  be  cooled  for  saturation  to  occur)  can  be  determined,  and  from  it,  the  relative  humidity.    INTEGRATED  ELECTRONIC  INSTRUMENTS  INCLUDING  HEAT  STRESS  MONITORS  In  all  Thermal  Environment  Monitors  a  dry  bulb  sensor  measures  ambient  temperature;  a  wet  bulb  sensor  takes  into  account  evaporative  cooling,  giving  an  indication  of  the  effects  of  humidity  on  an  individual;  and  a  globe  sensor  provides  an  indication  of  the  radiant  heat  exposure  on  an  individual  due  to  either  direct  light  or  hot  objects  in  an  environment.  Thermal  Environment  Monitors  convert  these  measurements  to  a  simplified,  single-­‐number  Indoor  and  Outdoor  WBGT  Index.    This  index  can  then  be  used  in  conjunction  with  guidelines  developed  by  ACGIH,  U.S.  Navy,  EPRI,  ISO,  and  others.    

525

Page 13: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

Each  of  these  guidelines  includes  considerations  for  real-­‐life  variables  such  as  activity  levels  or  clothing  types  worn.    Some  advanced  models  of  Thermal  Environment  Monitors  also  compute  Humidex.    Humidex  is  another  form  of  a  heat  stress  index  used  in  Canada  in  accordance  with  guidelines  such  as  those  defined  by  the  Occupational  Health  Clinics  for  Ontario  Workers-­‐Hamilton  (OHCOW).    Using  Thermal  Environment  Monitors  in  conjunction  with  any  one  of  these  guidelines  enables  you  to  determine  appropriate  work/rest  regimens  or  stay  times  for  workers  in  situations  where  heat  stress  is  a  life  safety  and  liability  risk.  Area  heat  stress  monitors  are  very  valuable  for  their  ability  to  provide  simultaneous  protection  to  groups  of  workers  with  a  single  instrument.  The  compromise  present  in  area  heat  stress  measurements  is  that  each  worker  is  in  reality  physiologically  unique.    Environmental  conditions  and  physical  activity  that  cause  heat  stress  for  one  worker  may  not  affect  another  while  conditions  that  do  not  affect  one  worker  may  affect  another.    The  guidelines  that  exist  for  stay  times  and  work/rest  regimens  based  on  measured  WBGT  values  are  generalized  to  represent  the  expected  impact  of  given  environmental  conditions  and  physical  activity  on  groups  of  individuals.  The  results  of  the  WBGT  method  can  include  unnecessarily  shortened  work  times  for  some  workers  and  insufficient  protection  of  others.    This  is  why  experts  insist  that  monitoring  is  used  only  in  conjunction  with  worker  observation  and  monitoring  for  heat  stress  symptoms.      OTHER  PARAMETERS  AFFECTING  THERMAL  COMFORT  PERSONAL  FACTORS/PARAMETERS    CLOTHING  INSULATION  Clothing,  by  its  very  nature,  interferes  with  our  ability  to  lose  heat  to  the  environment.  Thermal  comfort  is  very  much  dependent  on  the  insulating  effect  of  clothing  on  the  wearer.    Wearing  too  much  clothing  or  personal  protective  equipment  (PPE)  may  be  a  primary  cause  of  heat  stress  even  if  the  environment  is  not  considered  warm  or  hot.    If  clothing  does  not  provide  enough  insulation,  the  wearer  may  be  at  risk  from  cold  injuries  such  as  frostbite  or  hypothermia  in  cold  conditions.    Clothing  is  both  a  potential  cause  of  thermal  discomfort  as  well  as  a  control  for  it  as  we  adapt  to  the  climate  in  which  we  live  and  play.    You  may  add  layers  of  clothing  if  you  feel  cold,  or  remove  layers  of  clothing  if  you  feel  warm.  However,  many  companies  remove  this  ability  for  their  employees  to  make  reasonable  adaptations  to  their  clothing.    It  is  important  to  identify  how  the  clothing  may  contribute  to  thermal  comfort  or  discomfort.  It  may  also  be  necessary  to  evaluate  the  level  of  protection  that  any  PPE  is  providing  –  can  less  or  other  PPE  be  used?      WORK  RATE/METABOLIC  HEAT    The  work  or  metabolic  rate  is  essential  for  a  thermal  risk  assessment.  It  describes  the  heat  that  we  produce  inside  our  bodies  as  we  carry  out  physical  activity.    The  more  physical  work  we  do,  the  more  heat  we  produce.  The  more  heat  we  produce,  the  more  heat  needs  to  be  lost,  so  we  don’t  overheat.  The  impact  of  metabolic  rate  on  thermal  comfort  is  critical.    When  considering  these  factors,  it  is  also  essential  to  consider  a  person's  own  physical  characteristics.    A  person's  physical  characteristics  should  always  be  borne  in  mind  when  considering  their  thermal  comfort,  as  factors  such  as  their  size  and  weight,  age,  fitness  level  and  sex  can  all  have  an  impact  on  how  they  feel,  even  if  other  factors  such  as  air  temperature,  humidity,  and  air  velocity  are  all  constant.    

526

Page 14: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

 SWEAT  RATE  AND  DURATION  OF  EXPOSURE  A  measure  of  the  amount  of  sweat  produced  per  unit  time.    One  formula  for  calculating  the  sweat  rate  of  an  athlete  is:  sweating  rate  =  (pre-­‐exercise  body  weight  −  post-­‐exercise  body  weight  +  fluid  intake  −  urine  volume)/exercise  time  (h).    Weight  is  measured  in  kilograms  and  volumes  in  millilitres.    It  is  assumed  that  during  the  relatively  short  period  of  exercise,  weight  changes  are  due  to  water  loss.  As  1000  ml  of  water  weighs  1  kg,  sweat  production  can  be  calculated  in  units  of  millilitres  of  sweat  produced  per  hour.  During  prolonged  work  periods  in  the  heat  (8–12-­‐hour  shifts),  the  maintenance  of  high  sweat  rates  leads  to  progressive  dehydration,  which  may  be  accompanied  by  impairment  of  mental  and  physical  performance  and  of  heat  dissipation.    Dehydration  will  impair  work  capacity  and  may  pose  a  serious  risk  to  health;  the  intake  of  fluid  during  the  working  period  to  replace  sweat  losses  is,  therefore,  imperative.  However,  the  sodium  replacement  need  is  often  overlooked,  mainly  as  a  consequence  of  scant  information  regarding  the  sweat  loss  of  sodium  over  time.    There  is  also  little  information  available  concerning  the  variability  of  sweat  concentration  from  different  regions  of  the  body  (is  sweat  sodium  the  same  in  all  body  regions)  and  between  the  same  individual  (un-­‐acclimatised  and  acclimatised).    With  a  better  understanding  of  electrolyte  loss  in  sweat,  accurate  advice  regarding  replacement  beverages  can  be  provided  to  workers  performing  manual  tasks  in  the  heat.  Commercially  prepared  sports  drinks  have  varying  concentrations  of  glucose  and  sodium,  and  range  from  hypertonic  to  hypotonic  with  respect  to  the  plasma.    Sodium  is  added  to  some  drinks  for  the  purpose  of  replacing  sweat  salt  losses,  and  to  aid  in  the  transport  of  glucose  across  the  intestinal  wall.  Glucose  is  added  to  the  drinks  in  order  to  maintain  blood  glucose  levels  (avoid  fatigue)  during  the  work  period.    Sweat  is  hypotonic  to  plasma  and  to  some  of  the  electrolyte  replacement  drinks  available.    Consequently,  the  consumption  of  these  electrolyte  replacement  drinks,  if  made  available  to  workers  ad  libitum,  may  result  in  the  consumption  of  too  much  sodium.    On  the  other  hand,  if  sweat  losses  are  replaced  with  plain  water  a  dilution  of  the  plasma  may  occur  to  the  point  of  the  person  being  hyponatremic.    It  should  be  emphasized  that  sweat  losses  can  exceed  1.5  litres/hour  when  working  in  very  hot  environmental  conditions.    Meal  breaks  in  order  to  allow  salt  and  glucose  intake  from  solid  food  are  a  must  if  workers  are  using  water  to  replace  sweat  loss  as  nearly  all  food  contain  some  sodium.  However  before  appropriate  sodium  intake  can  be  recommended,  the  loss  over  a  work  duration  must  be  known.  Soft  drinks  and  cordials  have  approximately  10%  sugar  content,  and  if  these  are  used  as  a  sole  replacement  beverage,  this  can  significantly  increase  the  daily  kilojoule  intake  of  the  worker.    During  the  summer  when  sweat  rates  are  high,  it  is  not  uncommon  for  some  workers  to  consume  10  litres  of  fluids  in  the  working  day.    The  daily  sugar  intake  in  this  instance  would  be  over  1.0  kg.  In  addition,  cola  and  recently  released  "designer  drinks"  have  a  moderate  to  high  concentration  of  caffeine.  This  can  reduce  fluid  retention.    Coffee  and  to  a  lesser  extent  tea  are  also  caffeinated  beverages,  and  large  consumption  (more  than  two  cups  per  work  shift)  should  be  avoided  especially  during  the  summer  when  sweat  rates  can  be  high.    Some  drinks  have  a  low  pH  (acidic)  and  high  sugar  concentration  (10%),  and  while  they  may  be  appropriate  for  short  duration  sports  sweat  replacement,  they  should  not  be  recommended  for  daily  high  volume  consumption.    

527

Page 15: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

Thus,  workers  require  education  so  that  appropriate  choices  are  made  about  replacement  fluids.  This  is  particularly  true  at  the  beginning  of  summer  when  they  are  un-­‐acclimatised  to  the  heat;  however  we  do  not  currently  have  a  comprehensive  understanding  of  sweat  sodium  losses  in  workers.  As  sweat  loss  can  be  up  to10  to  12  litres  per  day,  and  sweat  contains  sodium,  an  essential  electrolyte,  the  above  notes  was  designed  to  better  understand  sweat  sodium  loss  so  that  informed  educational  strategies  can  be  put  in  place  in  order  to  prevent  heat  illness  and  accidents  due  to  the  effects  of  heat  strain  in  the  workplace.  

 CONCLUSION  Based  on  the  results  of  the  above  study  the  following  conclusions  and  recommendations  are  provided:  • People  working  in  moderately  hot  conditions  for  10  hours  on  average  will  lose  between  4.8  and  6  g  of  sodium  

(Na)  equivalent  to  12–15  g  of  salt  (NaCl)  depending  on  acclimatisation.  However  due  to  the  substantial  inter-­‐individual  variation  in  sweat  rate  and  sodium  concentration,  individual  losses  may  be  much  higher.    This  essential  electrolyte  must  be  replaced  in  order  to  avoid  fluid  imbalances,  thus  eating  during  the  shift  is  a  must.  

• One  work  session  in  the  heat,  for  an  acclimatised  person,  is  sufficient  to  activate  sodium-­‐conserving  mechanisms.    However  in  the  unacclimatised  worker,  longer  exposure  is  required.  A  worker  starting  work  in  harsh  conditions  should  be  given  10  days  or  more  to  acclimatise  before  performing  heavy  manual  work  in  the  heat.  

• Cordials  and  sports  drinks  are  contra-­‐indicated  for  people  working  in  hot  environments  due  to  the  very  high  energy  content.    An  ideal  fluid  replacement  beverage  for  industrial  use  should  have  significant  sodium  content  with  minimum  carbohydrate.  

 HEAT  BALANCE  EQUATION  M=  K±C±R±E  For  the  internal  body  temperature  to  be  maintained  at  around  37°C,  there  must  be  an  equilibrium  between  the  amount  of  heat  generated  within  the  body  and  the  heat  transferred  to  or  from  it.    This  equilibrium,  or  balance,  is  by  no  means  constant  but  is  as  dynamic  as  the  conditions  within  which  the  body  is  working.    The  concept  of  the  heat  balance  equation  for  the  human  body  explains  and  provides  an  understanding  of  how  37°C  internal  body  temperature  is  maintained.    Parsons  (1993)  points  out  that  all  heat  balance  equations  have  the  same  underlying  concept:  heat  generation  within  the  body,  heat  transfer,  heat  storage.    The  equations  below  show  the  conceptual  heat  balance  equation:  Where  metabolic  rate  (M)  provides  energy  enabling  the  body  to  perform  mechanical  work  (W).    The  remainder  of  the  energy  is  given  off  as  heat  (M-­‐W).    There  are  a  number  of  ways  that  heat  transfer  can  be  achieved:  evaporation  (E),  radiation  (R),  convection  (C)  and  conduction  (K).  The  resultant  heat  production  and  loss  provide  the  storage  (S),  wherein  heat  balance,  S  =  zero.  M  -­‐  W  =  E  +  R  +  C  +  K  +  S  When  S=0    M  -­‐  W  -­‐  E  -­‐  R  -­‐  C  -­‐  K  =  0    MEASURING  THERMAL  COMFORT  USING  PREDICTED  MEAN  VOTE  (PMV)  AND  PERCENTAGE  PEOPLE  DISSATISFIED  (PPD)  INDEX  AND  USE  OF  ISO  7730  AND  ISO  10551  STANDARDS  

528

Page 16: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

PREDICTED  MEAN  VOTE  (PMV)  INDEX  The  PMV  index  predicts  the  mean  response  of  a  larger  group  of  people  according  to  the  ASHRAE  thermal  sensation  scale  where  +3  hot  +2  warm  +1  slightly  warm  0  neutral  -­‐1  slightly  cool  -­‐2  cool  -­‐3  cold  The  PMV  index  is  expressed  by  P.O.  Fanger  as  PMV  =  (0.303  e-­‐0.036M  +  0.028)  L  (1)  Where,    PMV  =  Predicted  Mean  Vote  Index  M  =  metabolic  rate    L  =  thermal  load  -­‐  defined  as  the  difference  between  the  internal  heat  production  and  the  heat  loss  to  the  actual  environment  -­‐  for  a  person  at  comfort  skin  temperature  and  evaporative  heat  loss  by  sweating  at  the  actual  activity  level    PREDICTED  PERCENTAGE  DISSATISFIED  (PPD)  INDEX  Predicted  Percentage  Dissatisfied  -­‐  PPD  -­‐  the  index  is  a  quantitative  measure  of  the  thermal  comfort  of  a  group  of  people  at  a  particular  thermal  environment.    Note  -­‐  at  least  approx.  5%  of  people  in  a  group  will  be  dissatisfied  with  the  thermal  climate  -­‐  even  with  PMV  =  0  PMV-­‐PPD    PMV  represents  the  'predicted  mean  vote'  (on  the  thermal  sensation  scale)  of  a  large  population  of  people  exposed  to  a  certain  environment.  PMV  is  derived  from  the  physics  of  heat  transfer  combined  with  an  empirical  fit  to  the  sensation.    PMV  establishes  a  thermal  strain  based  on  steady-­‐state  heat  transfer  between  the  body  and  the  environment  and  assigns  a  comforting  vote  to  that  amount  of  strain.    PPD  is  the  predicted  percent  of  dissatisfied  people  at  each  PMV.  As  PMV  changes  away  from  zero  in  either  the  positive  or  negative  direction,  PPD  increases.    The  PMV  equation  for  thermal  comfort  is  a  steady-­‐state  model.  It  is  an  empirical  equation  for  predicting  the  mean  vote  on  an  ordinal  category  rating  scale  of  thermal  comfort  of  a  population  of  people.    The  equation  uses  a  steady-­‐state  heat  balance  for  the  human  body  and  postulates  a  link  between  the  deviation  from  the  minimum  load  on  heat  balance  effector  mechanisms,  e,g,  sweating,  vasoconstriction,  vasodilation,  and  thermal  comfort  vote.    The  greater  the  load,  the  more  the  comfort  vote  deviates  from  zero.  The  partial  derivative  of  the  load  function  is  estimated  by  exposing  enough  people  to  enough  different  conditions  to  fit  a  curve.    PMV  (Predicted  Mean  Vote),  as  the  integrated  partial  derivative  is  now  known,  is  arguably  the  most  widely  used  thermal  comfort  index  today.    The  ISO  (International  Standards  Organization)  Standard  7730  (ISO  1984),  

529

Page 17: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

"Moderate  Thermal  Environments  -­‐  Determination  of  the  PMV  and  PPD  Indices  and  Specification  of  the  Conditions  for  Thermal  Comfort,"  uses  limits  on  PMV  as  an  explicit  definition  of  the  comfort  zone.    The  PMV  equation  only  applies  to  humans  exposed  for  a  long  period  of  constant  conditions  at  a  constant  metabolic  rate.  Conservation  of  energy  leads  to  the  heat  balance  equation:    H-­‐Ed-­‐Esw-­‐Ere-­‐L=R+C  Where:  H  =  internal  heat  production  Ed  =  heat  loss  due  to  water  vapour  diffusion  through  the  skin  SW  =  heat  loss  due  to  sweating  Ere  =  latent  heat  loss  due  to  respiration  L  =  dry  respiration  heat  loss  R  =  heat  loss  by  radiation  from  the  surface  of  the  clothed  body  C  =  heat  loss  by  convection  from  the  surface  of  the  clothed  body  The  equation  is  expanded  by  substituting  each  component  with  a  function  derivable  from  basic  physics.    All  of  the  functions  have  measurable  values  with  the  exception  of  clothing  surface  temperature  and  the  convective  heat  transfer  coefficient  which  are  functions  of  each  other.    To  solve  the  equation,  an  initial  value  of  clothing  temperature  is  estimated;  the  convective  heat  transfer  coefficient  computed,  a  new  clothing  temperature  calculated,  etc.,  by  iteration  until  both  are  known  to  a  satisfactory  degree.    Now  let  us  assume  the  body  is  not  in  balance  and  write  the  heat  equation  as:    L  =  H-­‐Ed-­‐Esw-­‐Ere-­‐L-­‐R-­‐C,    Where  L  is  the  thermal  load  on  the  body.  Define  thermal  strain  or  sensation,  Y,  as  some  unknown  function  of  L  and  metabolic  rate.  Holding  all  variables  constant  except  air  temperature  and  metabolic  rate,  we  use  mean  votes  from  climate  chamber  experiments  to  write  Y  as  a  function  of  air  temperature  for  several  activity  levels.    Then  substituting  L  for  air  temperature,  determined  from  the  heat  balance  equation  above,  evaluate  the  partial  derivative  of  Y  with  respect  to  L  at  Y=0  and  plot  the  points  versus  metabolic  rate.    An  exponential  curve  is  fit  to  the  points  and  integrated  with  respect  to  L.  L  is  simply  renamed  "PMV",  and  we  have  (in  simplified  form):    PMV  =  exp[met]*L.  Where:  L=F(Pa,Ta,Tmrt,Tcl)    PMV  is  "scaled"  to  predict  thermal  sensation  votes  on  a  seven-­‐point  scale  (hot,  warm,  slightly  warm,  neutral,  slightly  cool,  cool,  cold)  by  virtue  of  the  fact  that  for  each  physical  condition,  Y  is  the  mean  vote  of  all  subjects  exposed  to  that  condition.    The  major  limitation  of  the  PMV  model  is  the  explicit  constraint  of  skin  temperature  and  evaporative  heat  loss  to  values  for  comfort  and  "neutral"  sensation  at  a  given  activity  level.    THE  ASSESSMENT  OF  HEAT  STRESS,  ROLE  OF  HEAT  INDICES  

