Wind Controlled Design Document

86
LATERAL DESIGN OF A 72'X120'X16' POST-FRAME BUILDING Wind-Governed Design Example Wind-Governed Design Example, Page 1 of 28

Transcript of Wind Controlled Design Document

Page 1: Wind Controlled Design Document

LATERAL DESIGN OF A 72'X120'X16' POST-FRAME BUILDING

Wind-Governed Design Example

Wind-Governed Design Example, Page 1 of 28

Page 2: Wind Controlled Design Document

SECTION PAGE

▪ SECTION 1: BUILDING DESCRIPTION 3

▪ SECTION 2: ASCE 7-05 LOADING CALCULATIONS 6

▪ SECTION 3: DIAPHRAGM DESIGN 10

▪ SECTION 4: POST DESIGN 19

▪ SECTION 5: FOUNDATION DESIGN 20

▪ SECTION 6: CONNECTIONS 21

▪ SECTION 7: PURLIN AND GIRT DESIGN 27

▪ SECTION 8: OTHER DESIGN CONSIDERATIONS 28

APPENDIX APPENDIX PAGE

▪ APPENDIX A

A1: FRAME STIFFNESS 2A2: EAVE LOAD 3A3: POST DESIGN 4

▪ APPENDIX B: FOUNDATION DESIGN 1

▪ APPENDIX C: DESIGN OF CRITICAL CONNECTIONS 1

▪ APPENDIX DPURLIN DESIGIN 2GIRT DESIGN 9

▪ APPENDIX E: DIAPHRAGM DESIGN WITH MINIMUM 10 PSF WIND REQUIREMENT ASCE 7-05 LOADING 2DIAPHRAGM DESIGN 5CONNECTIONS 11

TABLE OF CONTENTS

NOTE: ASCE 7-05 Section 6.1.4.1 requires the main wind force resisting system (MWFRS) be designed for a horizontal wind pressure of 10 psf multiplied by the area of the building projected onto a vertical plane normal to the assumed wind direction. The MWFRS for this building is the roof diaphragm and shearwalls. The 10 psf minimum wind load requirement controls the design of the MWFRS for this building as shown in section 2.5.4 of this report. However, individual building components are controlled by wind pressures derived from coefficients. This design example is a detailed look at the lateral design of a post-frame building using wind pressures and suctions from coefficients, and Appendix E is included to show that the MWFRS is adequate for the 10 psf minimum wind load requirement.

Wind-Governed Design Example, Page 2 of 28

Page 3: Wind Controlled Design Document

Introduction

Design professionals can use this document to learn how to conduct the structural design of a post-frame building system. Architects or engineers can use this document to walk through the unique features of diaphragm design of post-frame building systems and the detailed engineering calculations for the structural design of a typical post-frame building. This document—Lateral Design of a 72 ft. x 120 ft. x 16 ft Post-Frame Building: Wind Governed Design Example—contains the engineering design procedures and detailed calculations to conduct the structural design of single story post-frame building located on a site where lateral design wind loads exceed lateral design seismic loads. It begins with a general description of the post-frame building to be designed, followed by detailed descriptions and calculations of design loads, roof diaphragm panel in-plane shear strength and stiffness, shearwall panel in-plane shear strength and stiffness, the portion of the lateral wind load carried to ground by the post-frame, and the portion carried to ground by the roof diaphragm and shearwalls using an on-line computer program, the Diaphragm and Frame Interaction (DAFI) Calculator. The structure has a 72 ft. clear span, is 120 ft. long, and has a 16 ft. eave height. The building has post-frames spaced 8 ft. on center along both sidewalls. Each post frame consists of wood sidewall columns attached directly to engineered, 2x metal-plate connected wood gable trusses with flat lower chords, and two equally sloped upper chords. The roof and walls are sheathed with 29 ga corrugated steel sheathing. Preservative treated laminated wood sidewall columns embedded directly into the ground provide the building foundation. The design example continues with the structural design of the unique structural elements of the post-frame system, including the nail-laminated wood sidewall columns, the shallow embedded post foundation system, the wood sidewall girts, and the wood roof purlins. The document also includes the detailed procedures and calculations to determine the adequacy of the roof diaphragm panels and all the shearwall panels to carry the design in-plane shear loads. The key structural connections required to ensure continuous load paths to ground are identified and detailed procedures and calculations for designing each of the key connections are provided. Finally, the document details the lateral and longitudinal bracing requirements for the building system. The design example follows provisions of the 2009 International Building Code, the 2005 National Design Specification for Wood Construction, ASCE 7-05: Minimum Design Loads for Buildings and Other Structures, and the Post-Frame Building Design Manual. The appropriate sections of these design references are cited throughout the design example.

Page 4: Wind Controlled Design Document

There are (4) 36"x60" windows equally spaced on one endwall and (1) 24'Wx14'H overhead door on opposite endwall; there are (2)36"x60" windows and (2) 16'Wx14'H overhead doors and (1) 36"x80" man door in rear sidewall and (2) 36"x80" man doors and (2)16'Wx14'H overhead doors in front sidewall. The exterior walls and roof are sheathed with Grandrib 3, 29 gage structural metalsheathing manufactured by Fabral. On the interior, the walls and ceiling are also sheathed with Grandrib 3, 29 gage structural metalsheathing by Fabral (see Figure 3A and 3B for panel profile and fastener pattern, test panel size and configuration, and in-plane shearstrength and stiffness data). The ceiling is framed with 2x4 #2 SYP ceiling joists 24" o/c in between the trusses. The ceilingsheathing and roof sheathing have the same orientation. The building is heated and insulated with R-19 insulation in walls and R-30insulation in the ceiling. There is a 12" roof overhang on the gable ends and 24" overhang on the sidewalls.

Roof/ Wall Sheathing n/a

Roof TrussesMetal plate connected wood trusses, 3.5/12 pitchtop chord, 0/12 pitch bottom chord, attached topost directly

8 ft o/c

29 gage Grandrib 3 metal sheathing by Fabral,fasten to girts/purlins with #10x1" screws as permanufacturer's recommendations, no stitchscrews

Section 1: Building DescriptionWind-Governed Design Example

This is a design example in which a 72' wide x 120' long x 16' high Post-Frame building's lateral force resisting system is analyzedand designed for wind and seismic loading. The building is located in Dane County, Wisconsin where, surrounded by closely spacedwind obstructions, it qualifies for surface roughness category B as defined in ASCE 7-05. This commercial building is comprised ofthe following structural members:

Sidewall Posts

Foundation24"Ø x 8" concrete footing with 24"Øconcrete collar poured around post, (1) #4x16"long rebar thru post at 8" above top of footing

8 ft o/c

Wall Girts

Spacing Description

3-ply 2x8 nail laminated column with structuralfinger joints; posts are embedded into ground;bottom treated for direct ground contact, topnotched to accept truss

Structural Component

8 ft o/c

Endwall Posts3-ply 2x8 nail laminated column with structuralfinger joints; posts are embedded into ground;bottom treated for direct ground contact

8 ft o/c

2x4 #2 SYP, each continuous over 2 spans,fastened to side of post with (2) 16d nails

24 in o/c

Roof Purlins2x4 #2 SYP, on edge, fastened to truss with (1)60d R.S. nail and (2) 16d toenails, each

24 in o/c and 16 in o/c in

unbalanced snow area

Wind-Governed Design Example, Page 3 of 28

Page 5: Wind Controlled Design Document

Wind-Governed Design Example, Page 4 of 28

Page 6: Wind Controlled Design Document

Wind-Governed Design Example, Page 5 of 28

Page 7: Wind Controlled Design Document

2.1 Wind Design Method 2 - Analytical Procedure - Low-Rise Building (ASCE 7-05, 6.5, 6.5.12.2.2)

Building Inputs: Calculation Inputs:120 ft Basic Wind Speed, V 90 mph72 ft Topographic Factor, Kzt 1.0016 ft

Post Sidewall Spacing, s 8 ftPost Endwall Spacing, s 8 ft Envelope:

21.25 ft Wind Directionality Factor 0.853.5 II

Eave Overhang 2 ft B

Definitions:Case A - Wind Direction Normal to Roof Ridge, Pressure Coefficients Vary With Roof Angle.Case B - Wind Direction Parallel to Ridge, Pressure Coefficients are Constant for all Roof Angles.Interior Zones - Zones 1 - 6 Below Edge Zones - Zones 1E - 6E Below

Intermediate Calculations:Importance Factor, I 1.00 Table 6-1 16.26 degNom. Height of Atmospheric Boundary (zg) 1200 0.18 -0.18

Vel. Press. Exp. Coefficient, Kz 0.635

3-s Gust Speed Power Law Exponent (α) 7 Velocity Pressure, qh 11.2 psf

2.1.1 Main Wind Force Resisting System: ASCE 7-05, Figure 6-10 Equation: p = qh[(GCpf-(Gcpi)]

P (psf) P (psf)

Gcpf I* II** III~ Gcpf I* II** III~

Zone 1: Windward Side Wall 0.50 3.6 7.6 5.6 0.40 2.5 6.5 4.5Zone 2: Windward Roof -0.69 -9.7 -5.7 -7.7 -0.69 -9.7 -5.7 -7.7Zone 3: Leeward Roof -0.45 -7.1 -3.1 -5.1 -0.37 -6.2 -2.1 -4.1Zone 4: Leeward Side Wall -0.40 -6.4 -2.4 -4.4 -0.29 -5.3 -1.2 -3.2Zone 5: Gable Wall -0.45 -7.0 -3.0 -5.0Zone 6: Gable Wall -0.45 -7.0 -3.0 -5.0Zone 1E: Windward Side Wall Edge 0.75 6.4 10.4 8.4 0.61 4.8 8.8 6.8Zone 2E: Windward Roof Edge -1.07 -14.0 -10.0 -12.0 -1.07 -14.0 -10.0 -12.0Zone 3E: Leeward Roof Edge -0.65 -9.3 -5.3 -7.3 -0.53 -7.9 -3.9 -5.9Zone 4E: Leeward Side Wall Edge -0.59 -8.6 -4.6 -6.6 -0.43 -6.8 -2.8 -4.8Wind load should not be less than 10 psf on vertical projection. (ASCE 7-05, 6.1.4.1)Because the structure is less than 30ft high, the torsional cases 1T, 2T, 3T and 4T do not apply. (ASCE 7-05, Fig. 6-10, note 5)

2.1.2 Components and Cladding: ASCE 7-05, Figure 6-11 Equation: p = qh[(Gcp)-(Gcpi)]

Note: Only negative loads are shown because they are larger than positive and so control the design.