530

Page 18: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

INTRODUCTION    Many  attempts  have  been  made  over  the  years  to  develop  an  index  which,  through  a  single  figure,  is  able  to  provide  an  indication  of  the  risk  of  heat  stress.  However,  a  thermal  index  has  yet  to  be  developed  which  can  accurately  predict  a  person’s  physiological  strain  to  all  environments.    There  is  a  growing  body  of  opinion  that  computer  modelling  provides  the  best  solution  to  the  prevention  of  heat  stress.  Belding  provides  the  following  recommendations  to  anyone  who  is  “so  bold  as  to  improve  on  existing  standards”:    • One  of  the  major  problems  seems  to  be  the  establishment  of  criteria  which  are  representative  of  

physiological  stress  and  strain;  • To  accurately  predict  the  level  of  strain  in  such  a  way  as  to  provide  a  practical  application;  • The  “ultimate  index  should  provide  a  means  for  rating  time-­‐limited  exposures”;  • The  use  of  sweat  rate  is  only  really  justified  in  terms  of  dehydration  levels  and  salt  depletion;  • Mean  skin  temperature  is  the  result  of  the  effects  of  environment  and  metabolic  heat  loads  on  the  

circulatory  efficiency  of  the  blood  and  the  evaporative  cooling  effectiveness.    A  heat  stress  index  is  a  model  of  human  thermoregulation.    Models  (and  indices)  are,  by  their  very  nature,  limited  in  their  functionality  and  as  such  the  model  (whether  it  be  a  graphical  or  numeric  representation,  mathematical  equations)  will  never  be  a  perfect  representation.  Therefore,  when  investigating  models,  errors  or  deviations  from  the  observed  are  expected,  but  the  performance  criteria  are  not  so  much  how  accurate  it  is,  but  rather  whether  or  not  these  inaccuracies  are  significant  in  terms  of  the  application  or  situation  to  which  it  is  intended  to  be  applied.    This  is  very  much  the  case  in  Human  Modelling  because  there  is  such  a  wide  variation  between  individuals  in  their  physiological  responses.  This  is  still  further  complicated  by  the  fact  that  much  of  our  knowledge  of  human  responses  to  thermal  environments  is  incomplete.    This,  however,  by  no  means  negates  the  potential  that  human  modelling  has  in  the  development  of  research  methods  and  practical  applications  to  address  human  responses  to  thermal  environments.    TYPES  OF  HEAT  STRESS  INDICES    There  are  generally  three  types  of  methods  used  for  the  assessment  of  hot  environments:    EMPIRICAL  Data  from  laboratory  studies  provided  data  that  makes  it  possible  to  predict  the  likely  effects  an  environment  will  have  on  a  human,  (i.e.  Physiological  responses);    DIRECT  Standardised  measuring  instruments  are  used  to  measure  environmental  parameters  such  as  globe  temperature.    RATIONAL  Calculations  of  the  heat  exchanges  between  the  human  and  the  environment  provide  a  method  to  predict  the  human  responses.  These  methods  all  have  the  same  criteria  in  common,  in  that  their  purpose  is  to  define  or  establish  the  physiological  responses  of  humans  to  their  environment.    

531

Page 19: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

The  figure  that  follows  shows  a  simplification  of  the  method  of  calculating  climatic  indices,  which  results  in  a  simplified  value  or  combined  measure  which  can  represent  the  large  possible  combinations  of  the  parameters  that  make  up  the  human  thermal  environment.      A  diagrammatic  representation  of  calculating  climatic  indices  as  described  by  Eissing  (1995)  According  to  Eissing  (1995),  this  simple  index  value  allows  for  a  simple  comparison  between  environments,  different  working  situations  and  different  clothing  ensembles  to  be  made.    EFFECTIVE  TEMPERATURE  (ET)  AND  CORRECTED  EFFECTIVE  TEMPERATURE  (CET)    The  Effective  Temperature  (ET)  scales  were  originally  devised  by  Houghton  and  Yaglogou  in  1923  as  comfort  indices  and,  in  1927,  Yaglou  realised  that  it  would  be  a  good  physiological  index  of  stress  (Leithead  and  Lind,  1964).  ET  takes  wet  bulb  temperature,  dry  bulb  temperature,  and  air  velocity  into  account  but  does  not  take  into  account  radiant  heat.    Bedford  in  1946  proposed  the  replacement  of  an  air  temperature  measured  with  the  use  of  globe  temperature  to  provide  a  measure  of  radiant  heat.    This  produced  the  Corrected  Effective  Temperature  (CET).    The  CET  has  been  used  extensively  in  the  coal  mines  in  the  UK.    THE  HEAT  STRESS  INDEX  (HSI)    The  Heat  Stress  Index  (HSI),  was  developed  by  Belding  and  Hatch  (1955)  as  an  analytical  index  that  provides  an  expression  on  a  scale  of  0  to  100  that  represents  heat  stress  and  hence  heat  strain  and  thereby  the  amount  of  time  a  worker  can  be  exposed  to  a  hot  environment.    There  is  a  table  (see  the  following  table)  that  provides  the  equations  used  in  the  calculation  of  HSI  and  the  resultant  Allowable  Exposure  Times  (AET).    

    CLOTHED   UNCLOTHED  Radiation  Loss  (W.m-­‐2)   R=k1(35-­‐t1)   For  k1=4.4   7.3  Convection  Loss  (W.m-­‐2)   C=k2v0.6(35-­‐ta)   For  k2=4.6   7.6  Emax  (W.m-­‐2)   Emax=k3v0.6(56-­‐ta)    

(Upper  limit  of  390  W.m-­‐2  

For  k3=7.0   11.7  

Ereq  (W.m-­‐2)   Ereq=M-­‐R-­‐C      Heat  Stress  Index   HIS  =(Ereq/  

Emax)x100      

Allowable  Exposure  Time   AET  =  2440  (Ereq  -­‐  Emax)  mins  

   

         

Source:  CSS  

532

Page 20: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

Equations  used  in  the  calculation  of  the  (HSI)  and  Allowable  Exposure  Times  (AET),  (from  Parsons,  1993)  In  addition  a  further  table  provides  an  interpretation  of  the  HSI  values  –  see  the  following  table.  The  table  above  shows  the  equations  for  the  Heat  Stress  Index,  which  is  based  on  a  comparison  of  Ereq  and  Emax.    Although  it  is  derived  independently,  the  HSI  value  is  related  to  the  required  skin  wetness  (wreq)  value  (which  is  derived  from  Ereq/Emax).    As  such,  it  describes  strain  in  terms  of  sweating,  and  because  it  multiplies  the  wreq  value  by  a  100,  it  describes  a  prescriptive  zone  between  0  and  100  (see  the  next  table).    When  a  value  is  obtained  that  is  greater  than  100,  an  AET  is  produced  because  it  effectively  means  that  a  skin  wetness  value  greater  than  that  capable  of  being  produced  (remember  it  is  related  to  wreq)  is  required.    

HIS  VALUE   EFFECT  ON  8  HOUR  EXPOSURE  -­‐20   Mild  cold  strain  (e.g.  recovery  from  heat  exposure)  0   No  thermal  strain  10  –  30   Mild  to  moderate  heat  strain  –  Little  effect  on  physical  work  but  possible  effect  on  

skill  40  –  60   Severe  heat  strain,  involving  threat  to  health  unless  physically  fit  –  Acclimation  

required  70  –  90   Very  severe  heat  strain  -­‐  Personnel  should  be  selected  by  medical  examination,  

adequate  water  and  salt  intake  must  be  ensured.  100   Maximum  strain  tolerated  daily  by  fit  acclimatised  young  men.  Over  100   Exposure  time  limited  by  a  rise  in  deep  body  temperature.  

       FIRST  AID    Take  the  following  steps  to  treat  a  worker  with  heat  stroke:    • Call  999  and  notify  their  supervisor.    • Move  the  sick  worker  to  a  cool,  shaded  area.    • Cool  the  worker  using  methods  such  as:    

- Soaking  their  clothes  with  water.    - Spraying,  sponging  or  showering  them  with  water.    - Fanning  their  body.    

 HEAT  EXHAUSTION    Heat  exhaustion  is  the  body's  response  to  an  excessive  loss  of  the  water  and  salt,  usually  through  excessive  sweating.    

Source:  CSS  

533

Page 21: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

Workers  most  prone  to  heat  exhaustion  are  those  that  are  elderly,  have  high  blood  pressure,  and  those  working  in  a  hot  environment.      SYMPTOMS    Symptoms  of  heat  exhaustion  include:    • Heavy  sweating    • Extreme  weakness  or  fatigue    • Dizziness,  confusion    • Nausea    • Clammy,  moist  skin    • Pale  or  flushed  complexion    • Muscle  cramps    • Slightly  elevated  body  temperature    • Fast  and  shallow  breathing      FIRST  AID    Treat  a  worker  suffering  from  heat  exhaustion  with  the  following:    • Have  them  rest  in  a  cool,  shaded  or  air-­‐conditioned  area.    • Have  them  drink  plenty  of  water  or  other  cool,  nonalcoholic  beverages.    • Have  them  take  a  cool  shower,  bath,  or  sponge  bath.        

 

 

HEAT  SYNCOPE    Heat  syncope  is  a  fainting  (syncope)  episode  or  dizziness  that  usually  occurs  with  prolonged  standing  or  sudden  rising  from  a  sitting  or  lying  position.    Factors  that  may  contribute  to  heat  syncope  include  dehydration  and  lack  of  acclimatization.      SYMPTOMS  Symptoms  of  heat  syncope  include:    • Light-­‐headedness    • Dizziness    • Fainting      FIRST  AID    Workers  with  heat  syncope  should:    • Sit  or  lie  down  in  a  cool  place  when  they  begin  to  feel  symptoms.    • Slowly  drink  water,  clear  juice,  or  a  sports  beverage.    

534

Page 22: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

 HEAT  CRAMPS    Heat  cramps  usually  affect  workers  who  sweat  a  lot  during  strenuous  activity.    This  sweating  depletes  the  body's  salt  and  moisture  levels.  Low  salt  levels  in  muscles  cause  painful  cramps.  Heat  cramps  may  also  be  a  symptom  of  heat  exhaustion.      SYMPTOMS    Muscle  pain  or  spasms  usually  in  the  abdomen,  arms,  or  legs.      FIRST  AID    Workers  with  heat  cramps  should:    • Stop  all  activity,  and  sit  in  a  cool  place.    • Drink  clear  juice  or  a  sports  beverage.    • Do  not  return  to  strenuous  work  for  a  few  hours  after  the  cramps  subside  because  further  exertion  may  lead  

to  heat  exhaustion  or  heat  stroke.    • Seek  medical  attention  if  any  of  the  following  apply:    

- The  worker  has  heart  problems.    - The  worker  is  on  a  low-­‐sodium  diet.    - The  cramps  do  not  subside  within  one  hour.    

 HEAT  RASH    Heat  rash  is  a  skin  irritation  caused  by  excessive  sweating  during  hot,  humid  weather.      SYMPTOMS    Symptoms  of  heat  rash  include:    • Heat  rash  looks  like  a  red  cluster  of  pimples  or  small  blisters.    • It  is  more  likely  to  occur  on  the  neck  and  upper  chest,  in  the  groin,  under  the  breasts,  and  in  elbow  creases.      FIRST  AID    Workers  experiencing  heat  rash  should:    • Try  to  work  in  a  cooler,  less  humid  environment  when  possible.    • Keep  the  affected  area  dry.    • Dusting  powder  may  be  used  to  increase  comfort.      RECOMMENDATIONS  FOR  EMPLOYERS    Employers  should  take  the  following  steps  to  protect  workers  from  heat  stress:    • Schedule  maintenance  and  repair  jobs  in  hot  areas  for  cooler  months.    • Schedule  hot  jobs  for  the  cooler  part  of  the  day.    • Acclimatize  workers  by  exposing  them  for  progressively  longer  periods  to  hot  work  environments.    • Reduce  the  physical  demands  of  workers.    • Use  relief  workers  or  assign  extra  workers  for  physically  demanding  jobs.    • Provide  cool  water  or  liquids  to  workers.    

535

Page 23: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

- Avoid  alcohol,  and  drinks  with  large  amounts  of  caffeine  or  sugar.    • Provide  rest  periods  with  water  breaks.    • Provide  cool  areas  for  use  during  break  periods.    • Monitor  workers  who  are  at  risk  of  heat  stress.    • Provide  heat  stress  training  that  includes  information  about:    

- Worker  risk    - Prevention    - Symptoms    - The  importance  of  monitoring  yourself  and  coworkers  for  symptoms    - Treatment    - Personal  protective  equipment    

 RECOMMENDATIONS  FOR  WORKERS    Workers  should  avoid  exposure  to  extreme  heat,  sun  exposure,  and  high  humidity  when  possible.  When  these  exposures  cannot  be  avoided,  workers  should  take  the  following  steps  to  prevent  heat  stress:    • Wear  light-­‐colored,  loose-­‐fitting,  breathable  clothing  such  as  cotton.    

- Avoid  non-­‐breathing  synthetic  clothing.    • Gradually  build  up  to  heavy  work.    • Schedule  heavy  work  during  the  coolest  parts  of  the  day.    • Take  more  breaks  in  extreme  heat  and  humidity.    

- Take  breaks  in  the  shade  or  a  cool  area  when  possible.    • Drink  water  frequently.  Drink  enough  water  that  you  never  become  thirsty.  Approximately  1  cup  every  15  -­‐  

20  minutes.  • Avoid  alcohol,  and  drinks  with  large  amounts  of  caffeine  or  sugar.    • Be  aware  that  protective  clothing  or  personal  protective  equipment  may  increase  the  risk  of  heat  stress.    • Monitor  your  physical  condition  and  that  of  your  coworkers.    ACCLIMATISATION  WHAT  IS  HEAT  ACCLIMATIZATION?    Heat  acclimatization  refers  to  biological  adaptations  that  reduce  physiologic  strain  (e.g.,  heart  rate  and  body  temperature),  improve  physical  work  capabilities,  improve  comfort  and  protects  vital  organs  (brain,  liver,  kidneys,  muscles)  from  heat  injury.    The  most  important  biological  adaptation  from  heat  acclimatization  is  an  earlier  and  greater  sweating  response,  and  for  this  response  to  improve  it  needs  to  be  invoked.    Heat  acclimatization  is  specific  to  the  climate    and  physical  activity  level.    Those  who  only  perform  light  or  brief  physical  work  will  achieve  the  level  of  heat  acclimatization  needed  to  perform  that  task.    If  they  attempt  a  more  strenuous  or  prolonged  task,  additional  acclimatization  and  improved  physical  fitness  will  be  needed  to  successfully  perform  that  task  in  the  heat.  

536

Page 24: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

 HOW  DO  YOU  BECOME  HEAT  ACCLIMATIZED?  Heat  acclimatization  occurs  when  repeated  heat  exposures  are  sufficiently  stressful  to  elevate  body  temperature  and  provoke  perfuse  sweating.    Resting  in  the  heat,  with  limited  physical  activity  to  that  required  for  existence,  results  in  only  partial  acclimatization.    Physical  exercise  in  the  heat  is  required  to  achieve  optimal  heat  acclimatization  for  that  exercise  intensity  in  a  given  hot  environment.  Generally,  about  two  weeks  of  daily  heat  exposure  is  needed  to  induce  heat  acclimatization.  Heat  acclimatization  requires  a  minimum  daily  heat  exposure  of  about  two  hours  (can  be  broken  into  two  1-­‐hour  exposures)  combined  with  physical  exercise  that  requires  cardiovascular  endurance,  (for  example,  marching  or  jogging)  rather  than  strength  training  (push-­‐ups  and  resistance  training).    Gradually  increase  the  exercise  intensity  or  duration  each  day.  Work  up  to  an  appropriate  physical  training  schedule  adapted  to  the  required  physical  activity  level  for  the  advanced  military  training  and  environment.    The  benefits  of  heat  acclimatization  will  be  retained  for  ~1  week  and  then  decay  with  about  75  percent  lost  by  ~3  weeks,  once  heat  exposure  ends.    A  day  or  two  of  intervening  cool  weather  will  not  interfere  with  acclimatization  to  hot  weather.    PRACTICAL  CONTROL  MEASURES  TO  MINIMISE  THE  RISKS  WHEN  WORKING  IN  EXTREME  THERMAL  ENVIRONMENT  CONTROLLING  THERMAL  COMFORT  There  are  a  number  of  ways  that  you  can  manage  thermal  comfort  in  the  workplace:    ADMINISTRATIVE  CONTROLS  Administrative  controls  include  planning  and  rescheduling  work  times  and  practices  and  rest  schedules,  for  example,  scheduling  ‘hot’  work  for  cooler  times  of  the  day  or  giving  workers  flexible  hours  to  help  avoid  the  worst  effects  of  working  in  high  temperatures.    Administrative  controls  are  generally  of  a  short-­‐term,  temporary  nature  and  are  also  widely  recognised  as  being  more  expensive  and  less  cost-­‐effective  than  engineering  controls  in  the  long-­‐term.      ENGINEERING  CONTROLS  These  should  be  the  first  choice  to  reduce  or  eliminate  the  hazard.    Although  the  initial  cost  of  engineering  controls  seems  high,  it  has  been  found  that  the  implementation  cost  is  often  offset  by  the  resulting  improvements  in  production  and  decrease  in  downtime,  with  reduced  absenteeism  and  improved  motivation.    It  is  important  to  stress  that  any  practical  solution  to  controlling  thermal  comfort  is  likely  to  require  a  combination  of  different  options  alongside  consultation  between  employers,  employees,  and  their  representatives.      HEATING    

537

Page 25: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

Many  types  of  heating  systems  are  available:    • Hot  air  based  heating  systems;    • Water  based  central  heating  systems  using  radiators;    • Combined  heat  and  ventilation  systems  using  air  conditioning  systems;    • Electrical  heating  systems  using  electrical  heaters;    • Under-­‐floor  heating  systems  using  either  electrical  coils  or  heated  fluids;    • Overhead  heating  systems.    Most  of  these  systems  are  useful.  However,  the  beneficial  effects  may  be  in  some  situations  restricted  to  the  immediate  locality  of  the  heat  source.    AIR  MOVEMENT  There  are  many  methods  for  increasing  air  movement.  Small  ‘personal’  fans  can  provide  a  refreshing  movement  of  air  on  the  face.  Larger  oscillating  fans  can  provide  a  swirling  air  movement,  though  some  people  may  find  this  draughty.  There  may  also  be  noise  problems.    Large  diameter  fans  suspended  from  the  ceiling  can  provide  a  swirling  air  movement  that  is  effective  over  a  wide  area.    Exhaust  fans,  mounted  on  the  roofs  and  walls,  are  useful  for  removing  heated  air;  however,  while  improving  general  air  movement,  they  may  have  little  effect  on  thermal  comfort.      AIR  CONDITIONING  This  can  range  from  small  units  that  lower  the  air  temperature  but  do  not  control  humidity  levels  or  air  movement,  to  large  units  that  can  cope  with  extreme  conditions  as  well  as  humidity  and  air  movement.    When  air  conditioning  systems  are  used,  care  should  be  taken  to  ensure  uniform  air  distribution  throughout  the  workplace.  Otherwise  some  workers  may  complain  of  feeling  cold  while  others  are  feeling  hot.    Air  conditioning  units  should  be  operated  as  per  the  manufacturer’s  instructions.    EVAPORATIVE  COOLING    Evaporative  coolers  produce  a  moderate  reduction  in  air  temperature  and  increase  humidity.    They  operate  by  passing  hot  air  over  water-­‐saturated  pads,  and  the  water  evaporation  effect  reduces  the  air  temperature.    THERMAL  INSULATION    There  are  many  different  types  of  thermal  insulation  materials,  e.g.  loose  fills,  rock  wool,  and  boards.    The  material  acts  as  a  barrier,  which  slows  heat  flow  in  the  summer  and  heat  loss  in  the  winter,  but  it  is  only  effective  where  there  is  a  temperature  difference  between  the  inside  and  the  outside  of  the  building  or  between  two  areas  inside  a  building.    GENERIC  CONTROL  MEASURES    There  are  eight  main  methods  of  control  which  you  can  use:      CONTROL  THE  HEAT  SOURCE  

538

Page 26: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

• Don't  only  consider  this  in  relation  to  air  temperature.    • Reduce/increase  temperature,  humidity,  radiant  heat  load  or  air  movement.    • Insulate  the  source  of  heat  or  cold.      CONTROL  THE  ENVIRONMENT  PARAMETERS  • Replace  hot  air  with  cold,  or  replace  cold  air  with  hot,  as  required.    • Humidify  or  dehumidify  the  air  as  required.    • Increase  air  movement  by  ventilation  or  air  conditioning.    • Reduce  draught  discomfort  by  directing  the  ventilation  or  air  movement  so  that  it  doesn't  blow  directly  onto  

the  workers.      SEPARATE  THE  SOURCE  OF  HEAT  OR  COLD  FROM  THE  WORKER  –  WORKPLACE  DESIGN  • Erect  barriers,  shield  the  work  area  or  restrict  access.    • Redesign  jobs  to  remove  the  worker  from  the  area.      CONTROL  THE  TASK  –  JOB  DESIGN  • Restrict  the  length  of  time  that  workers  are  exposed  to  hot  or  cold  conditions.    • Control  the  amount  of  work  that  workers  are  expected  to  do.    • Introduce  mechanical  aids  to  aid  physically  demanding  jobs  in  warm  and  hot  environments  or  when  workers  

are  wearing  a  lot  of  clothing.      CONTROL  THE  CLOTHING/PPE  • If  PPE  is  worn,  make  sure  that  workers  are  not  wearing  more  PPE  than  is  required  (i.e.,  a  higher  protection  

factor  than  is  needed).    • If  uniforms  are  worn,  evaluate  alternative  designs,  new  materials,  etc.  to  improve  wearability  of  clothing.    • Evaluate  dress  code  and  allow  workers  to  adapt  their  clothing  where  possible.    • Multiple  layers  of  clothing  enable  workers  to  make  reasonable  adjustments  to  their  clothing  based  on  their  

own  subjective  feelings.      ALLOW  FOR  THE  WORKER  TO  MAKE  BEHAVIOURAL  ADAPTATIONS  • Where  possible,  remove  all  restrictions  that  may  prevent  employees  from  making  minor  adjustments  to  their  

clothing  or  work  rate.    • Provide  warm-­‐up  or  cool-­‐down  areas.    • Provide  personal  heaters  or  fans.    • Allow  workers  to  adjust  thermostats  or  open  windows  as  appropriate.      PROTECT  THE  WORKER  • Provide  suitable  special  clothing  and/or  equipment  (e.g.  desk  fans).    • Provide  training.      MONITOR  THE  WORKER  INCLUDING  HEALTH  SURVEILLANCE  • Provide  appropriate  supervision.  • Obtain  medical  advice  for  workers  who  are  pregnant,  have  an  illness  or  disability  or  are  on  medication.  

539

Page 27: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

• As  required  undertake  a  specific  risk  assessment  for  pregnant  workers  to  identify  and  manage  any  risks.    TRAINING    Measurements  by  themselves  cannot  guarantee  worker  protection  from  heat  stress.    It  is  essential  that  workers  learn  to  recognize  the  early  signs  and  symptoms  of  heat  stress  and  know  how  to  prevent  them!.  If  it’s  possible,  workers  need  to  be  able  to  alter  their  pace  of  work,  take  rest  breaks,  and  drink  in  response  to  early  symptoms  (a  cup  of  water  every  20  minutes).  The  ideal  heat  stress  response  plan  would  let  workers  regulate  their  own  pace  by  “listening”  to  their  bodies.    BRITISH,  EUROPEAN,  AND  INTERNATIONAL  STANDARDS  RELEVANT  TO  WORKING  IN  THERMAL  ENVIRONMENTS  The  following  standards  may  be  useful  to  course  delegates  when  assessing  thermal  issues  in  the  workplace.  • BS  EN  ISO  9888:2001  Evaluation  of  thermal  strain  by  physiological  measurements  • BS  EN  28996  Ergonomics  of  the  thermal  environment  –  Estimation  of  metabolic  heat  production    • BS  EN  27243  Hot  environments  –  Estimation  of  heat  stress  on  a  working  man,  based  on  the  WBGT  –  Index  

(Wet  Bulb  Globe  Temperature)    • BS  7915  Ergonomics  of  the  thermal  environment  –  Guide  to  design  and  evaluation  of  working  practices  in  

cold  indoor  environments    • ISO  11079  IREQ  Evaluation  of  cold  environments  –  Determination  of  required  clothing  insulation  (IREQ)    • BS  EN  7730  Moderate  thermal  environments  –  Determination  of  the  PMV  and  PPD  indices  and  specification  

of  the  conditions  for  thermal  comfort    • ISO  10551  Ergonomics  of  the  thermal  environment  –  assessment  of  the  influence  of  the  thermal  environment  

using  subjective  judgement  scales    • BS  EN  ISO  12894  Ergonomics  of  the  thermal  environment  –  Medical  supervision  of  individuals  exposed  to  

extreme  hot  or  cold  environments    • BS  12515  ISO  7933  Hot  environments  –  Analytical  determination  and  interpretation  of  thermal  stress  using  

the  calculation  of  required  sweat  rate.    • BS  7963  Ergonomics  of  the  thermal  environment  –  Guide  to  the  assessment  of  heat  strain  in  workers  wearing  

personal  protective  equipment    • BS  EN  27726  Thermal  environments  –  Instruments  and  methods  for  measuring  physical  quantities    • BS  EN  14058  Protective  clothing  garments  for  protection  against  cool  environments    • BS  ISO  15265  Ergonomics  of  the  thermal  environment  –  Risk  assessment  strategy  for  the  prevention  of  stress  

and  discomfort  in  thermal  working  conditions    • BS  EN  511  Specification  for  protective  gloves  against  cold    • ISO  13732-­‐3  Ergonomics  of  the  thermal  environment  –  Touching  of  cold  surfaces  Part  3.  Ergonomics  data  and  

guidance  for  application    • BS  EN  563  Safety  of  machinery  –  Temperatures  of  touchable  surfaces  –  Ergonomics  data  to  establish  

temperature  limit  values  for  hot  surfaces    • ISO  11399  Ergonomics  of  the  thermal  environment  –  Principles  and  application  of  relevant  international  

standards    

540

Page 28: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

• BS  ISO  9920  Ergonomics  of  the  thermal  environment  –  Estimation  of  the  thermal  insulation  and  evaporative  resistance  of  a  clothing  ensemble  

ISO  15743  Ergonomics  of  the  thermal  environment  -­‐  cold  workplaces  -­‐  risk  assessment  and  management    

IB10.2  Adequate  and  appropriate  lighting  in  the  workplace,  the  units  of  measurement  of  light  and  the  assessment  of  lighting  levels  in  the  workplace  THE  NECESSITY  FOR  LIGHTING  IN  WORKPLACES  WHY  IS  GOOD  LIGHTING  AT  WORK  IMPORTANT?  Lighting  at  work  is  very  important  to  the  health  and  safety  of  everyone  using  the  workplace.    The  quicker  and  easier  it  is  to  see  a  hazard,  the  more  easily  it  is  avoided.    The  types  of  hazard  present  at  work,  therefore,  determine  the  lighting  requirements  for  safe  operation.  Poor  lighting  can  not  only  affect  the  health  of  people  at  work  causing  symptoms  like  eye  strain,  migraine,  and  headaches,  but  it  is  also  linked  to  Sick  Building  Syndrome  in  new  and  refurbished  buildings.    Symptoms  of  this  include:  • Headaches,    • Lethargy,    • Irritability  and  • Poor  concentration.    COSTS  OF  POOR  LIGHTING  TO  BUSINESS  Poor  lighting  at  work  can  represent  a  significant  cost  to  business  in  the  form  of:  • Time  off  work  as  a  result  of  accidents  and  injuries;  • Increased  absenteeism;  • Reduced  staff  efficiency  and  productivity.    WHO  IS  RESPONSIBLE  FOR  LIGHTING  AT  WORK  AND  WHAT  ARE  THEIR  LEGAL  RESPONSIBILITIES?  Under  most  National  legislation  employers,  the  self-­‐employed  and  people  in  control  of  non-­‐domestic  premises  have  a  duty  to  ensure  that  lighting  is  safe  and  does  not  pose  a  health  risk  to  employees  and  others  who  may  use  their  premises.  Employers  are  also  required  to  consult  their  employees  on  health  and  safety  matters.    Where  safety  representatives  have  been  appointed  by  a  recognised  trade  union,  it  is  part  of  their  function  to  advice  during  the  consultation  process.    Where  employees  are  not  covered  by  trade  union-­‐appointed  safety  representatives,  employers  should  consult  employees  directly  or  via  representatives  elected  for  this  purpose.    ADEQUATE  AND  APPROPRIATE  LIGHTING  AND  LEVELS  FOR  THE  WORK;  NATURAL  AND  ARTIFICIAL  LIGHTING  For  good  lighting  practice  it  is  essential  that,  in  addition  to  the  required  illuminance,  other  qualitative  and  quantitative  needs  are  satisfied.  Lighting  requirements  are  determined  by  the  satisfaction  of  three  basic  human  needs:    

541

Page 29: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

• Visual  comfort,  where  the  workers  have  a  feeling  of  well-­‐being;  in  an  indirect  way  also  contributing  to  a  high  productivity  level,  

• Visual  performance,  where  the  workers  are  able  to  perform  their  visual  tasks,  even  under  difficult  circumstances  and  during  longer  periods,  

• Safety.    Main  parameters  determining  the  luminous  environment  are:  • Luminance  distribution,  • Illuminance,  • Glare,  • Directionality  of  light,  • Colour  rendering  and  colour  appearance  of  the  light,  • Flicker.    Whilst  the  provision  of  natural  lighting  takes  precedence  over  artificial  lighting,  in  practice  both  will  be  required.  Artificial  lighting  should  be  adequate  and  properly  maintained  for  the  safety  and  health  of  persons  at  work.    To  maximise  the  use  of  natural  lighting,  windows,  skylights  and  glass  partitions  used  for  lighting  workrooms  should  be  kept  clean  on  both  inner  and  outer  surfaces.  The  lighting  levels  should  be  sufficient  to  enable  persons  to  detect  obvious  hazards  as  well  as  being  able  to  work  without  experiencing  eyestrain.  Lighting  arrangements  should  be  made  so  that  brightness,  unsuitable  shading  or  poorly  placed  light  sources  or  workstations  cannot  cause  discomfort  or  injury  from  glare  or  from  the  reflection  of  light  into  the  eyes  of  the  employees.  Determining  what  is  good  and  correct  lighting  depends  on  the  visual  demands  of  the  task  to  be  performed  and  the  nature  of  the  work  to  be  performed,  i.e.  office  work,  hospital  work,  inspection  of  minute  work  (jewellery  and  watch-­‐making),  fine  bench  and  machine  work,  rough  bench  work,  etc.    Standards  set  by  recognised  professional  bodies,  such  as  CIBSE,  should  be  referred  to  as  regards  determining  the  correct  level  of  lighting.  Lights  and  light  fittings  should  be  of  a  type,  and  so  positioned,  that  they  do  not  cause  a  hazard  (including  electrical,  fire  or  collision  hazards).    Glare  and  dazzle  should  be  avoided.    Light  switches  should  be  positioned  for  easy  access  and  use  without  risk.  Lights  should  not  be  allowed  to  become  obscured,  for  example  by  stacked  goods  or  appliances,  in  such  a  way  that  the  light  level  is  inadequate.  In  some  cases,  extra  physical  protection  of  light  sources  may  be  necessary  to  prevent  the  possibility  of  electrocution  where  there  is  a  risk  of  physical  impact,  e.g.  if  located  in  pits  or  areas  where  metal  tubing  is  being  handled.    THE  IMPACT  OF  LIGHTING  LEVELS  ON  SAFETY  ISSUES  INADEQUATELY  LIT  AREAS  Poorly  lit  areas  can  lead  to  accidents,  especially  between  pedestrians  and  vehicles  because  drivers  do  not  see  pedestrians  clearly.    This  can  also  be  the  case  if  pedestrians  are  working  in  shadowy  areas.  Lighting  should  be  good  enough  for  people  to  work,  use  facilities  and  move  about  safely  and  without  experiencing  eye  strain.    Exposure  to  fluorescent  lighting  is  associated  with  headaches,  eye  strain,  eye  irritation,  fatigue  and  increased  stress  and  accidents.    Exposure  is  also  associated  with  the  onset  of  skin  conditions,  and  

542

Page 30: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

there  is  growing  evidence  of  a  link  with  skin  cancer.  Some  people  become  allergic  to  fluorescent  lighting  and  more  sensitive  to  sunlight.    Flickering  lighting  may  produce  hyperactivity.    POOR  POSITIONING  OF  LIGHT  SOURCES  Where  lights  are  positioned  is  important,  i.e.  lights  placed  in  the  centre  of  loading  bays  may  be  blocked  by  tall  vehicles.  If  drivers  have    to  reverse  towards  strong  lights,  the  lights  can  dazzle  the  driver,  either  directly  or  via  mirrors.    CHANGE  IN  LIGHT  LEVELS  Sudden  changes  in  lighting  levels,  such  as  when  moving  too  quickly  from  bright  to  darker  areas  (from  a  dark  warehouse  to  bright  sunshine  or  from  a  dark  night  to  a  strongly  lit  building),  make  it  hard  to  see.    It  can  also  make  CCTV  systems  less  effective  as  they  can  take  the  time  to  adjust  to  different  lighting  levels.    Glare  from  the  sun  can  sometimes  be  a  problem  for  drivers.    LACK  OF  NATURAL  LIGHT  A  shortage  of  natural  light  can  lead  to  seasonal  affective  disorder  (SAD),  resulting  in  a  range  of  mental  and  physical  illnesses.    DIRTY  OR  OBSCURED  LIGHTS  Lights  may  be  frequently  obscured  due  to  where  they  are  positioned,  e.g.  tall  vehicles  may  block  a  light  source.    Lights  may  also  be  dirty,  from  mud  or  dust,  which  will  make  them  less  bright  and  create  dimly  lit  areas.    STROBOSCOPIC  EFFECTS  Lamps  that  operate  from  an  alternating  electrical  supply  may  produce  oscillations  in  light  output.    When  the  magnitude  of  these  oscillations  is  great,  machinery  will  appear  to  be  stationary  or  move  in  a  different  manner.    This  is  called  the  stroboscopic  effect.  It  is  not  common  with  modern  lighting  systems,  but  where  it  does  occur  it  can  be  dangerous;  so  appropriate  action  should  be  taken  to  avoid  it.    FLICKER  Light  modulation  at  lower  frequencies  (about  50  Hz  or  less)  which  is  visible  to  most  people,  is  called  flicker.    The  eye  is  particularly  sensitive  to  flicker,  and  it  is  especially  detectable  at  the  edges  of  the  visual  system’s  field  of  view.    Flicker  can,  depending  on  individual  sensitivity,  be  a  source  of  both  discomfort  and  fatigue.  It  may  even  cause  epileptic  seizures  in  some  people.    Therefore,  it  needs  to  be  avoided.    COLOUR  EFFECTS  A  surface  lit  by  different  artificial  light  sources,  or  by  daylight  under  changing  sky  conditions,  may  appear  to  vary  in  colour.    Where  colour  discrimination  is  required  (as  for  some  electrical  work),  this  can  affect  safety,  but  with  most  light  sources  the  change  in  colour  appearance  is  insufficient  to  create  problems.  Under  monochromatic  light  sources,  such  as  low-­‐pressure  sodium  discharge  lamps,  colours  will  not  be  identifiable,  and  a  hazard  may  go  unnoticed.    At  very  low  illuminances,  colour  vision  fails,  and  all  colours  are  seen  as  shades  of  grey.    