Component: Roof Purlins

Effective Area: 21.33 ft2 Effective Area: 21.33 ft2

Zone Gcp P (psf) Zone Gcp P (psf)

I* II** III~ I* II** III~

4: Wall Interior -1.0 -13.7 -9.7 -11.7 1: Roof Interior -0.9 -11.7 -7.6 -9.65: Wall Edge -1.3 -16.4 -12.4 -14.4 2: Roof Edge -1.5 -19.2 -15.2 -17.2

3: Roof Corners -2.4 -28.9 -24.8 -26.8* Internal Pressure Positive ** Internal Pressure Negative ~ Internal Pressure Zero

Building Midheight, hBuilding CategoryRoof Pitch (rise per 12 units of run)

Case A

Calculated Roof Angle

Exposure Category

Effective Wind Area: span length multiplied by an effective width that need not be less than one-third the span length.

Component: Wall Girts

Length Normal to Ridge, L Length Parallel to Ridge, B

Wall Height, z

Internal Press. Coefficient, Gcpi

Section 2: ASCE 7-05 Load Calculations

Enclosed Building

The wind load calculations, including main wind force resisting system (MWFRS) and components and cladding (C&C) loads, are presented first; followed by dead, live and snow load calculations. Seismic loading is then calculated and compared to wind to see which controls the lateral design for strength and deflection. This section concludes with allowable lateral deflection criterion and controlling load combinations for various components.

Case B

Wind-Governed Design Example, Page 6 of 28

Page 8: Wind Controlled Design Document

2.2 Dead Load Calculations2.2.1 Wall Dead Load 3 psf

2.2.2 Roof Dead LoadSteel Roofing 1 psfsurface area Bottom Chord Load 5 psf

Purlins 1.25 psfsurface area

Bracing/Hardware 1.5 psfsurface area

Total Top Chord 3.75 psfsurface area

Top Chord Load On Horizontal Projection 3.91 psfhorizontal projection

TOTAL ROOF LOAD 9 psf

2.3 Live Load Calculations2.3.1 Floor Live Load

Minimum Floor Live Load = n/a psf (ASCE 7-05, Table 4-1)

2.3.2 Minimum Roof Live Load Top Chord 20 psfBottom Chord 0 psf

Total (on horizontal projection) 20 psf (ASCE 7-05, Table 4-1)

2.4 Snow Load Calculations

2.4.1 Flat-Roof Snow Load, pf Equation: p f = 0.7(C e )(C t )(I)(p g )Notes

Ground Snow Load, pg: 30 psf Figure 7-1Exposure Factor, Ce: 1.0 Table 7-2 Partially exposed roof

Thermal Factor, Ct: 1.1 Table 7-3 Heated buildingImportance Factor, I: 1.0 Table 7-4

pf 23.1 psf

2.4.2 Sloped-Roof Snow Load, ps Equation: p s = (C s )(p f )Notes

Roof Slope Factor, Cs: 1.00 Figure 7-2ps 23.1 psf

2.4.3 Unbalanced Roof Snow Load Hip and Gable Roofs1) Required for Hip and Gable Roofs with a slope less than 70/W + 0.5 and exceeding 70 degrees2) The unbalanced snow load is applied to the leeward roof and windward roof as indicated

Inputs:Horizontal Distance Eave to Ridge, W 38 ftEquations: W ≤ 20 ft. (ASCE 7-05, Figure 7-5)

▪ 0 Windward Unbalanced

▪ (pg)(I) Leeward UnbalancedW > 20 ft

▪ 0.3*ps Windward Unbalanced

▪ ps + hd(γ)/(√(S)) Leeward Unbalanced, the latter extended from the ridge a distance of [8(√(S))(hd)]/3

Intermediate Calculations:Roof Angle = 16.26 degrees hd = 2.13 ft

g = 17.9 pcf S = Roof slope run for a rise of 1 = 3.4286

punbal, leeward = 43.7 psf for a distance of 10.5 ft from the ridge, then 23.1 psf to eaves

punbal, windward = 6.9 psf

BOTTOM CHORDTOP CHORD

Wind-Governed Design Example, Page 7 of 28

Page 9: Wind Controlled Design Document

2.5 Seismic Load Calculations2.5.2 Calculation Inputs:

2.5.1 Building and Site Inputs: Spectral Response Acceleration, S1 0.05

Site Class D Spectral Response Acceleration, SS 0.15Basic Structural System: Response Modification Factor, R 7

Height to Highest Level (ft), hn 16Light-framed walls sheathed w/ steel sheets Weight of Structure (lbs), W 6240Seismic Design Category: D (ASCE 7-05, 11.6) (9 psf)(72+2 +2 ft)(8 ft)+2(3 psf)(16 ft)(8 ft)

Effective Weight of Structure (lbs), We 5760(9 psf)(72+2 +2 ft)(8 ft)+2(3 psf)(16 ft)(8 ft)(3/8)

Seismic Use Group II Building Inputs: Load from Roof

Occupancy Importance Factor, IE 1 Fixity Factor 0.375 (lbs)

Sms 0.240 Wind Force with 10 psf min, Fw = 1320 lbs 840

SDs 0.160 Wind Force with Roof and Walls, Fw = 256 lbs -223

Sm1 0.120 Wind Force with Walls only, Fw = 479 lbs 0

SD1 0.080

CT 0.02

Cu 1.7

Acceleration Site Coefficient, Fa 1.6

Velocity Site Coefficient, Fv 2.4

App. Fund. Period, Ta 0.16

Fundamental Period, T 0.27Seismic Coefficient, Cs 0.023

Cs min 0.007

Cs max 0.042Seismic Base Shear, V = 143 lbs Controlling Wind Load:

Lateral Seismic Force at Roof, FR = 132 lbs Wind Force per Frame, Fw = 479 lbs [F R = 143 x 5760 / 6240 ]

D+W 479 lbs

D+0.7E 92.2 lbs

2.6 Story Drift and Wind DeflectionsAllowable Story Drift = 0.02 hs1 (ASCE 7-05, Table 12.12-1)

Story Height, hs1 = 192 inAllowable Story Drift = 3.84 in

Other Deflection Criterion = l/120 (ASCE 7-05, Section 12.12.2 and IBC 2009, Table 1604.3)

Allowable Deflection at Eave = 1.6 in (controlling deflection criterion)Actual Calculated Deflection = 0.57 in (see DAFI outputs)

Story Drift from Elastic Analysis, δ1e = n/a in (seismic does not control the strength or serviceability design)

Deflection Amplification Factor, Cd = 4.5

Calculated Story Drift at Eave , δ1 = n/a inStory drift requirements are satisfied - calculated story drift is less than controlling allowable story drift

All other structural systems:

2.5.4 Wind Resolved to Horizontal Point Load at Eave, Fw2.5.3 Intermediate Seismic Calculations

Strength Comparison Serviceability ComparisonWind Controls the Strength Design

(D+0.7E)C d < D+W: Wind Controls

Serviceability Requirements

2.5.5 Seismic vs. Wind ComparisonControlling Load Combination

NOTE: The 10 psf minimum requirement of ASCE 7-05, 6.1.4.1controls the design of the main wind force resisting system (MWFRS). The MWFRS for this building is the roof diaphragm and shearwalls.This example will proceed with building component design usingwind pressures from coefficients, and then show that MWFRS isadequate for 10 psf minimum load in the Appendix E at the end ofthis report.

Wind-Governed Design Example, Page 8 of 28

Page 10: Wind Controlled Design Document

2.7 Controlling Load CombinationsWall Posts D+0.75(S+W) Post Foundation (Lateral Loading) D+W and 0.6D+WRoof Diaphragm D+W and 0.6D+W Post Foundation (Uplift) 0.6D+WEndwall Shearwalls D+W and 0.6D+W Wall Girts D+W and 0.6D+WRoof Truss D+S Purlins 0.6D+W or D+S

2.8 Load Calculations SummaryDesign MWFRS and C&C wind pressures and suctions were calculated for positive, negative and zero internal pressureconditions. The controlling lateral wind force to be resisted by the MWFRS was found by considering wind applied to roofand walls, wind applied to walls only, and 10 psf wind pressure applied to the vertical projection. The lateral force fromseismic load was also calculated and compared to the wind force. The response modification factor, R, and deflectionamplification factor, Cd, were chosen from ASCE 7-05 Table 12.2-1. The comparison between wind and seismic wasperformed for both strength and sericeability criterion using forces generated from the critical load combinations. Theallowable lateral deflection at the eave was found by taking the eave height divided by 120 (L/120 limit). The actualdeflection comes from the DAFI analysis in the Diaphragm Design section.