543

Page 31: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

The  section  on  lighting  recommendations  in  this  guide  suggests  lighting  levels  which  will  prevent  this  effect.    HUMAN  FACTORS  The  lighting  in  your  workplace  should  enable  employees  to  comfortably  see  what  they  need  to  do  their  tasks.    Poor  lighting  makes  it  hard  for  employees  to  see  and  can  lead  to  visual  fatigue  and  discomfort.  It  can  also  lead  to  neck  and  back  pain  if  the  worker  adopts  a  poor  posture  (for  example,  if  he  or  she  constantly  leans  forward  to  see  the  work).  Insufficient  lighting  also  creates  a  dreary  environment.    Proper  lighting,  on  the  other  hand,  creates  a  pleasant  atmosphere  and  gives  workers  a  sense  of  well-­‐being.  This  improves  their  productivity  and  efficiency.  Lighting  levels  should  meet  the  needs  of  older  workers  and  workers  with  visual  limitations.  The  ability  to  detect  detail,  for  example,  weakens  with  age.  To  compensate  for  this  loss,  increase  the  lighting  to  a  comfortable  level.    One  way  to  do  this  is  by  providing  lighting  with  adjustable  intensity.  It  also  helps  to  increase  the  viewing  time  and  the  brightness  of  the  workpiece.    Older  workers  are  also  less  able  to  focus  on  objects  at  different  viewing  distances.    Employees  who  work  with  video  display  units/terminals  (VDU/Ts)  are  most  affected  by  this  loss;  they  may  need  prescription  glasses  and  more  light.  Older  workers  also  take  longer  to  adapt  to  changes  in  light  intensity  and  are  more  sensitive  to  glare.  To  reduce  these  problems,  control  light  and  glare  levels.    EFFECTS  OF  BRIGHTNESS  CONTRAST  –TISSUE  DAMAGE  FROM  LIGHT  EXPOSURE,  VISUAL  FATIGUE  DISABLING  AND  DISCOMFORT  GLARE  Glare  occurs  when  one  part  of  the  visual  field  is  much  brighter  than  the  average  brightness  to  which  the  visual  system  is  adapted.    When  there  is  a  direct  interference  with  the  vision  the  condition  is  known  as  disability  glare.    Where  vision  is  not  directly  impaired  but  there  is  discomfort,  annoyance,  irritability  or  distraction  the  condition  is  called  discomfort  glare.    The  latter  is  related  to  symptoms  of  visual  fatigue.    Both  types  of  glare  can  arise  from  the  same  source.  VEILING  REFLECTIONS  Veiling  reflections  are  high  luminance  reflections  which  overlay  the  detail  of  the  task.    Such  reflections  may  be  sharp-­‐edged  or  vague  in  outline,  but  regardless  of  the  form  they  can  affect  task  performance  and  cause  discomfort.    RADIATION  Optical  radiation  can  be  harmful  if  too  much  enters  the  eye  or  falls  on  unprotected  skin.    Most  people  are  well  aware  of  the  sunburn  and  skin  cancer  risks  associated  with  too  much  exposure  to  the  sun’s  damaging  ultraviolet  rays.  It  is  also  important  to  understand  that  the  visible  emissions  from  the  sun  would  damage  our  sight  if  we  forced  ourselves  to  stare  at  it  for  an  extended  period.    VISIBLE  RADIATION  Like  the  sun,  optical  radiation  emitted  by  manufactured  lighting  equipment  is  predominantly  at  visible  wavelengths.    Consequently,  it  is  very  difficult  to  overexpose  people  because  they  will  automatically  look  away  when  dazzled  by  an  excessively  bright  source.    The  radiation  from  most  lighting  equipment  is  therefore  quite  safe,  and  employers  will  not  need  to  complete  an  assessment  of  radiation  output.  

544

Page 32: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

However,  there  are  a  few  exceptions,  the  most  important  of  which  are  listed  below.    INFRARED  AND  ULTRAVIOLET  RADIATION  Some  lamp  designs  also  produce  significant  emissions  at  infrared  and  ultraviolet  wavelengths,  both  of  which  are  invisible;  employees  could,  therefore,  be  exposed  to  hazards  without  knowing  it  and  would  also  not  be  able  to  avoid  exposure.    Some  of  the  lamps  and  applications  that  need  special  consideration  are  listed  below.    PROBLEM  SOURCES  The  lamps  and  lighting  applications  listed  below  are  capable  of  causing  excessive  personal  exposure  in  some  circumstances,  and  it  is,  therefore,  important  that  employers  properly  assess  the  risks  and  take  appropriate  safety  measures.  Manufacturers  and  suppliers  should  also  provide  adequate  health  and  safety  information  to  users  to  enable  lamps  to  be  used  safely.  In  particular,  it  is  important  to  specify  any  personal  protective  equipment  needs,  for  example,  eye  protection.  • Tungsten  halogen  lamps  used  in  office  desktop  and  close  range  spotlight  applications.    These  operate  at  high  

temperatures  and  may  emit  significant  amounts  of  ultraviolet  radiation  which  can  be  harmful  to  the  skin  and  cornea  of  the  eye  when  they  are  used  close  to  people  (i.e.  within  a  metre  or  so)  for  extended  periods.    The  luminaires  in  which  these  lamps  are  used  should  be  fitted  with  an  ultraviolet  filter  which  should  be  checked  periodically  and  replaced  if  damaged.  If  the  luminaire  has  no  filter,  it  should  not  be  used  for  close-­‐work  applications.  

• High-­‐intensity  discharge  lamps,  carbon  arc  and  short-­‐arc  lamps    These  also  emit  significant  amounts  of  ultraviolet  radiation,  usually  at  levels  that  exceed  those  from  tungsten  halogen  lamps.    However,  like  tungsten  halogen  designs,  they  should  be  fitted  with  a  safety  shield  or  ultraviolet  filter  as  part  of  the  lamp’s  glass  envelope.    Safety  shields  should  be  replaced  immediately  if  damaged.  

 High-­‐power  lamps  used  in  theatres,  broadcasting  studios  and  entertainment    These  applications  require  very  high  output  lighting  for  filming  and  performance  work.    Often  the  level  of  illumination  required  exceeds  that  of  a  bright  summer’s  day  and  the  very  high-­‐power  lamps  that  are  used  can  be  so  bright  that  they  are  capable  of  damaging  eyesight  before  people  can  avert  their  eyes.    These  lamps  can  also  emit  high  levels  of  infrared  and  ultraviolet  radiation.    Manufacturers  and  suppliers  must  ensure  that  their  products  can  be  used  without  exposing  people  above  relevant  internationally  accepted  personal  exposure  limits  and,  where  user  precautions  are  necessary,  that  appropriate  health  and  safety  information  is  given  to  the  user.    This  information  should  include  maintenance  requirements,  user  precautions,  user  training  and  personal  protective  equipment  requirements.  Users  should  ensure  that  the  necessary  health  and  safety  information  is  obtained  from  the  supplier  and  that  it  is  followed.  • Display  lasers  Some  entertainment  applications  employ  lasers  to  create  lighting  effects.  HSE  guidance  The  radiation  safety  of  lasers  used  for  display  purposes3  gives  comprehensive  information  on  the  radiation  safety  of  these  applications.    

545

Page 33: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

TISSUE  DAMAGE  FROM  LIGHT  EXPOSURE  BRIGHT  LIGHT  EXPOSURE  RISKS  -­‐  CAUTIONARY  NOTES  ABOUT  BRIGHT  LIGHT  EXPOSURE  Light  energy  can  interact  with  and  damage  skin  and  eye  tissues,  especially  when  a  photosensitizing  molecule  –  whether  from  a  drug  or  produced  by  the  body  –  is  bound  within  those  tissues.    The  highest  risk  (for  damage  to  the  skin,  and  cornea  and  lens  of  the  eyes)  is  from  invisible,  short-­‐wavelength  ultraviolet  (UV)  light,  which  has  been  filtered  out  of  CET’s  recommended  light  therapy  system.    Long-­‐term  exposure  to  intense  visible  light  in  the  blue  range  adjacent  to  the  UV  range  may  also  pose  a  hazard  to  retinal  photoreceptors  and  the  pigment  epithelium,  which  takes  part  in  the  photoreceptor  renewal  process.    Above  age  50,  there  is  concern  about  the  blue-­‐light  exacerbation  of  age-­‐related  macular  degeneration.    Although  some  blue  is  an  important  component  of  white  light  exposure,  lamps  with  relatively  less  blue  (for  example,  soft-­‐white  fluorescents  with  color  temperatures  in  the  range  of  3000-­‐4000  Kelvin)  should  be  favored  over  cool  white,  daylight,  or  “full  spectrum”  lamps  (5000  Kelvin  and  higher).      PRE-­‐EXISTING  MEDICAL  CONDITIONS  MAY  ENHANCE  EXPOSURE  RISKS  There  are  certain  pre-­‐existing  medical  conditions  of  eyes  and  skin  (retinal  dystrophies,  age-­‐related  macular  degeneration,  porphyria,  lupus  erythematosus,  chronic  actinic  dermatitis  and  solar  urticaria)  that  also  can  show  photosensitized  reactions  to  intense  visible  light.  In  such  cases,  bright  light  therapy  should  be  administered  only  under  the  guidance  of  an  ophthalmologist  or  dermatologist,  as  indicated.    Ophthalmologists  should  keep  in  mind  that  in  some  genetic  retinal  diseases  the  eyes  are  especially  light  sensitive.      MEDICATIONS  &  ENHANCED  EXPOSURE  RISKS  Certain  medications  are  known  to  photosensitize  skin  and/or  retinal  tissues.  Examples  in  the  visible  range  of  light  include  psychiatric  neuroleptic  drugs  (e.g.,  phenothiazine),  psoralen  drugs,  antiarrhythmic  drugs  (e.g.,  amiodarone),  antimalarial  and  antirheumatic  drugs,  porphyrin  drugs  used  in  the  photodynamic  treatment  of  skin  diseases,  and  St.  John’s  Wort  (hypericum).    Bright  light  therapy  should  not  be  used  concurrently  with  these  drugs.  Melatonin  can  be  used  in  conjunction  with  light  therapy  at  opposite  times  of  day  (usually,  evening  and  morning,  respectively),  but  if  used  concurrently,  it  can  cause  photosensitization.    Drugs  that  photosensitizer  primarily  in  the  invisible  UVA  range  (just  below  the  blue  range)  may  also  have  a  “tail”  of  light  absorption  that  extends  into  the  lower  visible  blue  light  range,  which  could  cause  photosensitization.  Examples  are  tetracycline,  diuretic  drugs  (e.g.,  hydrochlorothiazide),  sulfonamide  drugs  and  tricyclic  antidepressants  (e.g.,  imipramine,  nortriptyline,  desipramine,  amitriptyline).    If  such  a  reaction  is  experienced  or  suspected,  bright  light  therapy  should  be  discontinued  unless  substitute  medication  is  available,  or  it  can  be  administered  with  protective  measures  under  medical  supervision.      IN  CONCLUSION  For  the  practice  of  bright  light  therapy,  we  must,  therefore,  consider  the  wavelength  range  of  the  light  (and  with  that,  its  energy  range)  and  the  absorbing  tissues  in  the  eye.    For  normal  healthy  eyes,  the  exposure  to  bright  white  light  is  a  physiological  situation  and  does  not  inflict  any  overt  damage  to  the  skin,  visual  cells,  and  pigment  epithelium.  There  are,  however,  certain  important  caveats:    Medications  that  can  enter  the  skin  or  retina  and  

546

Page 34: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

that  absorb  light  in  the  visible  range.  This  might  cause  photosensitization  with  the  subsequent  absorption  of  “too  many  photons,”  leading  to  damage.  If  you  want  to  use  bright  light  therapy  but  are  questioning  your  medication,  consult  an  ophthalmologist  or  dermatologist.    Certain  inherited  dystrophies  of  the  retina  that  alter  the  visual  pigments  and  can  render  the  retina  especially  sensitive  to  visible  light.  If  you  suffer  from  an  inherited  retinal  dystrophy  and  want  to  use  bright  light  therapy,  consult  an  ophthalmologist.    Age-­‐related  or  other  macular  degenerations.  Forage–related  macular  degeneration,  genetic  factors  increase  the  risk  of  disease  by  about  50%.  Patients  with  such  risk  factors,  or  those  with  several  family  members  suffering  macular  degeneration,  should  consult  an  ophthalmologist  before  using  bright  light  therapy.    Young  eyes  up  to  an  age  of  about  30–40  years  transmit  much  more  light  to  the  retina  than  older  eyes.  Thus,  young  eyes  receive  generally  higher  light  doses  than  older  ones.      SOURCES  Vincent  DeLeo,  M.D.,  St.  Luke’s-­‐Roosevelt  Medical  Center,  New  York;  Charlotte  Remé,  M.D.,  University  of  Zurich,  Switzerland.    VISUAL  FATIGUE  Just  like  the  muscles  in  your  body,  your  eyes  can  get  tired.  For  the  job  they  do,  your  eyes  contain  the  strongest  muscles  in  your  body.  But  as  strong  as  they  are,  they  can  become  strained  and  fatigued  by  sitting  in  front  of  a  computer,  under  fluorescent  lights  or  in  front  of  a  TV  for  a  couple  of  hours.    This  is  called  visual  fatigue.    WHY  CARE  ABOUT  VISUAL  FATIGUE?  Today,  more  and  more  people  are  suffering  from  visual  fatigue  without  knowing  the  cause  of  their  symptoms.    Modern  work  and  lifestyle  changes  have  forced  us  to  spend  extended  hours  in  close-­‐range  activities  such  as  computer  work,  e-­‐books,  and  hand-­‐held  gaming.    The  increased  demands  of  these  activities  on  your  eyes  can  leave  you  with  uncomfortable  and  sometimes  painful  symptoms.    For  some  people,  visual  fatigue  can  also  lead  to  a  reduction  in  productivity  and  ability  to  concentrate—and  may  even  negatively  impact  your  vision  health.    COMMON  SYMPTOMS  • Headaches  • Tired  Eyes  • Neck  or  Back  pain  • Burning  /  Stinging  eyes  • Difficulty  focusing  on  extended  periods  of  time  If  you  are  experiencing  any  of  these  symptoms,  your  eye  doctor  may  be  able  to  help.    INSTRUMENTATION,  UNITS  AND  MEASUREMENT  OF  LIGHT,  ASSESSMENT  OF  LIGHTING  LEVELS  AND  STANDARDS  

547

Page 35: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

INSTRUMENTS  FOR  MEASURING  LIGHT  LEVELS  USE  OF  LIGHT  MEASURING  INSTRUMENTS  The  human  eye  is  unreliable  as  an  indicator  of  how  much  light  is  present.  For  accurate  results  in  the  measurement  of  the  illuminance  at  a  surface,  it  is  necessary  to  use  a  reliable  instrument.  Light  meters  are  available  for  this  purpose.  A  light  meter,  normally  adequate  for  most  locations,  is  a  photocell  which  response  to  light  falling  on  it  by  generating  a  small  electric  current  which  deflects  a  pointer  on  a  graduated  scale  measured  in  lux  or,  more  commonly  nowadays,  causes  a  number  to  be  displayed  on  a  digital  display.    Most  light  meters  have  a  correction  factor  built  into  their  design  to  allow  for  using  a  filter  when  measuring  different  types  of  light  (daylight,  tubular  fluorescent  lamps,  high-­‐pressure  sodium  lamps,  etc.).    The  recommended  procedure  for  taking  measurements  with  a  light  meter  of  this  type  is  to:  • Cover  the  cell  with  opaque  material  and  alter  the  zero  adjustments  until  the  pointer  reads  zero  on  the  scale.  • Allow  a  few  minutes  for  the  instrument  to  ‘settle  down’  before  taking  a  reading.    • A  longer  period  will  be  required  if  the  light  is  provided  by  tubular  fluorescent  lamps  or  high-­‐pressure  

discharge  lamps  which  have  only  just  been  switched  on  as  they  take  the  time  to  reach  full  light  output.  • Select  the  appropriate  scale  on  the  instrument,  i.e.  that  which  gives  the  greatest  deflection  of  the  pointer  or  

where  the  reading  is  closest  to  the  upper  end  of  the  range.    If  readings  are  to  be  taken  during  daylight  two  readings  are  necessary:  With  the  lights  on  and  with  the  window  blinds  drawn  back  so  as  to  record  the  combined  effect  of  natural  and  artificial  light,  and  With  the  same  natural  light  conditions  as  in  (a)  but  with  the  artificial  lights  switched  off.  The  result  required,  i.e.  the  measure  of  the  artificial  light,  is  the  difference  between  the  two  readings.    If  the  two  readings  are  large  and  approximately  equal,  it  will  be  necessary  to  re-­‐check  the  artificial  light  reading  after  dark.  The  measured  illuminance  should  be  checked  against  the  maintained  illuminance  for  the  location  and  task,  taking  account  of  the  requirements,  laid  down  by  the  CIBSE  for  the  relevant  areas.    The  correct  use  of  a  light  meter  is  an  important  aid  to  establishing  good  levels  of  lighting.  However,  to  ensure  accurate  readings,  the  instrument  should  be  kept  in  its  case  when  not  in  use  and  away  from  damp  and  excessive  heat.    It  is  also  advisable  to  have  the  calibration  checked  by  the  manufacturer  every  year,  though  this  is  not  cheap  and  it  may  be  more  cost-­‐effective  to  buy  a  new  meter  annually.  Do  not  overestimate  the  accuracy  of  the  readings  you  obtain.    Few  handheld  meters  are  capable  of  measuring  illuminance  more  accurately  than  within  10%,  and  the  position  of  measurement  can  affect  the  measurement  considerably.    It  is  possible  for  measurements  to  differ  from  calculations  by  up  to  60%  for  direct  illumination  and  20%  for  calculations  involving  inter-­‐reflections.  For  maximum  accuracy,  measure  at  points  on  a  regular  grid  through  space  and  average  the  results.    Accuracy  will  be  particularly  suspect  at  low  levels  even  if  the  meter  itself  has  various  ranges.    UNITS  AND  MEASUREMENT  OF  LIGHT  There  are  many  different  units  for  measuring  light  and  it  can  get  very  complicated.  Here  are  a  few  common  measurement  terms  CANDELA  (CD)  Unit  of  luminous  intensity  of  a  light  source  in  a  specific  direction.  Also  called  candle.  

548

Page 36: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

Technically,  the  radiation  intensity  in  a  perpendicular  direction  of  a  surface  of  1/600000  square  metre  of  a  black  body  at  the  temperature  of  solidification  platinum  under  a  pressure  of  101,325  newtons  per  square  metre.    FOOTCANDLE  (FC  OR  FTC)  Unit  of  light  intensity,  measured  in  lumens  per  square  foot.    The  brightness  of  one  candle  at  a  distance  of  one  foot.  Approximately  10.7639  lux.    LUMEN  (LM)  Unit  of  light  flow  or  luminous  flux.    The  output  of  artificial  lights  can  be  measured  in  lumens.    LUX  (LX)  Unit  of  illumination  equals  to  one  lumen  per  square  meter.  The  metric  equivalent  of  foot-­‐candles  (one  lux  equals  0.0929  foot-­‐candles).  Also  called  meter-­‐candle    MINIMUM  LIGHTING  LEVELS  Lighting  should  be  sufficient  to  enable  people  to  work,  use  facilities  and  move  from  place  to  place  safely  and  without  experiencing  eyestrain.    There  are  minimum  standards  normally  set  out  in  National  legislation  e.g.  the  UK  HSE  guidance  (see  table  below),  but  these  are  set  at  very  low  levels.  If  people  have  difficulty  doing  their  job  because  the  lighting  is  too  dim  then  it  may  not  be  ‘suitable  or  sufficient’  and  as  such  could  be  challenged.    Below  is  a  table  that  has  been  reproduced  from  HSE  document  HSG38  (Lighting  at  Work).  It  gives  the  recommended  minimum  lighting  levels  for  different  types  of  work  activity  and  location.        

Activity   Typical  Location  Average  Illuminance  (lux)  

Minimum  Illuminance  (lux)  

Movement  of  people,  machines  and  vehicles.  

Lorry  park,  corridors,  circulation  routes.   20   5  

Movement  of  people,  machines  and  vehicles  in  hazardous  areas;  rough  work  is  not  requiring  any  perception  of  detail.  

Construction  site  clearance,  excavation  and  soil  work,  loading  bays,  bottling  and  canning  plants.  

50   20  

Work  requiring  limited  perception  of  detail.  

Kitchens,  factories  assembling  large  components,  potteries.   100   50  

Work  requiring  the  perception  of  detail.  

Offices,  sheet  metal  work,  book  binding.   200   100  

Work  requiring  the  perception  of  fine  detail.  

Drawing  offices,  factories  assembling  electronic  components,  textile  production.  

500   200  

  Source:  CSS  

549

Page 37: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

Light  intensity  is  measured  in  ‘Lux’.  This  can  be  a  difficult  scale  to  understand.    The  table  below  gives  you  some  idea  of  how  light  intensity  can  vary  in  different  situations.    

Illuminance   Example  1  lux   Full  moon  overhead  50  lux   Family  living  room  80  lux   Hallway/toilet  100  lux   Very  dark  overcast  day  400  lux   Sunrise  or  sunset  on  a  clear  day.  Well  lit  office  area  1000  lux   Overcast  day,  typical  TV  studio  lighting  10,000-­‐25000  lux   Full  daylight  (not  direct  sun)  32,000-­‐130,000  lux   Direct  sunlight  

     It  should  be  noted  that  these  recommendations  are  for  guidance  only  and  that  each  location/activity  needs  to  be  considered  individually.    Also,  if  an  area  measured  falls  outside  these  levels,  it  does  not  necessarily  mean  that  the  lighting  system  in  that  whole  area  needs  to  be  modified.  Other  measures  such  as  task-­‐specific  lighting  or  use  of  desk  lamps  might  be  easier.  The  finer  the  detail,  the  higher  the  illuminance  required.  On  the  other  hand,  light  that  is  too  bright  or  glare  that  shines  into  your  eyes  can  also  cause  problems.  Glare  from  the  light  shining  directly  into  the  eye  or  reflecting  from  work  surfaces  should  be  controlled.    Workers  who  move  between  brightly  lit  and  dimly  lit  areas  may  also  be  at  risk  because  it  takes  a  few  moments  for  the  eyes  to  adjust  to  the  different  light  levels,  so  it  is  important  to  try  to  ensure  there  is  not  an  abrupt  change,  for  example  between  a  yard  and  a  warehouse.  

IB10.3  Welfare  facilities  and  arrangements  in  fixed  and  temporary  workplaces  Welfare  facilities  and  arrangements  in  fixed  and  temporary  workplace  INTRODUCTION  International  and  national  legislation  and  guidance  contain  all  the  requirements  on  issues  such  as  toilets,  washing  facilities,  locker  and  rest  rooms,  eating  facilities,  etc.    The  aim  being  to  ensure  that  workplaces  meet  the  basic  welfare  (as  well  as  health  and  safety)  needs  of  all  the  members  of  the  workforce  including  people  with  disabilities.  There  are  other  regulations  which  contain  more  detailed  requirements  where  the  risk  of  contamination  is  high,  where  hazardous  substances  such  as  lead,  asbestos,  and  ionising  radiation  are  being  handled.    

Source:  CSS  

 

Source:  youtube.com  

550

Page 38: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

PROVISION  OF  TOILETS,  WASH-­‐HAND  BASINS,  SHOWER  &  WASHING  FACILITIES  ‘Sanitary  conveniences’  are  flushing  water  closets  (WCs)  and  urinals  connected  to  an  effective  drainage  system.    A  ‘washing  facility’  is  a  wash  hand  basin  (WHB),  a  shower  or  a  bath  with  a  hot  and  cold  water  supply  and  connected  to  a  drainage  outlet.  Sanitary  conveniences  and  washing  facilities  shall  be  provided  at  readily  accessible  places  for  all  employees.    This  means  that  everyone  at  work  can  use  them  without  delay.    

     

NUMBERS  OF  WASHING  ETC  FACILITIES  As  a  general  rule,  the  number  of  sanitary  conveniences  depends  on  the  number  of  people  likely  to  be  at  work  at  any  one  time  (including  full  time  and  part  time  workers).    They  should  generally  be  provided  within  the  same  building  as  the  workplace.    If  no  exclusive  facilities  can  be  provided  in  the  same  building,  then  arrangements  should  be  made  with  the  owner  of  the  building  where  they  are  provided  or,  as  a  last  resort,  public  facilities  may  be  used.    If  the  workforce  is  of  mixed  sex,  then  the  number  of  both  sanitary  conveniences  and  washing  facilities  that  need  to  be  provided  may  be  comparable  to  those  required  by  UK  legislation,  being  for  example:  • 1  for  5  or  fewer  employees  • 2  for  6  to  25  employees  • 3  for  26  to  50  employees  • 4  for  51  to  75  employees  • 5  for  76  to  100  employees1.    If  the  workforce  is  male  only,  then  the  number  of  sanitary  conveniences  can  be  split  into  water  closets  and  urinals,  as  follows:  • 1  to  15  employees  -­‐  1  WC  and  1  urinal  should  be  provided  • 16  to  30  employees  -­‐  2  WCs  and  1  urinal  • 31  to  45  employees  -­‐  2  WCs  and  2  urinals  • 46  to  60  employees  -­‐  3  WCs  and  2  urinals  • 61  to  75  employees  -­‐  3  WCs  and  3  urinals  • 76  to  90  employees  -­‐  4  WCs  and  3  urinals  • 91  to  100  employees  -­‐  4  WCs  and  4  urinals2.    An  additional  sanitary  convenience  and  washing  facility  should  be  provided  for  every  25  employees  above  100  (or  fraction  of  25).    Where  the  workforce  is  male  only,  then  it  may  be  that  one  WC  and  one  urinal  should  be  

                                                                                                                           

Source:  gallery.hd.org  

551

Page 39: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

provided  for  every  50  employees  (or  fraction  of  50)  over  100.    For  particularly  dirty  work  activities,  the  number  of  washing  facilities  should  be  increased  to  1  for  every  10  people  at  work.  Where  sanitary  conveniences  provided  for  staff  are  also  regularly  used  by  the  public  (i.e.  customers,  students,  etc.)  the  number  of  conveniences  specified  in  the  above  lists  should  be  increased  by  at  least  one  for  each  sex.  For  outdoor  occupations  such  as  construction  sites,  every  effort  should  be  made  to  provide  temporary  facilities  to  the  same  standards  as  if  they  were  permanent.    ASSOCIATED  FACILITIES  Every  WC  should  be  provided  with  toilet  paper  and  in  the  case  of  women’s  toilets,  facilities  for  the  disposal  of  sanitary  dressings.  All  washing  facilities  should  be  provided  with:  • Hot  and  cold  water  • Soap  • Towels  or  other  hand-­‐drying  facilities.    SITING  OF  FACILITIES  Washing  facilities  should  be  in  the  immediate  vicinity  of  the  sanitary  convenience  and  changing  rooms,  where  provided.    Separate  rooms  containing  sanitary  conveniences  must  be  provided  and  designated  by  use  of  signs  for  men  and  women,  except  where  the  convenience  is  in  a  separate  room  and  is  capable  of  being  locked.  All  sanitary  conveniences  and  showers  should  be  arranged  to  ensure  privacy  for  the  users.    The  rooms  containing  these  facilities  must  be  adequately  ventilated  (mechanically,  if  necessary)  and  well  lit,  to  enable  them  to  be  thoroughly  cleaned.    They  should  also  be  kept  in  a  clean,  sanitary  and  orderly  condition.    ROOMS  CONTAINING  THE  FACILITIES  The  walls,  floors,  and  ceilings  of  rooms  containing  washing  facilities  and  sanitary  conveniences  should  have  smooth,  impervious  surfaces  which  can  be  easily  cleaned  or  washed  and  which  cannot  trap  dust  and  dirt  in  corners  or  crevices.    Smooth  painted  washable  surfaces,  ceramic  surfaces,  and  stainless  steel  surfaces  are  all  suitable.  The  level  of  cleaning  of  facilities  generally  depends  on  their  use,  the  more  they  are  used,  and  thus  the  more  frequent  the  cleaning  needs  to  be3.    Regular  inspections  will  be  made  of  the  facilities  to  ensure  the  required  hygiene  and  safety  standards  are  maintained.    There  should  be  emergency  arrangements  in  place  to  deal  immediately  with  drain  blockages  and  spills  that  could  prejudice  health.  The  facilities  should  include:  • Wash  hand  basins  large  enough  to  allow  people  to  immerse  their  arms  up  to  the  elbow  • Constant  hot  and  cold  running  water  or  warm  water  • Soap  or  other  suitable  means  of  cleaning  • Nailbrushes,  where  risk  assessment  indicates  their  use  • Individual  paper  towels  or  other  means  of  drying.  Roller  towels  are  satisfactory  if  they  provide  a  clean  drying  

surface  for  each  person.  Shared  towels  are  not  acceptable.  Rooms  could  be  fitted  with  air  extraction  equipment  which  keeps  the  flow  of  air  from  the  clean  to  the  dirty  areas.    

                                                                                                                           

552

Page 40: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

 IN  FOOD  PREMISES  The  number  and  location  of  wash  hand  basins  (WHBs)  depend  on  the  type  of  business,  the  size  of  premises  and  the  number  of  staff  employed.  They  must  be  readily  available  for  use  and  close  to  the  sanitary  conveniences.  They  should  be  provided  with  a  cold  water  and  hot  water  supply  to    a  maximum  of  50ºC,  either  from  separate  taps  or  via  a  single  mixer  tap.    WHBs  should  be  provided  with  soap  or  detergent,  and  hand  drying  facilities  -­‐  paper  towels  and  waste  bins,  roller  towels  in  cabinets  (not  fabric  towels)  or  hot-­‐air  dryers.  In  food  premises,  no  room  containing  a  sanitary  convenience  should  communicate  directly  with  a  room  where  food  is  processed,  prepared  or  eaten.    If  this  is  not  possible,  then  an  intervening  space  should  be  provided  between,  with  self-­‐closing  doors  fitted  at  each  side.  Health  and  safety  objectives  require  this  space  to  be  ventilated.    STORAGE  FOR  CLOTHING  AND  CHANGING  FACILITIES  GENERAL  REQUIREMENTS  Suitable  and  sufficient  accommodation  must  be  provided  for  workers’  personal  clothing,  which  is  not  worn  during  working  hours.    The  clothes  should  be  able  to  hang  in  a  clean,  warm,  dry  well  ventilated  place.    If  the  clothing  is  wet,  it  should  be  able  to  dry  out  easily  during  the  course  of  the  working  period.  The  minimum  that  should  be  provided  is  a  peg  or  a  hook  fixed  to  a  wall  for  each  worker,  although  personal  lockers  are  the  usual  standard  of  provision.    There  should  be  sufficient  accommodation  for  personal  protective  equipment.  Where  protective  clothing  is  worn,  and  it  becomes  damp  or  contaminated,  it  should  be  kept  in  accommodation  which  is  separate  from  the  worker’s  own  clothing.    This  often  means  that  a  changing  room  should  be  provided  to  prevent  worker’s  personal  clothing  becoming  contaminated  by  a  harmful  substance.    Changing  rooms  should  be  provided  where  special  clothing  is  required  to  be  

worn  for  work  or  where  workers  cannot,  for  reasons  of  health  or  propriety,  be  expected  to  change  in  

another  workroom.    Separate  facilities  should  be  provided  for  men  and  women.  Changing  facilities  should  be  readily  accessible  from  workrooms  and  eating  facilities.    They  should  have  adequate  seating  and  contain,  or  communicate  directly  with,  clothing  accommodation  and  showers  or  baths  if  provided.  This  changing  accommodation  should  be  of  sufficient  size  for  the  maximum  number  of  persons  at  work  expected  to  use  them  at  any  one  time  without  overcrowding  or  unreasonable  delay.    The  start  and  finish  times  of  work  and  the  time  available  to  use  them  should  be  taken  into  account  when  designing  these  facilities.    IN  FOOD  PREMISES  A  changing  area  should  be  provided  for  employees  to  remove  their  everyday  clothes  and  change  into  protective  clothing.    Changing  facilities  should  be  provided  for  protective  clothing  to  be  stored  in  a  clean  area  away  from  areas  where  food  is  handled.  