The dead load of the different materials for the roof plane are listed based on surface area and then converted to thehorizontal projection to give the top chord dead load. Snow load and unbalanced snow load is calculated for a heatedbuilding with insulated ceiling and the roof is considered to be partially exposed.

Wind-Governed Design Example, Page 9 of 28

Page 11: Wind Controlled Design Document

▪ Ultimate Strength, Pu, lbf 3300

▪ Allowable Shear Strength, va, lbf/ft 110▪ Effective In-Plane Stiffness, c, lbf/in 2920▪ Effective Shear Modulus, G, lbf/in 2190

Reference: Lukens & Bundy, 1987

3.1 Diaphragm Horizontal Roof Stiffness, Ch

Ch = ch,1 roof+ch,2 roof+ch,3 ceiling

ch,1 roof = ch,2 roof = G(cosθroof)(bh,1 roof/s)

ch,3 ceiling = G(cosθceiling)(bh,1 ceiling/s)

bh,1 roof = 38 ft (half of the building's width+overhang)

bh, ceiling = 72 ft (building's width)

s= 8 ft (column spacing)

θroof 16.26 degrees

θceiling 0

Figure 3A. Sheathing profiles and fastener patterns for the roof and wall panels.

Figure 3B. Test panel arrangement for determining in-plane shear strength and

stiffness of diaphragm test panels.

Section 3: Diaphragm Design

Walls and roof are sheathed with Grandrib 3, 29 gage structural metal sheathing manufactured by Fabral. Below are the propertiesof Grandrib 3 panels as provided in Table 6.1 of the "Post-Frame Building Design Manual" (PFBDM) by the National FrameBuilding Association (NFBA). The panel dimensions and fastening pattern are shown in Figure 3A. The panel properties wereobtained using a cantilever test procedure as shown in Figure 3B.

The total horizontal shear stiffness, Ch, of the roof assembly is calculated by summing the horizontal shear stiffness values, ch,1 and

ch,2, of the individual roof diaphragms including both roof slopes. The horizontal shear stiffness of an individual diaphragm, ch, is

obtained by adjusting the model diaphragm in-plane shear stiffness, c, for actual building size and roof slope.

Wind-Governed Design Example, Page 10 of 28

Page 12: Wind Controlled Design Document

ch,1 roof = 9986 lbf/in

ch,2 roof = 9986 lbf/in

ch,3 ceiling = 19710 lbf/in

Ch = 39683 lbf/in (The total horizontal shear stiffness of roof diaphragm)

3.2 Frame Stiffness, k (See Visual Analysis Results in Appendix A)

k = p/Δ

p = horizontal load at eaveΔ = frame displacement at eave

p = 100 lbf (applied to eave in Visual Analysis Model)Δ = 0.75 in (resulting truss displacement in Visual Analysis Model)

k = 133.3 lbf/in (bare frame stiffness)

The stiffness of the bare frame, k, is the ratio of the applied horizontal eave load divided by the resulting horizontal eave deflection.A computer analog of the frame consisting of two posts and the truss has been used to calculate this term. The post to soil interface ofthis structural analog is shown in Figure 4A.

Wind-Governed Design Example, Page 11 of 28

Page 13: Wind Controlled Design Document

3.3 Endwall Stiffness, ke

ke= G(cosθexterior)(bh,exterior/s) + G(cosθinterior)(bh, interior/s) + n(6EI/L3)

G= 2190 lbf/in

θexterior = 0.0 degrees

θinterior = 0.0 degrees

bh1, exterior = bh1, interior = 60 ft (length of endwall 1 minus door/window openings)

bh2, exterior = bh2, interior = 48 ft (length of endwall 2 minus door/window openings)

s = 16 ft (s=length perpendicular to loading = wall height)

n1 = 10 columns (n 1 =number of columns in endwall 1)

n2 = 8 columns (n 2 =number of columns in endwall 2)

E= psi

I= 48 in4(moment of inertia about weak axis of each individual endwall column)

L= 16 ft (column height)

ke1= lbf/in (stiffness of endwall with four windows)

ke2= lbf/in (stiffness of endwall with 24ft door)

3.4 Eave Load

Eave Reactions by Frame-Base Fixity Factors:

Pi = s[hr(qwr - qlr) + hwf (qww - qlw)]s= 8 ft

hr= 10.5 ft

hw= 16

qww= 7.6

qlw= -2.4

qwr= 0.0 (load with roof loads did not control)

qlr= 0.0 (load with roof loads did not control)

The eave load, Pi, used in this analysis is the resultant lateral load from the controlling combination of design loads acting over thetributary area of the eave, and is applied as a concentrated load at the eave of each frame. The eave load is calculated using Frame-Base Fixity Factors or by Plane-Frame Structural Analysis.

The standard method of fixity factors typically assumes that a post is simply supported with zero rotational resistance at ground level,or is fully fixed with zero rotation at ground level. Sometimes neither of these assumptions are completely accurate. In the case of anon-constrained post foundation, the top horizontal support of the foundation system is located a distance below ground level. Thismeans that there are some lateral and rotational deflections at the ground line. As a result, the standard 0.375 fixity factor for a rigidlysupported column is a rough approximation. Assuming a pinned base condition for the post yields a higher eave load and isconservative for the diaphragm design; conversely, assuming a perfectly fixed base condition yields a lower eave load and isconservative for the post design. We have chosen to use a fixity factor of 0.42 which is a little more toward fixed than pinned.

1700000

13693

17117

The endwall stiffness, ke, is calculated by summing the horizontal shear stiffness of the wall diaphragm and the bending stiffness of

the endwall posts. The horizontal shear stiffness of the wall diaphragm is found by adjusting the model diaphragm shear stiffness forthe actual size of endwall. The interior liner is constructed the same as the exterior siding and is included in the endwall calculations.

Wind-Governed Design Example, Page 12 of 28

Page 14: Wind Controlled Design Document

f pin= 0.5 (fixity factor for a pin post base support)

f fixed= 0.375 (fixity factor for a fixed post base support)

Pi, pin= 639 (Eave Reaction With Pinned Column Base)

Pi, fixed= 479 (Eave Reaction With Fixed Column Base)

f new= 0.42

Pi= 538 lbs P i = s[h r (q wr - q lr ) + h w f new (q ww - q lw )]

3.5 Summary of DAFI Inputs

Roof Diaphragm Shear Stiffness: 39683 lbf/in (C 1 = C 2 = C 3 = … = C 15 )

Endwall 1 Shear Stiffness: 17117 lbf/in

Endwall 2 Shear Stiffness: 13693 lbf/in

Interior Frame Stiffness: 133.3 lbf/in (k 2 = k 3 = k 4 = … = k 14 )

Eave Load on Interior Frame: 538 lbf

DAFI (Diaphragm and Frame Interaction) is a computer program for calculating the distribution of horizontal loads amongthe individual post-frames and roof diaphragm sections of a building. It can be used to analyze diaphragm action inbuildings in which bay spacings vary, the stiffness of individual post-frames differ, endwalls are not assumed infinitelyrigid, and/or the stiffness of individual diaphragms are not the same.

A windows version of this program is available as a free download from the National Frame Building Association website(nfba.org). It allows data to be entered using a special screen editor. The data can be saved to and later recalled froman input data file.

Wind-Governed Design Example, Page 13 of 28

Page 15: Wind Controlled Design Document

3.6 Summary of DAFI Outputs

Frame Number

123456789

10111213141516

3968339683

1539683

1764.12

0.0686637 2724.780.0810933

1966.681493.71

827.191293.48

0.0444554

0.1140.100

2240.69

3218.02

2446.26

363.68

0.1410.1380.1330.125

0.140

133.3133.3133.3133.3 538 0.55

0.109

Frame Stiffness

17117133.3133.3

2

Diaphragm Stiffness

Diaphragm Number

2934.06

Shear LoadShear Displacement

133.3133.3

538 67.461.4

0.51

0.30

538

70.0

133.3

73.575.475.7

133.30.57

0.53

Load Resisted by Frame

3700.740.450.2

133.3 0.34

0.49 0.121

538133.3 74.5

0.540.56

133.3

0.380.44 58.4

65.0

71.7

0.57538

DAFI FRAME ANALYSIS OUTPUTS

269 0.22538

0.093

13.7570.075

7

3968339683396833968339683

6

45

133.3

0.130

13693

3

DAFI DIAPHRAGM ANALYSIS OUTPUTS

1 3431.7139683 0.0739374

538

1314

39683 0.00248510.0091645

89

101112

39683

269 0.25

39683

0.04955980.037641

0.02584870.0141432

3968339683

Fraction of Applied Load

0.137

538

538538

0.083

0.020845

0.46538 0.40538

39683

98.62

Horizontal Displacement

538

Applied Load

561.24

0.0864781

53853.944.8

3487.0

0.0616451

0.0325954

0.0564647

12.963

1025.75

Wind-Governed Design Example, Page 14 of 28

Page 16: Wind Controlled Design Document

3.7 Interpretation of DAFI OutputsControlling Frame Number = 9 (Resists the most load compared to other frames)

Deflection of Frame = 0.57 inLoad Resistance by Frame = 75.7 lbf

Resisting Force by Diaphragm, Q = 462.6 lbf (Eave Load Minus Load Resistance by Frame)