 

Source:  wayfair.com  

Source:  boredpanda.com  

553

Page 41: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

 FACILITIES  FOR  EATING  MEALS  AND  RESTING  GENERAL  REQUIREMENTS  Facilities  should  be  provided  for  workers  to  take  rest  and  to  take  meals,  where  these  are  regularly  eaten  at  the  workplace.    This  includes  seating  where  workers  have  to  stand  to  carry  out  their  work  and  facilities  to  eat  meals  where  food  eaten  in  the  workplace  would  otherwise  become  contaminated.  Rest  areas  or  rooms  should  be  large  enough  for  all  the  workers  likely  to  use  them  at  any  one  time  and  also  for  sufficient  seats  with  backrests  and  tables.    Seats  provided  for  rest  can  also  be  counted  as  eating  facilities  provided  there  is  a  surface  on  which  to  place  food.  Where  workers  regularly  eat  meals  at  work,  there  should  be  facilities  for  that  purpose.    The  facilities  that  should  be  provided  include  an  electric  kettle,  a  vending  machine  or  a  canteen.    Facilities  for  heating  food  should  be  provided  where  hot  food  cannot  be  obtained  during  work  hours  or  where  hot  food  cannot  be  obtained  in,  or  near,  the  workplace.  Eating  and  resting  facilities  should  be  kept  in  a  clean  condition,  particularly  where  the  workplace  involves  the  handling  of  substances  hazardous  to  health,  and  there  is  a  risk  that  the  substances  could  contaminate  food  from  clothing  and  footwear.  Restrooms  and  rest  areas  must  include  arrangements  to  protect  non-­‐smokers  from  discomfort  caused  by  tobacco  smoke  by  providing  separate  areas  or  rooms  for  smokers  and  non-­‐smokers,  or  prohibiting  smoking  in  rest  areas  and  restrooms.  Provision  must  also  be  made  for  disabled  workers  and  any  pregnant  women  or  nursing  mothers  at  work  to  rest.    Facilities  for  lying  down  would  normally  be  available.    FACILITIES  FOR  PREGNANT  WOMEN  AND  NURSING  MOTHERS,  TOGETHER  WITH  THE  PRACTICAL  ARRANGEMENTS  Pregnancy  is  not  an  illness,  but  working  conditions  normally  considered  acceptable  may  no  longer  be  so  during  pregnancy  and  breastfeeding.  In  many  workplaces,  there  are  risks  which  may  affect  the  health  and  safety  of  new  and  expectant  mothers  and  that  of  their  child.  In  most  cases,  pregnancy  goes  undetected  for  the  first  4  –  6  weeks.    There  are  specific  laws  in  most  countries  which  require  employers  to  protect  the  health  and  safety  of  new  and  expectant  mothers.  A  new  and  expectant  mother  is  normally  defined  as  someone  who:  • Is  pregnant  • Has  given  birth  (including  stillbirth)  within  the  last  six  months  • Is  breastfeeding.  ‘The  UK  Management  of  Health  and  Safety  at  Work  Regulations’  1999  (MHSW)  require  employers  to  assess  risks  to  all  employees  and  to  do  what  is  reasonably  practicable  to  control  those  risks.  This  applies  to  all  employers  of  any  size.    Employers  must:  • Identify  hazards  in  their  workplace  that  could  pose  a  health  and  safety  risk  to  new  and  expectant  mothers  

and  take  appropriate  action  to  remove  or  reduce  the  risk.    

Source:  nightingalenursinginstitute.com  

554

Page 42: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

They  must  make  this  information  known  to  all  their  female  employees  of  childbearing  age,  not  just  those  who  have  informed  them  they  are  pregnant.  • Carry  out  a  personal  risk  assessment  for  a  new  or  expectant  mother  when  they  have  received  notice  in  

writing  that  they  are  pregnant,  are  breastfeeding  or  have  given  birth  in  the  last  six  months.    This  should:  - Be  based  on  the  initial  assessment  - Take  account  of  any  medical  advice  their  doctor  or  another  health  professional  has  provided  e.g.  By  letter    - Be  carried  out  with  the  help  of  the  woman  and  if  appropriate,  her  union  representative  - Be  monitored  and  reviewed  on  a  regular  basis.  

An  employer  may  request,  in  writing,  a  certificate  from  a  registered  medical  practitioner  or  midwife,  confirming  the  pregnancy    WHAT  ARE  WORK  HAZARDS  FOR  NEW  AND  EXPECTANT  MOTHERS?  PHYSICAL  RISKS  • Movements  and  postures  • Manual  handling  • Shocks  and  vibrations  • Noise  • Radiation  (ionising  and  non-­‐ionising)    BIOLOGICAL  AND  CHEMICAL  AGENTS  INCLUDING  • Exposure  to  infectious  diseases  • Toxic  chemicals  • Mercury  • Pesticides  • Lead    WORKING  CONDITIONS  • Facilities  (including  restrooms)  • Work-­‐related  stress  • Passive  smoking  • Extremes  of  cold  and  heat  • Working  with  VDU’s  Some  of  the  above  may  be  covered  by  specific  health  and  safety  regulations.  It  is  important  to  remember  that  some  hazards  can  present  more  of  a  risk  at  different  stages  of  the  pregnancy.  The  HSE  guidance  emphasises  the  risk  of  musculoskeletal  disorders  during  pregnancy:  “Hormonal  changes  in  women  who  are  pregnant  or  have  recently  given  birth  can  affect  ligaments,  increasing  susceptibility  to  injury.”    LIFTING  AND  HANDLING  This  includes  nursing/care  workers,  sales  assistants,  cleaners  and  two-­‐thirds  of  factory  workers.  Pregnancy  has  significant  implications  for  the  risk  of  manual  handling.  It  is  important  to  pay  particular  attention  to  women  who  may  handle  loads  during  the  three  months  following  a  return  to  work  after  childbirth.  

555

Page 43: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

 SITTING  OR  STANDING  Continuous  standing  during  the  working  day  may  lead  to  dizziness,  faintness,  and  fatigue.  It  can  also  contribute  to  an  increased  risk  of  premature  childbirth  and  miscarriage.”  It  is  hazardous  working  in  confined  workspaces,  or  with  workstations  which  do  not  adjust  sufficiently  to  take  account  of  increased  abdominal  size.      INFECTIOUS  DISEASES  Exposure  to  infectious  agents  such  as  hepatitis  B  from  bodily  fluids  could  be  a  problem  for  cleaners,  and  toxic  chemicals  used  by  hairdressers.    RESTING  Employers  usually  must  provide  “suitable  facilities  for  any  person  at  work  who  is  a  pregnant  woman  or  a  nursing  mother  to  rest.”    NIGHT  WORK  Special  consideration  needs  to  be  given  to  new  and  expectant  mothers  who  work  at  night.    Some  National  legislation  require  that  if  an  employee  who  is  a  new  or  expectant  mother  works  at  night  and  has  a  certificate  from  a  registered  medical  practitioner  stating  that  night  work  could  affect  her  health  and  safety,  she  has  a  right  to  be:  • Offered  suitable  alternative  daytime  work  on  terms  and  conditions  no  less  favourable  than  her  normal  terms  

and  conditions;  or  if  that  is  not  reasonable  • Suspend  her  from  work,  on  paid  leave,  for  as  long  as  is  necessary  to  protect  her  health  and  safety  and  that  of  

her  child.  Night  and  evening  work  can  be  difficult  for  pregnant  women.  It  increases  the  risk  of  fatigue  and  exhaustion  which  can  pose  a  risk  to  the  mother,  especially  in  late  pregnancy.    The  risks  associated  with  night  work  may  be  even  greater  if  women  are  getting  inadequate  rest  during  the  day  because  they  are  travelling  to  and  from  ante-­‐natal  appointments.  GOOD  PRACTICE  A  growing  number  of  employers  are  taking  the  time  to  listen  to  pregnant  women  and  to  work  with  them  to  find  solutions.  Treating  pregnant  women  well  helps  an  employer  to  retain  and  get  the  best  out  of  valued  staff.  Helpful  changes  made  by  an  employer  can  include:  • Re-­‐arranging  working  hours.  • Adjusting  the  amount  of  overtime  to  be  worked.  • Giving  greater  flexibility  about  when  breaks  could  be  taken.  • Providing  training  in  how  work  may  be  altered  to  accommodate  changes  in  posture  and  physical  capability,  

including  taking  breaks.  • Offering  use  of  rest  facilities.  • Allocating  tasks  to  others,  e.g.  Lifting  boxes.  This  kind  of  positive  action  often  costs  very  little  and  yet  significantly  improves  the  experience  of  pregnant  women.  It  saves  an  employer  money  as  women  can  work  longer,  is  less  likely  to  need  to  take  time  off  sick  and  is  

556

Page 44: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

more  likely  to  want  to  return  to  work  after  the  birth  of  their  baby.  Women  in  manufacturing  are  most  likely  to  have  had  a  risk  assessment.  However,  it  is  important  to  remember  that  environments  such  as  offices  may  present  serious  risks.    ANTENATAL  CARE  All  pregnant  women  have  a  right  to  take  reasonable  paid  time  off  to  attend  ante-­‐natal  care,  including  the  time  taken  to  travel.  This  includes;  • Appointments  with  her  midwife,  GP  or  hospital.  • Ante-­‐natal,  parent-­‐craft,  and  relaxation  classes.  Employers  should  not  ask  women  to  make  the  time  up,  take  annual  leave  or  to  change  their  normal  working  hours  so  that  appointments  fall  out  of  work  time.  To  do  so  is  in  some  countries  is  unlawful.    A  critical  factor  in  whether  women  get  time  off  appears  to  be  the  attitude  or  knowledge  of  their  line  manager.    BREASTFEEDING  Employers  in  some  countries  have  a  legal  duty  to  enable  their  employees  to  continue  breastfeeding  once  they  have  returned  to  work.  In  such  situations,  it  is  normal  that  the  woman  must  notify  her  employer  in  writing  as  early  as  possible  that  she  is  breastfeeding.  Her  employer  must  then  carry  out  a  specific  risk  assessment  and  take  the  steps  set  out  above.  Specific  risks  could  include:  • Working  with  organic  mercury,  • Working  with  radioactive  material,  and  • Exposure  to  lead.  Normally  health  and  safety  regulations  do  not  put  a  time  limit  on  breastfeeding.  It  is  for  the  women  themselves  to  decide  how  long  they  wish  to  breastfeed,  depending  on  individual  circumstances.  Access  to  appropriate  facilities  for  breastfeeding  mothers  to  express  and  safely  store  breast  milk  or  to  enable  infants  to  be  breastfed  at  or  near  the  workplace  may  facilitate  breastfeeding  by  working  women,  and  may  significantly  protect  the  health  of  both  mother  and  infant.    Protective  measures  include:  • Access  to  a  private  room  where  women  can  breastfeed  or  express  breast  milk  • Use  of  secure,  clean  refrigerators  for  storing  expressed  breast  milk  while  at  work,  and  facilities  for  washing,  

sterilising  and  storing  receptacles  • Time  off  (without  loss  of  pay  or  benefits,  and  without  fear  of  penalty)  to  express  milk  or  breastfeed.    PROVISION  OF  FACILITIES  FOR  SMOKERS  Breathing  and  inhaling  other  people’s  smoke  is  called  passive,  involuntary,  or  second-­‐hand  smoking.    The  non-­‐smoker  breathes  ‘sidestream’  smoke  from  the  burning  tip  of    the  cigarette  and  ‘mainstream’  smoke  that  has  been  inhaled  and  then  exhaled  by  the  smoker  (ASH,  2004).    Second-­‐hand  smoking  is  an  issue  relevant  to  the  workplace,  as  some  employees  are  exposed  to  the  smoke  of  fellow  employees  or  that  of  customers  or  clients  whether  they  want  to  be  or  not.    

557

Page 45: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

Within  some  countries  there  exist  national  regulations  that  are  relevant  to  smoking  in  the  workplace.    LEGISLATION  Legislation  surrounding  the  provision  for  smoking  at  work  is  changing  dramatically;  most  countries  do  not  now  allow  smoking  in  enclosed  places  –  this  would  include  work  environments  such  as  offices.  Legislation  in  most  countries  allows  the  provision  of  designated  smoking  areas  /  smoking  shelters,  however,  a  growing  amount  of  legislation  surrounds  this  topic  and  readers  are  advised  to  seek  reference  on  this  subject  related  to  their  work  location  and  local  requirements.    OUTDOOR  SMOKING  AREAS  While  smoking  in  an  enclosed  workplace  is  forbidden  in  most  countries,  employers  have  the  discretion  to  provide  an  outdoor  smoking  area,  subject  to  the  requirements  of  the  law.    These  laws  have  defined  outdoor  areas  broadly    as:    • A  place  or  premises,  or  part  of  a  place  or  premises,  that  is  wholly  uncovered  by  any  roof,  fixed  or  mobile.    • An  outdoor  place  or  premises  that  are  covered  by  a  roof  so  long  as  not  more  than  50%  of  the  perimeter  

(outside)  is  covered  by  a  wall,  windows,  gate  or  similar.    Again,  readers  are  advised  to  consult  local  legislation/regulation  on  this  rapidly  changing  topic.    THE  NEED  TO  TAKE  ACCOUNT  OF  PEOPLE  WITH  DISABILITIES  DISABILITY  About  one  in  ten  people  have  some  form  of  disability  –  that  could  be  a  physical  disability,  vision  impairment,  hearing  impairment,  intellectual  disability  or  mental  health  condition.  You  may  already  have  employees  with  disabilities,  whether  or  not  those  disabilities  are  readily  apparent  or  known  to  you.  Other  employees  may  acquire  a  disability  in  the  future.  About  four  out  of  five  people  with  disabilities  acquired  their  disability  as  an  adult.  It  makes  sense,  therefore,  to  plan  and  manage  for  health  and  safety  on  an  inclusive  basis.  HIDDEN  DISABILITY  Some  forms  of  disability  are  not  immediately  visible  (for  example,  epilepsy,  mild  hearing  impairment,  asthma,  or  mental  health  conditions  such  as  depression  or  anxiety).  Often  employees  with  a  ‘hidden  disability’  choose  not  to  disclose  their  status  because  they  are  concerned  that  their  employer  will  focus  on  their  disability  rather  than  their  ability.  If  employees  are  not  comfortable  about  disclosing  a  disability,  their  health  and  safety  needs  may  not  be  identified  and  met.  It  is  good  health  and  safety  practice,  therefore,  to  create  a  supportive,  non-­‐judgemental  environment,  and  to  communicate  that  to  all  employees.  Considerable  research  has  been  conducted  on  the  relationship  between  employees’  wellbeing  at  work  and  their  work  environment.    Studies  have  shown  that  employees  who  feel  respected  in  their  work  environment  are  more  productive  and  have  lower  rates  of  absenteeism  (one  of  the  biggest  cost  items  for  employers).    

558

Page 46: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

An  inclusive  work  environment  where  all  employees,  including  those  with  disabilities,  feel  comfortable,  included  and  respected  makes  good  business  sense.  Advances  in  technology,  including  assistive  technologies,  have  helped  switch  the  focus  from  incapacity  to  capacity  for  people  with  disabilities.  People  with  disabilities  can  work  safely  and  effectively  at  many  jobs  provided  their  specific  issues  are  accommodated,  and  their  needs  are  built  into  health  and  safety  planning.    ACCOMMODATING  DISABILITY  AT  WORK  Under  disability  legislation  in  many  countries,  employers  are  obliged  to  take  appropriate  measures  –reasonable  accommodation’–  (unless  the  costs  of  doing  so  are  disproportionate)  to  enable  people  with  disabilities  to  have  access  to  employment,  to  participate  or  advance  in  employment  and  to  undergo  training.    Such  measures  may  include  training  resources  or  adaptations  to:  • Workplace  premises  to  make  them  more  accessible  for  employees  with  disabilities  • Work  equipment  • Patterns  of  working  time  • Distribution  of  tasks.    Practical  examples  might  include:  • A  talking  lifts  with  tactile  floor  buttons  • Adjustable-­‐height  desks  • Hands-­‐free  telephone  sets  • Later  start  and  finish  times  • Organising  the  distribution  of  work  tasks  in  a  team  so  that  staff  member  who  are  hard  of  hearing  are  not  

expected  to  take  minutes.  An  employer  is  not  normally  obliged  to  provide  any  facility  or  treatment  that  employees  can  reasonably  be  expected  to  provide  for  themselves.    SAFE  EVACUATION  OF  EMPLOYEES  WITH  DISABILITIES  There  may  be  particular  challenges  to  address  to  ensure  that  employees  with  disabilities  can  exit  their  place  of  work  safely  in  the  event  of  an  emergency.  Different  disabilities  present  different  challenges.  For  example:  • Mobility  impairment  affects  the  range  or  speed  of  movement  to  varying  degrees.  • Sensory  impairment  affects  the  ability  to  gather  information  through  the  senses  such  as  sight  or  hearing.  • Cognitive  or  mental  health  impairment  affects  the  capacity  to  process  information  and  react  appropriately.  • With  hidden  disabilities,  the  stress  of  an  emergency  situation  may  trigger  a  condition  such  as  asthma  or  heart  

problems.    PLANNING  FOR  SAFE  EMERGENCY  EGRESS  The  key  steps  in  preparing  for  safe  evacuation  are:  • Initial  review  of  user  needs,  organisational  practice  and  policies  • Develop  an  egress  policy  for  your  organisation  

559

Page 47: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

• Plan  for  egress  • Implement  your  egress  plan  • Measure  the  performance  of  your  egress  plan  • Review  the  performance  of  your  egress  plan.  Consultation  and  engagement  with  employees  with  disabilities  are  essential  elements  of  identifying  risk  and  planning  to  address  it.  Consult  your  staff  members  individually  and  develop  and  document  personal  emergency  egress  plans  (PEEPs)  for  individuals  who  require  them.  PEEPs  should  be  developed  or  modified  in  response  to  any  issues  that  emerge  during  routine  fire  drills.  Regular  review  of  these  plans  is  essential  to  ensure  they  are  up  to  date  and  taking  account  of  any  changing  needs.  