Shear Load in Endwall 1 = 3700.7 lbf DAFI Output: Load Resisted by Frame 1Shear Load in Endwall 2 = 3487.0 lbf DAFI Output: Load Resisted by Frame 16; Wall with 20' Door

Horizontal Diaphragm Shear = 3431.7 lbf DAFI Output: Largest Diaphragm Shear Load

3.8 Endwall Shear Strength Check

ke= G(cosθexterior)(bh,exterior/s) + G(cosθinterior)(bh, interior/s) + n(6EI/L3) (endwall stiffness)

G(cosθexterior)(bh1,exterior/s) = 8213 lbf/in (stiffness provided by exterior sheathing of endwall 1)

G(cosθinterior)(bh1, interior/s) = 8213 lbf/in (stiffness provided by interior sheathing of endwall 1)

n(6EI/L3) = 691.7 lbf/in (stiffness provided by columns of endwall 1)

G(cosθexterior)(bh2,exterior/s) = 6570 lbf/in (stiffness provided by exterior sheathing of endwall 2)

G(cosθinterior)(bh2, interior/s) = 6570 lbf/in (stiffness provided by interior sheathing of endwall 2)

n(6EI/L3) = 553.4 lbf/in (stiffness provided by columns of endwall 2)

Shear Load in Endwall 1, Vmax, 1 = 3701 lbf DAFI Output: Load Resisted by Frame 1

Shear Load in Endwall 2, Vmax, 2 = 3487 lbf DAFI Output: Load Resisted by Frame 16; Wall with 24' Door

Allowable Shear Strength, va = 110 lbf/ft (from Table 6.1 test assembly #6 of PFBDM)

EndwallLoad Ratio

1 Exterior Sheathing 0.480

Interior Sheathing 0.480

Bare Frame 0.040

2 Exterior Sheathing 0.480

Interior Sheathing 0.480

Bare Frame 0.040

vmax ≤ va <ok> (actual shear in endwalls is less than allowable shear)

n/a13693 141 n/a553

1776

6570 110

13693 1673 356570 110

13693 1673 35

n/a

Allowable Load on Component,

va

(lb/ft)

110

110

692

8213

(lb/ft)

17117

17117 150 n/a

17117 30

1776

(lbf/in)

8213

(lbs)

Wall ComponentTotal Stiffness

of EndwallTotal Load on

Component

Stiffness of Wall

Component

Shear Load on Component,

vmax

30

The endwalls are sheathed inside and out with Grandrib 3, 29 gage structural metal sheathing manufactured by Fabral. Thesheathing is fastened to 2x4 girts with #10x1" screws 6" o/c at edges and 12" o/c at all intermediate framing. Though the testing wasdone with purlins placed on edge, it is a reasonable assumption that the purlins with flat orientation will yield equal or better results.The testing was done with 2x4 No.2 DFL purlins , fastened to rafters with (1) 60d spike and (2) 10d toenails. Table 6.1 of thePFBDM is silent on the controlling failure mode, whether it was in the wood portion of the test assembly or the steel panels. To beconservative, it is assumed that the failure is in the steel panels and the load duration factor, CD = 1.0 is applied in the calculations.

Ref: Lukens & Bundy, 1987, as presented in Table 6.1 (Test Assembly #6) of the PFBDM by NFBA.

(lbf/in)

Wind-Governed Design Example, Page 15 of 28

Page 17: Wind Controlled Design Document

3.9 Sidewall Shear Strength Check

Wind Parallel To Ridge

Allowable Shear Strength, va = 110 lbf/ft (CD = 1.0)

Fixity Factor, f fixed= 0.375 (assume zero column rotation at ground level)

Tributary Area, At = 810 ft2 (see sketch above)

Length of Wall, Lsidewall = 79 ft (length of sidewall minus all door and window openings)qww = 10.0 psf (10 psf minimum requirement controls the design)qlw = 0.0 psf (10 psf minimum requirement controls the design)

Maximum Shear Load, Vmax = 8100 lbsActual Shear Load, vsidewall = 51 lbf/ft V max /L sidewall /2walls

vsidewall ≤ va <ok> (actual shear in sidewall is less than allowable shear)

3.10 Roof Diaphragm Shear Strength Check

Allowable Shear Strength, va = 110 lbf/ft

Max Shear, Vmax, horizontal = 3432 lbf DAFI Diaphragm Analysis Output

Ch, roof = ch,1 roof + ch2, roof = 19973 lbf/in (horizontal stiffness provided by roof sheathing)

Ch, ceiling = 19710 lbf/in (horizontal stiffness provided by ceiling sheathing)

Ls, roof = 79.17 ft (width of building plus overhangs divided by cosine of roof angle)

Ls, ceiling = 72 ft (width of building)

vmax, in-plane = Vmax, in-plane / Ls (shear load in plane of the roof or ceiling sheathing)

The controlling load combination for wind loads parallel to ridge is D+W, where windward and leeward pressures are applied to thetributary area of the endwall. For simplicity the columns are assumed to be fully rigid at ground level with a fixity factor of 3/8.

Typically the endwalls in a post-frame building are the controlling shear walls. There are cases, however, when sidewalls are thecritical shear walls, especially in wide buildings that are short in length. In those situations a more thorough analysis is required, inwhich a roof and sidewall stiffness and possibly torsional effects on the overall building envelope are considered. An analyticalmodel of each column height with proper base conditions may also be required to calculate loads on the diaphragm more accurately.

The roof is also sheathed with Grandrib 3, 29 gage structural metal sheathing manufactured by Fabral. The sheathing isfastened to 2x4 purlins with #10x1" screws 6" o/c at edges and 12" o/c at all intermediate framing. The testing was done with 2x4No.2 DFL purlins, fastened to rafters with (1) 60d spike and (2) 10d toenails. Ref: Lukens & Bundy, 1987, as presented in Table 6.1(Test Assembly #6) of the PFBDM by NFBA.

Wind-Governed Design Example, Page 16 of 28

Page 18: Wind Controlled Design Document

Roof Component

Load Ratio

θ

(deg)

Roof Sheathing 0.503 16.26

Ceiling Sheathing

0.497 0

vmax ≤ va <ok> (actual shear in diaphragm is less than allowable shear)

3968319710

(lb/ft)

110

Max Load in Plane of

Component, Vmax, in-plane

23

Allowable Shear Load, va

1101704 1704 24

(lb/ft)(lbf/in) (lbf/in) (lbs) (lbs)

19973 39683 1727 1799

Shear Load in Plane of

Component, va

Horizontal Stiffness of Component

Total Horizontal Stiffness of Diaphragm

Max Horizontal Load on

Component, Vmax, horizontal

Wind-Governed Design Example, Page 17 of 28

Page 19: Wind Controlled Design Document

3.11 Roof Diaphragm Chord Forces

ch,1 roof = 9986 lbf/in (horizontal stiffness of roof diaphragm 1)

ch,2 roof = 9986 lbf/in (horizontal stiffness of roof diaphragm 2)

ch,3 ceiling = 19710 lbf/in (horizontal stiffness of ceiling diaphragm)

Ch = 39683 lbf/in (total combined horizontal stiffness diaphragm)

Load Ratio to Each Diaphragm , p = ch,x/Ch (individual diaphragm stiffness divided by total diaphragm stiffness)

Load on Roof Diaphragm, w = 67.29 lbf/ft (eave load, Pi, divided by column spacing, s)

End Moment, Mex = wxLx2/12 (controls the design)

Midspan Moment, Mmx = wxLx2/24* (moment equation for a beam with fixed end supports)

Tension/ Compression Force, Tx = Mex/bx (controlling moment divided by depth of individual diaphragm)

HTP37z Simpson Strap = 1600 lbs (allowable tension capacity as specified by the manufacturer)MSTA21 Simpson Strap = 1505 lbs (allowable tension capacity as specified by the manufacturer)

Load Ratio,

p

(dec.)Roof Diaphragm 1 0.252Roof Diaphragm 2 0.252

Ceiling Diaphragm 0.497

Px ≤ Pa <ok> (actual tension load is less than allowable tension load)

1600

120 72 33.4

(lbs)38 16.9

557 1505

It should be noted that typical roof diaphragm deflection consists of bending deflection, shear deflection of sheathing panel,deflection due to nail slip, and deflection due to slip in chord connection splices. Because the diaphragm stiffness in this example isbased on a sample test, it can be assumed that all of these deflection contributors, with exception of the deflection due to slip in chordconnection splices, are accounted for. It is further assumed that the deflection due to slip in chord connection splices is minimal andis an insignificant contributor to the overall diaphragm deflection.

20319 5351600(lbs)

Tension/ Compression

Force, Tx

Moment in Diaphragm,

Mx

Load on Diaphragm,

wx

(lb-ft)

Allowable Tension Load

Ta

120 38 16.9120

* A moment is generated in the diaphragm as the diaphram deflects lateraly under horizontal wind or seismic loads. The resultingbending forces travel along the length of the buidling through the edge ceiling joists and purlins which are restricted from movinglongitudinaly by rigid sidewalls; hence, the diaphragm is assumed to be rigidly fixed at the endwalls.

(lb/ft)(ft) (ft)20319

40104

535

Diaphragm Component

Diaphragm Length, Lx

Diaphragm Depth, bx

The roof diaphragm acts like a deep beam where the ends of the beam are assumed to be fixed. The diaphragm of this buildingconsists of two individual roof diaphragms, one on each side of ridge, and of one ceiling diaphragm. The bending forces in eachdiaphragm are resisted by roof purlins and ceiling joists. Because only the edge purlins and ceiling joists are fastened together toprovide a continuous tensile resistance to tension chord of diaphragms, it can be conservatively assumed that the intermediate purlinsand ceiling joists provide zero contribution to the bending resistance of diaphragms. The load is applied to the diaphragm at eave,and redistributed to individual diaphragms according to their stiffness. For simplicity, the load resistance contribution of frames isignored. The purlins are fastened together at splices with a single HTP37Z Simpson plate fastened to the side with 10dx1-1/2 nails;the ceiling joists are fastened together at splice with a single MSTA21 Simpson strap, fastened to the bottom edge with 10dx3" nails.

Wind-Governed Design Example, Page 18 of 28

Page 20: Wind Controlled Design Document

4.1 Loads

Dead Load, DL = 9 psfRoof Live Load, LLr = 20 psf

Snow Load, SLbalanced = 23.1 psf

Snow Load, SLunbalanced, windward = 6.9 psf

Snow Load, SLunbalanced,leeward = 43.7 psf, for a distance of 10.5 ft from ridge, then 23.1 psf

Windward Post Wind Load, qww = 7.6 psf or 3.6

Leeward Post Wind Load, qlw = -2.4 psf or -6.4Diaphragm Restraining Force, Q = lbs (applied at eave of frame)

4.2 Results Detailed post design calculations are provided in Appendix A Post Size = 3-ply 2x8, nail laminated post with structural glued finger joints

Grade = #1 southern yellow pine, pressure preservative treated at the embedded end Vmax, dry = 602 lb (at grade)

Mmax, dry = 1850 lb-ft (at grade)

Vmax, wet = 1191 lb (below grade)

Mmax, wet = 2395 lb-ft (below grade)

Pmax = 9872 lb (D+S )

Actual/Allowable Unity = 0.50 (controlling combined axial and bending load combination: D+.75(S+W)

The post is sized adequately for the required loading

Section 4: Post Design

-462.6

Figure 4A. Structural analog of post-frame with non-constrained foundation.

Wind-Governed Design Example, Page 19 of 28

Page 21: Wind Controlled Design Document

5.1 Post Reactions at Grade LevelP D = 3010 lbs (Vertical dead load reaction from Visual Analysis model)

P Lr = 6080 lbs (Vertical roof live load reaction from Visual Analysis model)

P S = 6862 lbs (Vertical snow load reaction from Visual Analysis model)

Quplift = 2959 lbs (Wind service load on footing calculated using tributary area)

Va = Vmax, dry = 602 lbs (Shear force applied at grade level, from Visual Analysis model)

Ma = Mmax, dry = 1850 lbs (Moment reaction applied at grade level, from Visual Analysis model)

P = Pmax = 9872 lb (Vertical foundation load, D+L r )

Qnet= 1153 lb (Net uplift load on foundation, 0.6D+W)

5.2 Results Detailed foundation calculations are provided in Appendix B Minimum Post Embedment, d = 3.3 ft (minimum calculated embedment depth)

Actual Post Embedment, da = 4.0 ft

Applied Vertical Soil Pressure, Sa = 3142 psf (calculated)

Allowable Soil Pressure, Sv = 3867 psf, ( 93.33 % increases are applied per EP486.1, Table 1, Footnote 4)Calculated Uplift Resistance, U = 2395 lbs (resistance consists of weight of concrete collar + weight of soil cone)

d ≤ da <ok> (required post embedment is less than actual post embedment)

Sa ≤ Sv <ok> (actual vertical soil bearing pressure is less than the allowable)

Qnet ≤ U <ok> (net uplift load is less than the calculated footing uplift resistance)

Section 5: Foundation Design

Figure 5A. FBD of non-constrained post foundation with concrete collar from ANSI/ASAE EP486.1.

ANSI/ASAE EP486.1 Defines non-constrained foundation as a case in which "Post foundation rotation and horizontal The post embedment below grade is 4 ft; a 24" diameter x 24" high concrete collar is poured around the post, on top of an

Wind-Governed Design Example, Page 20 of 28

Page 22: Wind Controlled Design Document

6.1 List of Critical Connections

▪ Truss to Post Connection - Vertical shear due to truss uplift▪ Truss to Post Connection - Horizontal shear due to post top end reactions▪ Truss to Glulam Header Over Sidewall Door Connection -Truss uplift▪ Endwall Ceiling Ledger to Posts Connection - Shear between ceiling diaphragm and end shear wall▪ Skirt Board to Posts Connection - Shear between shear wall and posts at grade level▪ Purlin to Purlin at Splice Connection - Tension load between diaphragm tension chords▪ Ceiling Joist to Ceiling Joist at Splice Connection - Tension load between diaphragm tension chords▪ Post to Concrete Collar Connection - Vertical shear due to post uplift

6.2 Truss to Post Connection

Figure 6A. Critical connection locations.

Section 6: Connections

In this example only connections critical to the lateral force resistance system are analyzed:

Trusses are placed in a pocket created by notching the center lamination at top of post. The exterior laminations are then extended tothe top of top chord of truss, and fastened to truss with (5) 16d common wire nails on each side. This connection is designed to resistvertical and horizontal shear loads. The vertical shear load, or load from truss uplift, can be calculated using tributary areas and roofwind pressures, or can be provided by a truss designer. In this example the uplift loads are calculated using tributary areas and windpressures. The horizontal shear load at top of post can be conservatively approximated using tributary area and wind pressures, whichis a product of (3/8)(column height)(column spacing)(controlling wind pressure), assuming that the column is fixed at bottom (gradelevel) and has a horizontal roller support at top. The more accurate horizontal shear load can be determined by modeling the criticalframe, the frame closest to the more rigid endwall, in a computer program, or by using DAFI results outputs. This example utilizesthe latter of these three methods.

Detailed Connection Calculations Are Provided In Appendix C

Wind-Governed Design Example, Page 21 of 28

Page 23: Wind Controlled Design Document

Vertical Shear Load and Design:

Tributary Width = 304 ft2

Roof Wind Pressures, qwr = -9.7 psfEffective Dead Load = 4.5 psf (50% of design dead load)

Net Uplift Force = -2139 lbs (0.6D+W)Allowable Shear Capacity = 2275 lbs (Detailed connection calculations are provided in Appendix C)

Horizontal Shear Load and Design:

Horizontal Roof Load, Fr = 0 lbs (1) (roof component of calculated eave load divided by 2 posts)

Resisting Force by Diaphragm, Rd = -377.7 lbs (2) F d = [(eave load)-(load resisted by Frame 2)][q ww /(q ww +q lw )]

Resistance by Opposite Post, R2 = -9.72 lbs (3) R 2 = Δ2 (k)q lw /(q ww -q lw ), where k = frame stiffness

Shear at Top of Post, V2 = -387 lbs (V 2 = F r + R d + R 2 )Allowable Shear Capacity = 2275 lbs (Detailed connection calculations are provided in Appendix C)

6.3 Truss to Glulam Header Connection

Tributary Width = 304 ft2

Roof Wind Pressures, qwr = -9.7 psfEffective Dead Load = 4.5 psf (50% of design dead load)

Net Uplift Force = -2139 lbs (0.6D+W)Allowable Shear Capacity = 2280 lbs (Detailed connection calculations are provided in Appendix C)

6.4 Endwall Ceiling Ledger to Posts Connection

Number of Posts = 10Number of 16d Nails per Post = 4

Maximum Shear, Vmax, horizontal = 1704 lbs (V max, horiz. from Section 3.10 Roof Diaphragm Shear Strength Check)Allowable Shear Capacity = 9830 lbs (Detailed connection calculations are provided in Appendix C)

6.5 Endwall Skirt Board to Post Connection

Number of Posts = 10Number of 16d Nails per Post = 4Maximum Shear, Vmax, exterior = 1776 lbs (V max from Section 3.8 Endwall Shear Strength Check)Maximum Shear, Vmax, interior = 1776 lbs (V max from Section 3.8 Endwall Shear Strength Check)

Allowable Shear Capacity, Va = 6881 lbs (Detailed connection calculations are provided in Appendix C)

There is a #2 SYP skirt board on the exterior side of end wall, and a 2x4 #1 SYP bottom girt on the interior side of end wall. The

The end shear at top of post equals the calculated horizontal reaction of the critical frame. This reaction is the sum of three (3)

Truss is fastened to glulam header over 16 ft. door with (2) H10A Simpson hurricane ties, one tie on each side of beam. The specific

The shear load from roof diaphragm is transferred to endwall truss and then to wall sheathing. This load path does not directly rely

Wind-Governed Design Example, Page 22 of 28

Page 24: Wind Controlled Design Document

6.6 Purlin to Purlin at Splice and to Endwall Truss Connection

Maximum Tension Force, Tmax = 535 lbs (T x from Section 3.11 Roof Diaphragm Chord Forces)

Allowable Tension Capacity, Ta = 1850 lbs (Detailed connection calculations are provided in Appendix C)

Allowable Tension Capacity, Ta = 1513 lbs (Detailed connection calculations are provided in Appendix C)

6.7 Ceiling Joist to Ceiling Joist Splice and to Corner Post Connection

Maximum Tension Force, Tmax = 557 lbs (T x from Section 3.11 Roof Diaphragm Chord Forces)

Allowable Tension Capacity, Ta = 1505 lbs (Detailed connection calculations are provided in Appendix C)

Allowable Tension Capacity, Ta = 1474 lbs (Detailed connection calculations are provided in Appendix C)

6.8 Post to Concrete Collar Connection

Net Uplift Force, Qnet = 1153 lbs (from Section 5.1 Post Reactions at Grade Level)Number of Reinforcing Bars = 1

Allowable Shear Capacity, Z' = Z(CD)(CM) = 1720(1.6)(0.7) = 1926 lbs

The edge ceiling joists serve as tension and compression chords of the ceiling diaphragm. In order to provide a continuity in tensileresistance in the tension chord of the diaphragm, the ceiling joists must be fastened together at each splice. In this design a MSTA21Simpson strap is used at each purlin splice. The edge ceiling joists must also be fastened to corner posts to transfer loads intosidewall sheathing.