 IB10.4  The  provision  for  first  aid  in  the  workplace    

Where  someone  is  hurt,  whether  at  work  or  not,  there  may  be  an  appreciable  time  before  they  can  get  to  and  be  seen  by  a  medically  qualified  person.    The  function  of  first  aid  is  to  ensure  that  the  injured  person  has  the  maximum  chance  of  surviving  a  serious  injury  until  that  medical  assistance  is  available.    In  effect,  the  first  aider  will  attempt  to  limit  the  deterioration  of  the  condition  of  the  injured  person  and,  where  possible,  promote  their  recovery.  In  addition  to  serious  injuries,  the  first  aider  will  also  be  available  to  treat  minor  injuries  that  would  not  normally  require  medical  assistance,  such  as  minor  cuts.    It  is  important  to  accept  that  a  first  aider  is  not  a  medically  qualified  person  and  is  rendering  assistance  rather  than  treating  serious  conditions.  It  is  important  that  first  aiders  apply  treatments  only  in  the  way  that  they  have  been  trained  to.    For  example,  it  is  common  practice  to  use  a  bag  of  frozen  vegetables  -­‐  often  peas  -­‐  to  apply  a  cold  compress  to  the  site  of  an  injury,  such  as  a  sprain.  However,  this  can  cause  an  injury  in  itself.    In  a  newspaper  article  (Telegraph  3/10/2000)  the  danger  of  putting  a  cold  compress  straight  from  the  freezer  onto  the  skin  was  highlighted.  The  severe  cold  can  cause  frostbite  that  may  lead  to  permanent  skin  damage.  In  one  recent  case,  a  PE  teacher  needed  an  emergency  operation  to  remove  tissue  damaged  by  the  extreme  cold  of  such  a  cold  compress.    The  compress  was  left  on  for  over  45  minutes  while  the  recommended  maximum  time  is  30  minutes.    The  recommendation  in  the  authorised  manual  of  the  Voluntary  Aid  Society  1997  (First  Aid  Manual.  7th  edn.  London:  Dorling  Kindersley)  is  that  frozen  vegetables  may  be  used  as  a  cold  compress,  but  they  must  be  wrapped  in  a  cloth  or  towel  to  prevent  direct  contact  with  the  skin.    If  such  guidance  is  ignored  by  first  aiders,  they  could  place  themselves  and  their  employers  at  risk  of  litigation  for  not  undertaking  proper  procedures  during  treatments.    TREATMENTS  OTHER  THAN  FIRST  AID  A  first  aider  should  never  be  expected  to  undertake  procedures  outside  their  training.    For  example,  they  must  not  give  tablets  or  medicines  to  treat  illness.  However  with  the  assistance  of  a  suitably  trained  first  aider  the  chance  of  injuries  deteriorating  to  a  serious  condition,  or  the  possibility  of  death,  is  significantly  reduced.    However  in  some  cases,  there  are  specific  risks  of  injury  in  certain  workplaces  for  which  first  aiders  can  be  specially  trained  to  assist,  for  example,  special  treatments  for  exposure  to  certain  hazardous  substances.    

560

Page 48: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

In  these  special  cases  where  the  first  aider  has  received  the  appropriate  training,  there  is  no  prohibition  on  them  administering  this  assistance.    FIRST  AIDERS  Where  the  assessment  of  the  first  aid  needs  of  a  particular  area  indicates  that  there  is  a  significant  risk  of  injury,  then  one  or  more  first  aiders  will  need  to  be  trained  and  appointed.    The  exact  numbers  that  will  need  to  be  appointed  will  depend  on  the  level  of  risk.      SELECTION  The  first  aider  will  need  to  react  correctly  to  a  difficult  situation  and  so  should  be  selected  to  be  capable  of  coping  with  an  emergency  situation  along  with  the  ability  to  learn  the  skills  necessary  to  carry  out  their  function.    They  should  also  have  the  physical  ability  to  deal  with  the  demands  of  the  emergency  procedures.    One  aspect  that  can  be  forgotten  is  that  a  first  aider  may  well  have  to  react  to  a  situation  with  no  notice.    It  is,  therefore,  necessary  that  they  can  leave  their  normal  work  immediately  to  deal  with  an  emergency  situation.    TRAINING  The  first  aider  must  possess  certain  minimum  skills  to  carry  out  their  duties  adequately.    To  this  end,  the  first  aider  must  attend  and  pass  a  course  approved  by  the  appropriate  authority  of  a  country  e.g.  Ministry  of  Health  in  the  UAE,  HSE  in  the  UK.    This  course  initially  consists  of  a  4-­‐day  course  (depending  upon  the  trainees’  ability,  so  the  course  may  sometimes  be  longer)  that  must  be  refreshed  at  no  more  than  3-­‐year  intervals,  usually  on  a  2-­‐day  course.    FIRST  AID  COMPETENCIES  On  completion  of  the  training,  successful  candidates  will  be  able  to  do  the  following:  • Act  safely,  promptly  and  effectively  when  an  emergency  occurs  at  work  • Administer  cardiopulmonary  resuscitation  (CPR)  promptly  and  effectively  • Administer  first  aid  safely,  promptly  and  effectively  to  a  casualty  who  is  wounded  or  bleeding  • Administer  first  aid  safely,  promptly  and  effectively  to  a  casualty  who:·∙  - Has  been  burned  or  scalded·∙  - Is  suffering  from  an  injury  to  bones,  muscles  or  joints·∙  - Is  suffering  from  shock·∙  - Has  an  eye  injury  ·∙  - Maybe  poisoned  ·∙  - Has  been  overcome  by  gas  or  fumes  

• Transport  a  casualty  safely  as  required  by  the  circumstances  of  the  workplace  • Recognise  common  major  illnesses  and  take  appropriate  action  • Recognise  minor  illnesses  and  take  appropriate  action  • Maintain  simple  factual  records  and  provide  written  information  to  a  doctor  or  hospital  if  required  

561

Page 49: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

 ADDITIONAL  FIRST  AID  KNOWLEDGE  In  addition,  the  successful  candidate  will  have  knowledge  of:  • The  importance  of  personal  hygiene  in  first-­‐aid  procedures  • The  legal  framework  for  first  aid  provision  at  work  • The  use  of  first  aid  equipment  provided  in  the  workplace  • The  role  of  the  first  aider  in  emergency  procedures  In  some  workplaces,  there  may  well  be  particular  risks  that  require  special  treatments.    Where  this  is  the  case,  and  the  first  aider  is  capable  of  administering  them,  extra  training  should  be  provided  in  addition  to  the  normal  training;  however  this  extra  training  does  not  need  to  be  on  an  appropriately  approved  course.  The  three-­‐year  interval  between  the  re-­‐qualification  courses  is  quite  long,  and  skills,  and  abilities  fade.    It  is  thus  recommended  that  the  first  aiders  be  provided  with  the  facilities  to  refresh  their  training  at  more  frequent  intervals.    This  may  be  achieved  by  arranging  attendance  on  a  short  refresher  course  or,  at  the  least,  by  affording  the  first  aiders  time  for  self-­‐directed  revision.    A  particularly  effective  means  of  achieving  this  is  to  encourage  all  the  first  aiders  in  an  organisation  to  meet  on  a  regular  basis  to  share  experiences  and  refresh  their  knowledge  together.  It  is  also  important  that  first  aiders  are  aware  of  external  sources  of  advice  that  they  can  contact.      APPOINTED  PERSONS  It  is  recognised  that  there  are  some  situations  whereby  the  provision  of  a  fully  trained  first  aider  may  not  be  required.    For  example,  the  workplace  may  be  a  lower  risk  establishment  such  as  an  office  with  very  few  people  working  there.    Where  there  is  not  a  need  for  a  fully  trained  first  aider,  there  is  still  a  need  for  a  person  to  be  appointed  who  has  sufficient  training  and  capability  to  take  charge  of  the  situation  where  a  person  is  injured  or  taken  ill  at  work.    In  addition  there  is  a  need  for  someone  to  look  after  the  equipment  and  facilities  provided  by  the  employer  for  first  aid  and  re-­‐stock  where  necessary.    This  appointed  person  does  not  have  any  requirements  for  training.    However,  they  need  to  be  able  to  assess  a  situation,  pass  on  the  relevant  information  if  it  is  necessary  to  summon  medical  assistance  and  know  the  requirements  for  first  aid  equipment.    As  such,  there  is  a  need  for  them  to  have  some  training.    It  is  recommended  in  the  UK  HSE  guidance  (L74)  that  they  attend  a  training  course  that  will  teach  them  the  basics:  • What  to  do  in  an  emergency    • Cardio-­‐pulmonary  resuscitation  (CPR)    • First  aid  for  the  unconscious  person    • First  aid  for  the  wounded  or  bleeding    ADEQUACY  OF  PROVISION  To  assist  in  what  various  legislation  may  require,  reference  is  made  to  the  UK  Health  and  Safety  (First-­‐Aid)  Regulations  1981  (S.I.  1981,  No.  917).    These  regulations  require  the  adequate  provision  of  equipment,  facilities  and  numbers  of  first  aiders  as  is  appropriate  for  the  risks  presented  by  the  workplace  and  may  want  to  be  used  as  established  ‘best  practice.'    

562

Page 50: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

In  addition  to  the  workers  at  fixed  workplaces,  the  employer  must  also  ensure  that  those  employees  that  are  away  from  the  employer's  premises,  for  example,  travelling  or  home  office  workers,  also  have  suitable  provision  to  enable  them  to  treat  themselves.  The  main  factors  that  need  to  be  considered  to  determine  the  adequacy  of  first  aid  provision  include:  • The  hazards  in  the  workplace  and  the  likely  level  of  risk  they  present  • The  number  of  employees  that  will  be  present  on  the  site  at  any  time  • An  assessment  of  the  likelihood  of  accidents  occurring  based  on  the  previous  history  of  occurrences  • The  distribution  of  the  workforce  around  the  site  • The  likely  response  time  of  the  local  emergency  services  and  holiday  cover    ASSESSING  THE  NECESSARY  LEVEL  OF  FIRST  AID  PROVISION  • What  level  of  risk  of  injury  or  ill  health  does  the  general  risk  assessment  of  the  area  indicate  (as  a  higher  risk  

will  require  a  higher  provision  of  first  aid  facilities)?  • Are  there  any  particular  risks  that  are  higher  than  usual  due  to  the  nature  of  the  work  or  the  materials  or  

substances  used  (which  may  require  more  or  specialised  means  of  treating  the  injuries  caused)?  • Are  there  certain  areas  of  the  site  where  the  risks  are  significantly  higher  than  others  (e.g.  a  workshop  in  a  

predominantly  office-­‐based  site)?  • Are  the  numbers  of  people  for  whom  first  aid  cover  must  be  provided  large  or  small  (as  larger  numbers  

require  a  first  aid  provision)?  • Is  there  a  high  or  low  level  of  injury  incidents  recorded  in  the  past  (as  large  numbers  suggest  a  need  for  a  first  

aid  provision)?  • Have  past  incidents  involved  more  of  one  type  of  incident  than  others  (which  will  suggest  a  higher  provision  

of  the  means  to  treat  it  being  available  in  the  first  aid  kits  than  would  normally  be  recommended)?  • Will  there  be  present  on  sites  more  vulnerable  people,  such  as  inexperienced  or  disabled  employees  or  those  

with  special  health  problems  (which  will  possibly  give  special  requirements  for  ready  access  to  the  first  aid  facilities  or  for  the  provision  of  special  equipment)?  

• Are  the  work  areas  in  separate  buildings  around  the  site  or  on  more  than  one  floor  of  a  multi-­‐storey  building  (which  will  require  a  higher  level  of  provision  of  first  aid  facilities  to  ensure  ready  access  to  all  staff)?  

• Are  there  any  secure  areas  in  which  employees  normally  work  (which  may  require  special  access  arrangements  by  the  first  aiders)?  

• Do  different  groups  of  employees  work  at  different  times,  such  as  shift  workers  or  work  outside  normal  office  hours  (which  would  require  a  higher  level  of  first  aid  provision  to  ensure  that  it  was  adequate  for  all  employees)?  

• Is  the  likely  response  time  of  the  emergency  services  higher  than  normal,  for  example  due  to  remoteness  or  difficulty  of  access  (which  may  require  special  arrangements  to  be  made  to  facilitate  the  transport  of  the  seriously  injured  to  a  medical  treatment  facility)?  

• Are  any  of  the  employees  likely  to  work  away  from  the  organisation's  normal  premises,  such  as  at  a  home  office  or  on  the  road  or  likely  to  work  alone  for  significant  periods  (which  would  suggest  the  need  to  provide  individual  first  aid  kits  along  with  basic  training  in  their  use  and  the  possible  need  for  some  form  of  personal  communicator  to  them)?  

563

Page 51: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

• Is  any  of  the  employees  likely  to  spend  significant  portions  of  their  time  working  on  sites  occupied  or  controlled  by  other  employers  (which  would  suggest  a  need  for  co-­‐ordination  of  first  aid  provision,  or  separate  provision  by  each  employer)?  

• Are  any  young  people  (under  18  years  of  age)  or  work  experience  trainees  working  on  the  site  (which  may  alter  the  level  of  provision  of  first  aid  facilities  that  needs  to  be  made  at  the  time  when  they  are  present)?  

• What  level  of  first  aid  provision  will  be  made  available  to  members  of  the  public  accessing  the  premises  (which  may  compromise  the  level  of  first  aid  provision  to  employees  -­‐  see  Provision  for  Non-­‐employees)?  

• Will  there  be  any  problems  in  informing  employees  of  the  first  aid  arrangements,  possibly  due  to  disability,  reading  or  language  difficulties  (which  will  require  special  arrangements  for  informing  them  to  be  made)?  

• Are  there  particular  times,  such  as  during  maintenance  closures,  that  the  provision  of  first  aid  facilities  for  the  employees  present  may  be  significantly  compromised  by  the  absence  of  first  aiders  and  appointed  persons  (which  may  require  a  temporary  extra  cover  to  be  specially  arranged)?  

 NUMBER  OF  FIRST  AIDERS  The  number  of  first  aiders  that  will  be  needed  at  any  site  will  be  dependent  on  the  level  of  need  assessed.    However,  some  guidance  can  be  given  for  minimum  levels  of  provision.    In  some  low-­‐risk  situations  an  appointed  person  would  be  sufficient  as  a  minimum.  However  it  is  recommended  that  there  is  at  least  one  fully  qualified  first  aider  at  the  site  where  this  is  practicable.            

CATEGORY  OF  RISK  NUMBER  OF  PERSONS  EMPLOYED  

SUGGESTED  NUMBER  OF  FIRST  AID  PERSONNEL  

Lower  Risk  e.g.  shops,  offices,  libraries  

<50   At  least  one  appointed  person  50  to  100   At  least  one  first  aider  >100   One  additional  first  aider  for  every  100  employed  

Medium  Risk  e.g.  light  engineering  and  assembly  work,  food  processing,  warehousing  

<20   At  least  one  appointed  person  20  to  100   At  least  one  first-­‐aider  for  every  50  or  part  thereof  

>100   At  least  one  first-­‐aider  for  every  100  or  part  thereof  

Higher  Risk  e.g.  most  construction,  slaughterhouse,  chemical    

<5   At  least  one  appointed  person  5  to  50   At  least  one  first  aider  >50   One  additional  first  aider  for  every  50  employed  

564

Page 52: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

CATEGORY  OF  RISK  NUMBER  OF  PERSONS  EMPLOYED  

SUGGESTED  NUMBER  OF  FIRST  AID  PERSONNEL  

manufacture,  extensive  work  

Where  there  are  hazards  for  which  additional  first-­‐aid  skills  are  necessary  

In  addition,  at  least  one  first  aider  trained  in  the  specific  emergency  action  

     EQUIPMENT  &  RESOURCES  The  minimum  first-­‐aid  equipment  needed  is  a  first  aid  kit.    Other  items  of  equipment  can  form  part  of  the  provision,  dependent  on  the  assessment  of  need,  but  these  are  not  mandatory.    FIRST  AID  KITS  The  first  aid  kit  is  the  mainstay  of  the  first  aid  provision.    There  is  a  recommendation  in  the  guidance  to  the  Health  and  Safety  (First-­‐Aid)  Regulations  1981  (S.I.  1981,  No.  917)  that  it  should  be  easily  accessible,  the  requirement  in  the  regulations  is  that  it  should  be  provided.    There  is  a  potential  conflict  between  a  first  aid  kit  that  is  easily  accessible  and  one  that  is  empty  due  to  neglect  or  abuse.    If  the  first  aid  kit  is  made  readily  available  by  being  wall  mounted,  it  is  necessary  to  ensure  that  it  is  adequately  stocked  at  all  times  and  maintained  in  a  condition  fit  for  use.    This  requires  a  very  regular  checking  regime,  dependent  on  the  likely  use  or  potential  for  abuse,  but  probably  at  least  once  a  day  in  an  area  of  high  traffic.  An  alternative  is  to  issue  a  first  aid  kit  to  each  first  aider  for  them  to  keep  safe  and  ready  for  use.    This  may  mean  that  it  is  not  available  for  anyone  other  than  the  first  aider  to  use  at  a  particular  time.    However  if  there  is  sufficient  provision  of  first  aiders  and  the  means  to  contact  them,  the  problems  that  this  may  cause  will  be  avoided,  and  the  problem  of  having  a  first  aid  kit  that  is  unusable  will  also  be  avoided.  A  further  complication  of  a  freely  available  first  aid  kit  is  the  possibility  that  the  person  self-­‐treating  themselves  will  not  be  able  to  render  the  best  treatment  and  the  high  likelihood  that  the  relevant  records  will  not  be  completed.    The  lack  of  correct  records  can  lead  to  a  lack  of  information  on  the  incident  and  the  lack  of  opportunity  to  correct  the  cause  of  the  injury.  The  contents  of  the  kit  must  be  regularly  checked  and  restocked.    For  this  to  be  effective,  it  is  recommended  that  a  separate  replenishment  store  of  first  aid  materials  is  held.    A  point  of  note  is  that  many  of  the  first  aid  supplies  have  a  shelf  life,  for  example,  many  of  the  sterile  items.    For  this  reason,  it  is  important  not  only  to  check  the  content  of  the  kits  but  also  to  check  that  the  items  are  still  in  date.    For  most  of  the  items  with  the  exception  of  eyewash,  the  shelf  life  is  many  years,  and  so  this  is  not  a  serious  problem.  However,  it  is  not  recommended  that  large  quantities  of  first  aid  materials  are  kept  in  the  