The edge purlins serve as tension and compression chords of the roof diaphragm. In order to provide a continuity in tensile resistancein the tension chord of the diaphragm, the purlins must be fastened together at each splice. In this design a HTP37Z Simpson strap isused at each purlin splice. The edge purlin must also be fastened to endwall truss to transfer loads into sidewall sheathing. Inaddition to (1) 60d R.S. nail, a 2x4x10 inch wood block is attached to truss and purlin. To provide adequate withdrawal capacity, theblock is attached to truss with (8) #8x3" wood screws, four (4) screws at top of top chord of truss and four (4) screws at bottom of topchord. The purlin is fastened to the block with (5) 16d nails. This connection must be at all edge purlins on each side of the ridgeline; there are the total of four (4) purlins and eight (8) of such connections in the building.

Each post is connected below grade to a concrete collar (backfill) with (1) #4 x 16 inch hot dipped galvanized rebar. This connectionis checked using the provisions of the 2005 National Design Specification for Wood Construction (NDS) by AF&PA for a 1/2 inchdiameter bolt in high moisture conditions.

Wind-Governed Design Example, Page 23 of 28

Page 25: Wind Controlled Design Document

Wind-Governed Design Example, Page 24 of 28

Page 26: Wind Controlled Design Document

Wind-Governed Design Example, Page 25 of 28

Page 27: Wind Controlled Design Document

Wind-Governed Design Example, Page 26 of 28

Page 28: Wind Controlled Design Document

7.1 Purlin Design

Dead Load, DL = 2.5 psf (on surface area, see Roof Dead Load Section)Roof Live Load, LLr = 20 psf (on horizontal projection, does not control)

Snow Load, SLbalanced = 23.1 psf (on horizontal projection)

Snow Load, SLunbalanced, windward = 6.9 psf (on horizontal projection)

Snow Load, SLunbalanced,leeward = 43.7 psf, for a distance of 10.5 ft from ridge, then 23.1 psf

Interior Roof Wind Load, qinterior = -11.7 psf (component and cladding)

Edge Roof Wind Load, qedge = -19.2 psf (component and cladding)

Corner Roof Wind Load, qcorner = -28.9 psf (component and cladding)Deflection Criterion = l/150 and l/120 for Live and Dead + Live Loads

Roof angle, θr = 16.3 degrees

Purlin θrDead Load

Roof Live Load

Corner Wind Load

(deg) (lb/ft) (lb/ft) (lb/ft)

Typical Purlin 16.3 5 38.4 -57.7

Purlin in Unbalanced Snow Area

16.3 3.33 25.5 -38.4

7.2 Girt Design

Interior Wall Wind Load, qinterior = -13.7 psf (component and cladding)

Edge Wall Wind Load, qedge = -16.4 psf (component and cladding)Deflection Criterion = l/90 (IBC 2009, 1604.3, Footnote a)

(lb/ft)

2x4 #2 S. Pine flat against posts @ 24" on center continuous over two spans (Design details are provided in Appendix D).

2x4 #2 S. Pine on edge @ 24" on center except 16" on center in unbalanced snow area 10.5 ft. each side of ridge (Design details are provided in Appendix D).

-23.3 -38.42 44.4

-15.5

Spacing

(ft)

Interior Wind Load

Edge Wind Load

83.9

1.33 29.5 55.8

(lb/ft)

Section 7: Purlin & Girt Design

Purlins are positioned on edge on top of top chord of truss and typically span over two spans for the total length of 16ft. Due to thesloping roof, the gravity loads are not aligned with the strong axis of the purlin. At the same time, the purlin can only move about itsstrong axis as the movement about the weak axis is restricted by the attached rigid roof panels. Thus, the gravity loads on the purlinshould be broken down into strong axis and weak axis components, or 'y' and 'x' components on the sloping coordinate system. Theresults of the design are provided in the Appendix D.

STRONG AXIS LOADING ON PURLIN

Unbalanced Snow Load

Balanced Snow Load

(lb/ft) (lb/ft)

-25.5

Wind-Governed Design Example, Page 27 of 28

Page 29: Wind Controlled Design Document

▪ Overhead Door Header(s) to Post Connection - Vertical and Horizontal shear▪ Girt to Post Connection - Withdrawal due to wind suction▪ Purlin to Truss Connection -Withdrawal (uplift) due to wind suction▪ Roof Sheathing to Purlins Connection -Withdrawal (uplift) due to wind suction▪ Wall Sheathing to Girts Connection - Withdrawal due to wind suction

This design example focused on resistance to lateral loads. Some other important connections not contained in this example, may include:

It is also important to note that the truss design will be performed by the truss designer using the loading and geometry provided by the building designer. Guidelines for handling, bracing, and installing metal plate connected wood trusses are contained in the Building Component Safety Information (BCSI) booklet published jointly by TPI and WTCA. The truss bracing design for this building should take into account the bottom chord and compression web lateral restraint requirements shown on the truss design drawings, as well as the on center spacing of the trusses.

Section 8: Other Design Considerations

Wind-Governed Design Example, Page 28 of 28

Page 30: Wind Controlled Design Document

FRAME EAVE REACTIONPOST DESIGN

APPENDIX AFRAME STIFFNESS

Appendix A Page 1 of 26

Page 31: Wind Controlled Design Document

A.1 Frame Stiffness

LOADING ON FRAME

FRAME DEFLECTION FROM THE APPLIED 100 LB HORIZONTAL EAVE LOAD(Eave Deflection = 0.751 in)

Appendix A Page 2 of 26

Page 32: Wind Controlled Design Document

A.2 Post Design

NODE NAMES(IES Visual Analysis 7.0)

(IES Visual Analysis 7.0)MEMBER NAMES

Appendix A Page 3 of 26

Page 33: Wind Controlled Design Document

(IES Visual Analysis 7.0)ROOF LIVE LOADS

(IES Visual Analysis 7.0)DEAD LOADS

Appendix A Page 4 of 26

Page 34: Wind Controlled Design Document

(IES Visual Analysis 7.0)

WIND LOADS BASED ON NEGATIVE INTERNAL PRESSUREHorizontal Point Load is Diaphragm Resistance, See Section 3.7 of the Design Example

UNBALANCED SNOW LOADS(IES Visual Analysis 7.0)

Appendix A Page 5 of 26

Page 35: Wind Controlled Design Document

WIND LOADS BASED ON POSITIVE INTERNAL PRESSURE

UNITY CHECKApplied Stresses from Controlling Load Combination Divided by Adjusted Allowable Sresses

(IES Visual Analysis 7.0)

Horizontal Point Load is Diaphragm Resistance, See Section 3.7 of the Design Example(IES Visual Analysis 7.0)

Appendix A Page 6 of 26

Page 36: Wind Controlled Design Document

Visual Analysis Report - Sidewall Post Design

Company: Timber Tech Engineering, Inc. Engineer: Dimitry Reznik VisualAnalysis 7.00 Report

Table of ContentsProject HeaderTable of ContentsLoad CasesLoad Combination SummarySection PropertiesMember ElementsDesign GroupsNodal LoadsMember Uniform LoadsNodal DisplacementsMember Unity ChecksDesign Group ResultsNodal Reactions

Load Cases——————————————————————————————————————————————————————————————————————————————————Load Case Design Checks Seismic Type Results Analyze? Envelope?——————————————————————————————————————————————————————————————————————————————————

( 1)Dead Load -NA- -NA- Yes Yes No (11)Roof Live Load -NA- -NA- Yes Yes No (14)Snow Unbalanced -NA- -NA- Yes Yes No (16)Wind Load (-) -NA- -NA- Yes Yes No (17)Wind Load (+) -NA- -NA- Yes Yes No (18)0.6D+W+H »+X Allowable (ASD) -NA- Yes Yes No (19)0.6D+W+H »-X Allowable (ASD) -NA- Yes Yes No (20)D+F Allowable (ASD) -NA- Yes Yes No (21)D+H+F+0.75(L+Lr) Allowable (ASD) -NA- Yes Yes No (22)D+H+F+0.75(L+S) Allowable (ASD) -NA- Yes Yes No (23)D+H+F+0.75(W+L+Lr) »+ Allowable (ASD) -NA- Yes Yes No (24)D+H+F+0.75(W+L+Lr) »- Allowable (ASD) -NA- Yes Yes No (25)D+H+F+0.75(W+L+R) »+X Allowable (ASD) -NA- Yes Yes No (26)D+H+F+0.75(W+L+R) »-X Allowable (ASD) -NA- Yes Yes No (27)D+H+F+0.75(W+L+S) »+X Allowable (ASD) -NA- Yes Yes No (28)D+H+F+0.75(W+L+S) »-X Allowable (ASD) -NA- Yes Yes No (29)D+H+F+Lr Allowable (ASD) -NA- Yes Yes No (30)D+H+F+S Allowable (ASD) -NA- Yes Yes No (31)D+H+F+W »+X Allowable (ASD) -NA- Yes Yes No (32)D+H+F+W »-X Allowable (ASD) -NA- Yes Yes No ——————————————————————————————————————————————————————————————————————————————————

Load Combination SummaryEquation Combination: 0.6D+W+H »+X Combination: 0.60D + H*0 + 1.50Fa*0 + W+X Contributing Cases & Source Dead Load (D)

Appendix A Page 7 of 26

Page 37: Wind Controlled Design Document

Wind Load (-) (W+X)Equation Combination: 0.6D+W+H »-X Combination: 0.60D + H*0 + 1.50Fa*0 + W-X Contributing Cases & Source Dead Load (D) Wind Load (+) (W-X)Equation Combination: D+F Combination: D + F*0 Contributing Cases & Source Dead Load (D)Equation Combination: D+H+F+0.75(L+Lr) Combination: D + 0.75L*0 + 0.75Lpa*0 + 0.75Lr + H*0 + F*0 + 0.75T*0 Contributing Cases & Source Dead Load (D) Roof Live Load (Lr)Equation Combination: D+H+F+0.75(L+S) Combination: D + 0.75L*0 + 0.75Lpa*0 + 0.75S + H*0 + F*0 + 0.75T*0 Contributing Cases & Source Dead Load (D) Snow Unbalanced (S)Equation Combination: D+H+F+0.75(W+L+Lr) »+X Combination: D + 0.75L*0 + 0.75Lpa*0 + 0.75Lr + H*0 + F*0 + 1.50Fa*0 + 0.75W+X Contributing Cases & Source Dead Load (D) Roof Live Load (Lr) Wind Load (-) (W+X)Equation Combination: D+H+F+0.75(W+L+Lr) »-X Combination: D + 0.75L*0 + 0.75Lpa*0 + 0.75Lr + H*0 + F*0 + 1.50Fa*0 + 0.75W-X Contributing Cases & Source Dead Load (D) Roof Live Load (Lr) Wind Load (+) (W-X)Equation Combination: D+H+F+0.75(W+L+R) »+X Combination: D + 0.75L*0 + 0.75Lpa*0 + 0.75R*0 + H*0 + F*0 + 1.50Fa*0 + 0.75W+X Contributing Cases & Source Dead Load (D) Wind Load (-) (W+X)Equation Combination: D+H+F+0.75(W+L+R) »-X Combination: D + 0.75L*0 + 0.75Lpa*0 + 0.75R*0 + H*0 + F*0 + 1.50Fa*0 + 0.75W-X Contributing Cases & Source Dead Load (D) Wind Load (+) (W-X)Equation Combination: D+H+F+0.75(W+L+S) »+X Combination: D + 0.75L*0 + 0.75Lpa*0 + 0.75S + H*0 + F*0 + 1.50Fa*0 + 0.75W+X Contributing Cases & Source Dead Load (D) Snow Unbalanced (S) Wind Load (-) (W+X)Equation Combination: D+H+F+0.75(W+L+S) »-X Combination: D + 0.75L*0 + 0.75Lpa*0 + 0.75S + H*0 + F*0 + 1.50Fa*0 + 0.75W-X Contributing Cases & Source Dead Load (D) Snow Unbalanced (S) Wind Load (+) (W-X)Equation Combination: D+H+F+Lr Combination: D + Lr + H*0 + F*0 Contributing Cases & Source

Appendix A Page 8 of 26

Page 38: Wind Controlled Design Document

Dead Load (D) Roof Live Load (Lr)Equation Combination: D+H+F+S Combination: D + S + H*0 + F*0 Contributing Cases & Source Dead Load (D) Snow Unbalanced (S)Equation Combination: D+H+F+W »+X Combination: D + H*0 + F*0 + 1.50Fa*0 + W+X Contributing Cases & Source Dead Load (D) Wind Load (-) (W+X)Equation Combination: D+H+F+W »-X Combination: D + H*0 + F*0 + 1.50Fa*0 + W-X Contributing Cases & Source Dead Load (D) Wind Load (+) (W-X)

Section Properties————————————————————————————————————————————————————Section Theta Ax Iz Sz(+y) Sz(-y) deg in^2 ft^4 ft^3 ft^3————————————————————————————————————————————————————

3plyX8 0.00 30.99 0.01 0.02 0.02SS2x4 0.00 5.25 0.00 0.00 0.00SS2x6 0.00 8.25 0.00 0.00 0.00————————————————————————————————————————————————————

Member Elements—————————————————————————————————————————————————————————————————————————————————————————Member Section Material (1)Node (2)Node Length Rz1 Rz2 One Way Framing ft —————————————————————————————————————————————————————————————————————————————————————————

1 SS2x4 Southern N054 N014 4.79 Free Free Normal Bracing2 SS2x4 Southern N054 N019 6.66 Free Free Normal Bracing3 SS2x4 Southern N059 N019 6.22 Free Free Normal Bracing4 SS2x4 Southern N059 N024 8.86 Free Free Normal Bracing5 SS2x4 Southern N065 N024 9.21 Free Free Normal Bracing6 SS2x4 Southern N065 N009 11.74 Free Free Normal Column 7 SS2x4 Southern N070 N009 11.72 Free Free Normal Column 8 SS2x4 Southern N070 N035 9.06 Free Free Normal Bracing9 SS2x4 Southern N076 N035 9.26 Free Free Normal Bracing10 SS2x4 Southern N076 N040 5.90 Free Free Normal Bracing11 SS2x4 Southern N081 N040 7.57 Free Free Normal Bracing12 SS2x4 Southern N081 N045 3.82 Free Free Normal BracingM1 SS2x6 Southern N083 N002 2.08 Fix Fix Normal Beam P1-Dry 3plyX8 Southern N082 N002 16.00 Fix Free Normal Column P1-Wet 3plyX8 Southern N004 N082 3.60 Fix Fix Normal Column M2 SS2x6 Southern N002 N009 37.50 Fix Free Normal Beam P2-Dry 3plyX8 Southern N085 N006 16.00 Fix Free Normal Column P2-Wet 3plyX8 Southern N008 N085 3.60 Fix Fix Normal Column M3 SS2x6 Southern N006 N009 37.50 Fix Free Normal Beam

Appendix A Page 9 of 26

Page 39: Wind Controlled Design Document

M4 SS2x6 Southern N084 N006 2.08 Fix Fix Normal Beam M5 SS2x6 Southern N002 N006 72.00 Free Free Normal Beam —————————————————————————————————————————————————————————————————————————————————————————

Design Groups———————————————————————————————————————————————————————————————————Group/Me Elements LL Factor Unity Design Shape Overstrength———————————————————————————————————————————————————————————————————

Post Abo 2 1.00 0.50 3plyX8 No Post Bel 2 1.00 0.32 3plyX8 No ———————————————————————————————————————————————————————————————————

Nodal Loads—————————————————————————————————————————————————————————Load Case Node Direction Force Moment lb lb-ft—————————————————————————————————————————————————————————

Wind Load (+) N006 DX -462.30 0.00Wind Load (-) N006 DX -462.30 0.00—————————————————————————————————————————————————————————

Member Uniform Loads—————————————————————————————————————————————————————————————————————————————Load Case Member Direction Offset End Offset Force Moment ft ft lb/ft ft-lb/ft—————————————————————————————————————————————————————————————————————————————

Dead Load M1 DY proj. 0.00 2.08 -32.0 -NA-Dead Load M2 DY proj. 0.00 37.50 -32.0 -NA-Dead Load M3 DY proj. 0.00 37.50 -32.0 -NA-Dead Load M4 DY proj. 0.00 2.08 -32.0 -NA-Dead Load M5 DY 0.00 72.00 -40.0 -NA-Roof Live Load M1 DY proj. 0.00 2.08 -160. -NA-Roof Live Load M2 DY proj. 0.00 37.50 -160. -NA-Roof Live Load M3 DY proj. 0.00 37.50 -160. -NA-Roof Live Load M4 DY proj. 0.00 2.08 -160. -NA-Snow Unbalanced M1 DY proj. 0.00 2.08 -55.2 -NA-Snow Unbalanced M2 DY proj. 0.00 37.50 -55.2 -NA-Snow Unbalanced M3 DY proj. 0.00 26.50 -185. -NA-Snow Unbalanced M3 DY proj. 26.50 37.50 -349.60 -NA-Snow Unbalanced M4 DY proj. 0.00 2.08 -184.80 -NA-Wind Load (+) P1-Dry DX 0.00 16.00 28.80 -NA-Wind Load (+) P2-Dry DX 0.00 16.00 51.20 -NA-Wind Load (-) P1-Dry DX 0.00 16.00 60.80 -NA-Wind Load (-) P2-Dry DX 0.00 16.00 19.20 -NA-—————————————————————————————————————————————————————————————————————————————

Nodal DisplacementsAppendix A Page 10 of 26

Page 40: Wind Controlled Design Document

————————————————————————————————————————————————————————Node Result Case Name DX DY RZ in in deg————————————————————————————————————————————————————————