Source:  CSS  

565

Page 53: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

central  stock  unless  there  is  some  evidence  that  they  will  be  used  -­‐  the  benefits  of  bulk  buying  can  often  be  far  outweighed  by  having  to  dispose  of  unused  out-­‐of-­‐date  items.  Whatever  the  content  of  the  kit  it  must  be  immediately  identifiable.    The  case  should  protect  the  contents  from  dirt  and  damage,  but  there  is  no  requirement  that  it  be  made  of  a  particular  material  or  even  be  of  rigid  construction.    In  some  instances  a  rigid  case  would  be  preferable  to  protect  against  damage.  However  there  are  some  instances,  notably  for  portable  or  so-­‐called  'fast  response'  kits,  where  a  soft  padded  case,  possibly  with  shoulder  straps,  would  be  of  more  use.  The  colour  of  the  case  also  is  not  specified,  however,  green  or  hi-­‐visibility  orange  is  quite  common.    WORKPLACE  FIRST  AID  KIT  It  is  important  not  to  'overload'  the  case  with  everything  that  could  possibly  be  required;  on  the  other  hand,  it  is  important  that  any  items  specially  indicated  as  being  necessary  by  the  assessment  of  need  are  included.  Since  the  first  aiders  are  not  permitted  to  give  tablets  or  medication,  even  proprietary  over-­‐the-­‐counter  treatments,  no  tablets  or  other  medicines  should  be  kept  in  the  first  aid  kit  and  only  those  things  that  will  be  useful  for  giving  first  aid.    One  possible  conflict  with  this  advice  comes  from  the  recommendation  in  the  authorised  manual  of  the  voluntary  aid  societies,  First  Aid  Manual  (7th  Ed)  1997,  Dorling  Kindersley,  London,  in  which  it  is  suggested  that  a  conscious  casualty  suffering  pain  from  a  heart  attack  is  given  one  aspirin  tablet  to  chew.    Since  the  guidance  to  the  regulations  specifically  prohibits  the  keeping  of  tablets  in  the  kit,  it  is  recommended  that  aspirin  could  be  kept  nearby  the  kit  but  not  in  it  -­‐  always  noting  expiry  dates  on  them.    THE  SUGGESTED  CONTENTS  OF  A  FIRST  AID  KIT  The  following  is  a  list  of  suggested  items  for  the  contents  of  the  first  aid  kit,  but  other  items  can  be  included  where  necessary:  • A  leaflet  giving  general  guidance  on  first  aid  -­‐  the  HSE  publication  Basic  Advice  on  First  Aid  at  Work  

(IND(G)163L  is  generally  acceptable,  but  there  are  others  available  • 20  individually  wrapped  sterile  adhesive  dressings  (assorted  sizes)  appropriate  for  the  work  environment  

(detectable  dressings  should  be  available  for  the  catering  industry)  • Two  sterile  eye  pads  • Four  individually  wrapped  triangular  bandages  (preferably  sterile)  - Six  safety  pins  - Six  medium-­‐sized  individually  wrapped  sterile  unmedicated  wound  dressings  (approximately  12  cm  ´  12  

cm)  - Two  large  sterile  individually  wrapped  unmedicated  wound  dressings  (approximately  18  cm  ´  18  cm)  - 1  pair  of  disposable  gloves  

 TRAVELLING  FIRST  AID  KIT  The  first  aid  needs  of  employees  who  are  working  away  from  the  organisation's  premises  can  be  met  by  the  provision  of  a  suitable  travelling  first  aid  kit,  some  instruction  on  its  use  and  (where  necessary)  a  means  of  communication.  

566

Page 54: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

 THE  SUGGESTED  CONTENTS  OF  A  TRAVELLING  FIRST  AID  KIT  The  following  is  a  list  of  suggested  items  for  the  contents  of  the  travelling  first  aid  kit,  but  other  items  can  be  included  where  necessary:  • A  leaflet  giving  general  guidance  on  first  aid  -­‐  the  HSE  publication  Basic  Advice  on  First  Aid  at  Work  

(IND(G)163L  is  acceptable,  but  there  are  others  available  • 6  individually  wrapped  sterile  adhesive  dressings  • 1  large  sterile  unmedicated  dressing  (approximately  18  cm  ´  18  cm)  • 2  triangular  bandages  • 2  safety  pins  • Individually  wrapped  moist  cleansing  wipes  • 1  pair  of  disposable  gloves    EYE  WASH  One  area  of  first  aid  provision  that  seems  to  cause  some  difficulty  is  the  means  to  irrigate  the  eye.    This  would  be  necessary  if  there  were  a  foreign  body  in  the  eye  (but  not  if  it  were  embedded  or  sticking  out  of  the  eye)  or  if  a  hazardous  substance  were  splashed  into  the  eye  for  which  the  manufacturer's  safety  data  sheet  first  aid  section  recommended  irrigation  with  water.  The  advice  given  in  the  authorised  manual  of  the  voluntary  aid  societies,  First  Aid  Manual  (7th  ed)  1997,  Dorling  Kindersley,  London,  is  to  use  water.    The  quantity  of  water  used  depends  whether  a  foreign  body  is  being  removed  or  a  harmful  substance  is  being  flushed  away  -­‐  however  clean  mains-­‐fed  tap  water  is  the  best  means  of  doing  this.    In  the  guidance  to  the  UK  Health  and  Safety  (First-­‐Aid)  Regulations  an  allowance  is  made  where  this  mains-­‐fed  tap  water  is  not  readily  available,  for  the  provision  of  eye  wash  solution  to  replace  it.    The  solution  would  be  at  least  a  litre  of  sterile  water  or  sterile  normal  saline  (0.9%).  The  problem  with  eye  wash  solution  is  that  it  is  expensive  and  once  opened  and  used,  the  remainder  must  be  disposed  of.    The  solution  often  has  quite  a  short  shelf  life  -­‐  sometimes  only  six  months  (usually  marked  on  the  container)  which  adds  to  the  general  running  expenses  of  this  means  of  eye  irritation.    In  addition,  storing  it  close  to  where  it  will  be  needed  can  often  result  in  it  being  covered  in  dust  or  being  damaged  and  thus  wasted.  In  some  work  circumstances,  particularly  for  outdoor  workers,  the  impracticality  of  providing  running  water  makes  this  the  only  reasonable  option.    However,  the  high  running  costs  of  providing  this  means  of  eye  irrigation  are  sometimes  reasonably  balanced,  over  a  period  of  time,  by  the  installation  of  piped  mains  water,  possibly  to  a  purpose-­‐built  eye-­‐wash  station.  Where  bottles  of  solution  are  the  only  means  of  providing  this  facility,  it  is  important  that  they  are  kept  clean  and  secure,  checked  regularly  for  damage  and  to  ensure  that  they  are  in-­‐date  and  disposed  of  and  promptly  replaced  when  used.    ADDITIONAL  MATERIALS  AND  EQUIPMENT  The  recommended  minimum  contents  of  a  first  aid  kit  are  not  exclusive  and  can  be  added  to  with  items  that  are  useful  to  first  aid,  medicines,  and  tablets  needing  to  be  kept  away  from  the  kit.    Some  items  are  particularly  useful  and  some  less  so.  However  if  a  special  need  for  equipment  or  first  aid  materials  arises  from  the  

567

Page 55: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

assessment  of  need,  then  it  must  be  supplied  in  all  first  aid  kits.  Examples  of  the  types  of  items  that  may  be  considered  for  inclusion  (but  are  by  no  means  a  requirement)  could  include:  • Scissors  • Protective  aprons  • Sterile  dressings  (probably  the  5  cm  x  5  cm  are  the  most  useful)  • Tubular  gauze  bandages  (and  applicator)  for  finger  dressings  • Adhesive  tape  • Individually  wrapped  moist  wipes  • Resuscitation  protective  face  shield  If  the  assessment  and  the  likely  response  time  of  the  emergency  services  suggest  that  some  means  of  moving  a  patient  is  necessary,  such  as  a  stretcher  or  evacuation  chair,  it  should  be  stored  in  a  place  that  is  secure,  yet  readily  available  for  use.    However,  it  is  important  that  anyone  expected  to  use  it,  must  be  fully  trained  in  its  correct  use  or  the  injuries  that  could  result  from  its  misuse  could  lead  to  litigation  for  the  organisation.  It  is  possible  that  the  circumstances  of  the  rescue  or  treatment  of  an  injured  person  place  the  first  aider  at  sufficient  risk  to  require  some  form  of  personal  protective  equipment,  e.g.  a  hard  hat  or  some  form  of  a  protective  garment.    In  addition,  it  may  be  necessary  to  provide  blankets  or  some  other  form  of  protection  for  the  patient.    Where  these  are  necessary,  they  should  be  readily  available  for  use  but  secure  from  misuse  or  accidental  damage.  Their  positioning  will  depend  on  the  need.  • It  may  be  appropriate  to  issue  the  equipment  to  individual  first  aiders  trained  in  its  use  • It  may  be  more  appropriate  to  hold  it  in  a  central  (secure)  location  • It  may  be  more  appropriate  to  site  the  equipment  near  to  the  area  where  the  risk  that  may  require  its  use  is  

situated    FIRST  AID  ROOMS  Whilst  not  always  necessary,  a  first  aid  room  can  provide  a  very  useful  addition  to  the  first  aid  provision.    In  smaller  organisations  or  where  the  response  time  of  the  emergency  services  is  short,  it  is  less  likely  to  be  necessary  to  have  a  dedicated  first  aid  room.  In  larger  or  more  spread  out  premises  or  where  the  response  time  for  the  emergency  services  is  likely  to  be  extended,  it  would  be  advisable  to  have  such  a  facility;  the  decision  would  be  based  on  the  assessment  of  need.    If  such  a  facility  is  available,  it  is  advisable  to  restrict  its  use  solely  for  first  aid.    Room  to  be  used  as  a  rest  area,  or  for  nursing  mothers  or  for  medical  examinations  and  health  surveillance  should  be  separate  so  as  not  to  compromise  its  first  aid  function.  Where  there  is  not  an  Occupational  Health  function  available  on  site,  it  is  likely  that  the  first  aid  room  will  not  be  permanently  staffed.    As  a  result,  it  is  important  to  ensure  that  arrangements  are  made  for  a  first  aider  to  be  present  and  remain  with  an  injured  or  unwell  person  that  is  in  it.    MINIMUM  STANDARDS  FOR  THE  SPECIFICATION  OF  AN  EFFECTIVE  FIRST  AID  ROOM  Where  it  is  decided  that  a  first  aid  room  is  necessary,  there  are  certain  minimum  standards  that  should  be  met  to  ensure  that  it  is  effective:  • It  should  be  easily  accessible  to  stretchers  or  any  other  equipment  used  to  carry  out  patients  and  casualties.  

568

Page 56: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

• It  should  be  large  enough  to  contain  the  equipment  necessary  for  its  use,  e.g.  a  couch,  desk,  chair,  etc.  and  sufficient  extra  space  to  allow  the  first  aider  to  move  around  the  patient  whilst  giving  first  aid.    

• If  it  is  intended  to  store  the  extra  first  aid  materials  in  it,  there  should  be  sufficient  space  for  a  cupboard  or  other  storage  facility  in  which  to  keep  them.  

• Since  the  room  needs  to  be  kept  comfortable,  clean  and  sanitary,  the  surfaces  should  be  washable,  and  there  should  be  adequate  heating,  lighting,  and  ventilation.  

• It  is  important  that  the  room  is  kept  clean  and  tidy  and  is  accessible  to  the  first  aiders  and  anyone  that  needs  to  use  it  at  all  times.    

• It  is  important  to  remember  that  some  of  the  waste  from  the  first  aid  room  may  be  a  clinical  waste,  posing  particular  hazards,  which  must  be  disposed  of  correctly  and  not  in  the  normal  industrial  waste.  

• Since  the  patient  may  well  need  to  be  transported  away  from  the  room,  it  is  necessary  that  there  is  suitable  access  that  can  accommodate  the  means  of  moving  the  patient,  such  as  a  stretcher  or  trolley.    

• It  is  most  useful  to  have  the  first  aid  room  on  the  ground  floor,  but  where  this  is  not  possible  it  is  recommended  that  there  is  clear  access  to  lift.  

• The  room  will  often  form  the  focal  point  for  people  seeking  help.  It  is  a  legal  requirement  in  some  countries  that  a  sign  marks  it  so  that  it  cannot  be  missed  from  the  outside.    

A  clearly  visible  notice  indicating  the  names  of  the  first  aiders  with  their  locations  and  how  they  can  be  contacted  should  also  be  placed  outside  the  room.    CONTENTS  OF  A  FIRST  AID  ROOM  The  facilities  and  equipment  which  should  be  provided  in  first  aid  rooms  are  as  follows:  • Sink  with  running  hot  and  cold  water  • Drinking  water  (if  not  available  on  mains  tap)  and  disposable  cups  • Paper  towels  • Smooth  topped  washable  working  surfaces  • A  range  of  first  aid  equipment  (at  least  to  the  standard  required  in  first  aid  boxes)  and  proper  storage  • Chair  • Couch  (with  waterproof  cover),  pillow  and  blankets  • Clean  protective  garments  for  first  aiders  • Suitable  refuse  container  (foot  operated)  lined  with  appropriate  disposable  yellow  plastic  bags,  i.e.  for  clinical  

waste  • An  appropriate  record  keeping  facility  • A  means  of  communication,  e.g.  a  telephone    RECORDS  There  is  no  particular  legislative  requirement  to  keep  records  of  first  aid.  However,  it  is  most  useful  for  the  investigation  of  the  cause  of  the  need  for  first  aid  to  have  accurate  records.    This  record  could  also  be  used  in  the  event  of  any  dispute  over  the  content  and  appropriateness  of  the  treatment  given  or  whether  the  injured  person  refused  treatment.    REQUIREMENTS  FOR  A  FIRST  AID  RECORD  The  record  should  include:  

569

Page 57: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

• The  date,  time  and  location  of  the  incident  causing  the  illness  or  injury  • The  name  of  the  injured  or  ill  person  and  their  normal  job  function  • The  immediate  cause  of  the  injury  or  illness  (if  known)  • The  details  of  any  treatment  given  (and  whether  it  was  refused)  • The  details  of  the  actions  taken  after  treatment,  such  as  sent  to  hospital,  returned  to  work  or  similar  • The  name  and  signature  of  the  treated  person  (if  possible)  • The  name  and  signature  of  the  first  aider  or  person  giving  the  treatment  In  addition  to  the  records  of  treatment,  it  is  recommended  that  the  records  of  the  training  of  the  first  aiders  (and  any  provided  for  appointed  persons)  are  also  recorded.    Since  the  training  has  to  be  refreshed  at  three-­‐year  intervals,  it  is  advised  that  some  system  to  remind  the  person  organising  the  training  is  used  to  ensure  that  the  refresher  course  is  booked  in  good  time.    INFORMING  THE  EMPLOYEES  All  employees  should  be  informed  of  the  arrangements  that  have  been  made  for  the  provision  of  first  aid.    The  content  is  not  laid  down  in  any  national  legislation  but  must  cover  all  the  arrangements  and  particularly  any  special  procedures  at  the  site  that  the  employee  will  be  working.    INFORMATION  ON  FIRST  AID  TO  BE  PROVIDED  TO  EMPLOYEES  The  information  to  be  given  to  employees  would  include:  • The  location  of  the  first  aid  equipment  • Any  first  aid  facilities,  such  as  first  aid  rooms  or  special  equipment  • Who  will  provide  first  aid,  i.e.  the  first  aiders  and  the  appointed  persons  • How  the  first  aid  providers  can  be  contacted  • Any  special  procedures  that  must  be  used  It  is  important  that  all  employees  know  this  information  and  understands  it.    In  particular,  it  is  important  to  ensure  that  new  starters  and  employees  transferring  from  other  areas  are  particularly  made  aware,  perhaps  during  an  induction  course.  The  information  should  be  made  widely  available  by  having  at  least  one  prominently  placed  notice  of  the  details  on  the  site.    In  addition  it  is  important  to  ensure  that  those  members  of  staff  that  may  have  difficulties  with  reading  this  notice,  for  example  because  of  language  difficulties  or  disability,  are  afforded  the  information  in  a  form  that  they  can  use,  e.g.  in  their  own  language.                  

570

Page 58: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa

ELEMENT  IB10  –  WORK  ENVIRONMENT  RISK  AND  CONTROL  

   

 

Reference    

Hygiene  (Commerce  and  Offices),  ILO  Convention,  1964  (No  120)  (C120)  and  Recommendation  (R120)    Welfare  Facilities  Recommendation,  R102,  1956    Working  Environment  (Air,  Pollution,  Noise  and  Vibration)  Convention,  1977(No  148)  (C148)  and  Recommendation    Ambient  factors  in  the  Workplace,  International  Labour  Organisation  (ILO)  Code  of  Practice  (CoP)    Encyclopaedia  of  Occupational  Health  and  Safety,  ILO    Lighting  at  Work,  HSG38,  second  edition  1997      International  Labour  Standards,  Welfare  Facilities  Recommendation,  R1021ntemational  Labour  Organisation,  Geneva,  1956      International  Labour  Office,  Ambient  Factors  in  the  Workplace,  an  ILO  Code  of  Practice,  ILO,  Geneva,  2001.  ISBN  922111628X  Chapter  8:  Thermal    International  Labour  Standards,  Occupational  Health  Services  Convention,  C161,  International  Labour  Organisation,  Geneva,  19850ccupational  Health  Services  at  the  Workplace,  Dr  V  Forastieri,  ILO    

571

Page 59: WORK!ENVIRONMENT!RISK! AND!CONTROLS€¦ · elementib10! work!environment!risk! and!controls nist institute pvt ltd coa