N001 0.6D+W+H »+X 0.0000 -0.0009 -0.07N001 0.6D+W+H »-X 0.0000 -0.0009 -0.04N001 D+F -0.0000 -0.0015 0.01N001 D+H+F+0.75(L+Lr) -0.0000 -0.0039 0.02N001 D+H+F+0.75(L+S) -0.0000 -0.0031 0.02N001 D+H+F+0.75(W+L+Lr) »+X 0.0000 -0.0039 -0.04N001 D+H+F+0.75(W+L+Lr) »-X 0.0000 -0.0039 -0.02N001 D+H+F+0.75(W+L+R) »+X 0.0000 -0.0015 -0.05N001 D+H+F+0.75(W+L+R) »-X 0.0000 -0.0015 -0.03N001 D+H+F+0.75(W+L+S) »+X 0.0000 -0.0031 -0.04N001 D+H+F+0.75(W+L+S) »-X 0.0000 -0.0031 -0.02N001 D+H+F+Lr -0.0000 -0.0046 0.02N001 D+H+F+S -0.0000 -0.0036 0.02N001 D+H+F+W »+X 0.0000 -0.0015 -0.07N001 D+H+F+W »-X 0.0000 -0.0015 -0.04N001 Dead Load -0.0000 -0.0015 0.01N001 Roof Live Load -0.0000 -0.0031 0.01N001 Snow Unbalanced -0.0000 -0.0020 0.01N001 Wind Load (+) 0.0000 0.0000 -0.04N001 Wind Load (-) 0.0000 0.0000 -0.07N002 0.6D+W+H »+X 0.4693 -0.0079 -0.39N002 0.6D+W+H »-X 0.4630 -0.0079 -0.40N002 D+F -0.2048 -0.0131 -0.68N002 D+H+F+0.75(L+Lr) -0.5209 -0.0335 -1.79N002 D+H+F+0.75(L+S) -0.5046 -0.0265 -1.51N002 D+H+F+0.75(W+L+Lr) »+X -0.0768 -0.0335 -1.78N002 D+H+F+0.75(W+L+Lr) »-X -0.0815 -0.0335 -1.78N002 D+H+F+0.75(W+L+R) »+X 0.2393 -0.0131 -0.67N002 D+H+F+0.75(W+L+R) »-X 0.2346 -0.0131 -0.68N002 D+H+F+0.75(W+L+S) »+X -0.0605 -0.0265 -1.50N002 D+H+F+0.75(W+L+S) »-X -0.0651 -0.0265 -1.50N002 D+H+F+Lr -0.6263 -0.0403 -2.15

N002 D+H+F+S -0.6045 -0.0310 -1.78N002 D+H+F+W »+X 0.3873 -0.0131 -0.67N002 D+H+F+W »-X 0.3811 -0.0131 -0.67N002 Dead Load -0.2048 -0.0131 -0.68N002 Roof Live Load -0.4215 -0.0271 -1.47N002 Snow Unbalanced -0.3997 -0.0179 -1.10N002 Wind Load (+) 0.5859 0.0000 0.01N002 Wind Load (-) 0.5921 0.0000 0.01N004 0.6D+W+H »+X -0.0000 -0.0000 0.03N004 0.6D+W+H »-X -0.0000 -0.0000 0.02N004 D+F 0.0000 -0.0000 -0.00N004 D+H+F+0.75(L+Lr) 0.0000 -0.0000 -0.01N004 D+H+F+0.75(L+S) 0.0000 -0.0000 -0.01N004 D+H+F+0.75(W+L+Lr) »+X -0.0000 -0.0000 0.02N004 D+H+F+0.75(W+L+Lr) »-X -0.0000 -0.0000 0.01N004 D+H+F+0.75(W+L+R) »+X -0.0000 -0.0000 0.02N004 D+H+F+0.75(W+L+R) »-X -0.0000 -0.0000 0.01N004 D+H+F+0.75(W+L+S) »+X -0.0000 -0.0000 0.02N004 D+H+F+0.75(W+L+S) »-X -0.0000 -0.0000 0.01

Appendix A Page 11 of 26

Page 41: Wind Controlled Design Document

N004 D+H+F+Lr 0.0000 -0.0000 -0.01N004 D+H+F+S 0.0000 -0.0000 -0.01N004 D+H+F+W »+X -0.0000 -0.0000 0.03N004 D+H+F+W »-X -0.0000 -0.0000 0.02N004 Dead Load 0.0000 -0.0000 -0.00N004 Roof Live Load 0.0000 -0.0000 -0.01N004 Snow Unbalanced 0.0000 -0.0000 -0.01N004 Wind Load (+) -0.0000 0.0000 0.02N004 Wind Load (-) -0.0000 0.0000 0.04N006 0.6D+W+H »+X 0.6911 -0.0079 0.41N006 0.6D+W+H »-X 0.6973 -0.0079 0.41N006 D+F 0.2007 -0.0131 0.70N006 D+H+F+0.75(L+Lr) 0.5168 -0.0335 1.94N006 D+H+F+0.75(L+S) 0.5005 -0.0361 2.03N006 D+H+F+0.75(W+L+Lr) »+X 0.9448 -0.0335 1.93N006 D+H+F+0.75(W+L+Lr) »-X 0.9495 -0.0335 1.93N006 D+H+F+0.75(W+L+R) »+X 0.6287 -0.0131 0.69N006 D+H+F+0.75(W+L+R) »-X 0.6334 -0.0131 0.69N006 D+H+F+0.75(W+L+S) »+X 0.9285 -0.0361 2.02N006 D+H+F+0.75(W+L+S) »-X 0.9331 -0.0361 2.02N006 D+H+F+Lr 0.6222 -0.0403 2.35N006 D+H+F+S 0.6004 -0.0437 2.47

N006 D+H+F+W »+X 0.7713 -0.0131 0.69N006 D+H+F+W »-X 0.7776 -0.0131 0.69N006 Dead Load 0.2007 -0.0131 0.70N006 Roof Live Load 0.4215 -0.0271 1.65N006 Snow Unbalanced 0.3997 -0.0306 1.77N006 Wind Load (+) 0.5769 -0.0000 -0.01N006 Wind Load (-) 0.5706 -0.0000 -0.01N007 0.6D+W+H »+X 0.0000 -0.0009 -0.04N007 0.6D+W+H »-X 0.0000 -0.0009 -0.07N007 D+F 0.0000 -0.0015 -0.01N007 D+H+F+0.75(L+Lr) 0.0000 -0.0039 -0.02N007 D+H+F+0.75(L+S) 0.0000 -0.0042 -0.02N007 D+H+F+0.75(W+L+Lr) »+X 0.0000 -0.0039 -0.04N007 D+H+F+0.75(W+L+Lr) »-X 0.0000 -0.0039 -0.06N007 D+H+F+0.75(W+L+R) »+X 0.0000 -0.0015 -0.03N007 D+H+F+0.75(W+L+R) »-X 0.0000 -0.0015 -0.05N007 D+H+F+0.75(W+L+S) »+X 0.0000 -0.0042 -0.04N007 D+H+F+0.75(W+L+S) »-X 0.0000 -0.0042 -0.06N007 D+H+F+Lr 0.0000 -0.0046 -0.02N007 D+H+F+S 0.0000 -0.0050 -0.02N007 D+H+F+W »+X 0.0000 -0.0015 -0.04N007 D+H+F+W »-X 0.0000 -0.0015 -0.07N007 Dead Load 0.0000 -0.0015 -0.01N007 Roof Live Load 0.0000 -0.0031 -0.01N007 Snow Unbalanced 0.0000 -0.0035 -0.01N007 Wind Load (+) 0.0000 -0.0000 -0.06N007 Wind Load (-) 0.0000 -0.0000 -0.03N008 0.6D+W+H »+X -0.0000 -0.0000 0.02N008 0.6D+W+H »-X -0.0000 -0.0000 0.03N008 D+F -0.0000 -0.0000 0.00N008 D+H+F+0.75(L+Lr) -0.0000 -0.0000 0.01N008 D+H+F+0.75(L+S) -0.0000 -0.0000 0.01N008 D+H+F+0.75(W+L+Lr) »+X -0.0000 -0.0000 0.02N008 D+H+F+0.75(W+L+Lr) »-X -0.0000 -0.0000 0.03

Appendix A Page 12 of 26

Page 42: Wind Controlled Design Document

N008 D+H+F+0.75(W+L+R) »+X -0.0000 -0.0000 0.02N008 D+H+F+0.75(W+L+R) »-X -0.0000 -0.0000 0.03N008 D+H+F+0.75(W+L+S) »+X -0.0000 -0.0000 0.02N008 D+H+F+0.75(W+L+S) »-X -0.0000 -0.0000 0.03N008 D+H+F+Lr -0.0000 -0.0000 0.01N008 D+H+F+S -0.0000 -0.0000 0.01N008 D+H+F+W »+X -0.0000 -0.0000 0.02N008 D+H+F+W »-X -0.0000 -0.0000 0.03N008 Dead Load -0.0000 -0.0000 0.00N008 Roof Live Load -0.0000 -0.0000 0.01N008 Snow Unbalanced -0.0000 -0.0000 0.01N008 Wind Load (+) -0.0000 -0.0000 0.03N008 Wind Load (-) -0.0000 -0.0000 0.02N009 0.6D+W+H »+X 0.5807 -0.8693 0.00N009 0.6D+W+H »-X 0.5807 -0.8907 0.00N009 D+F -0.0012 -1.5101 0.00N009 D+H+F+0.75(L+Lr) 0.0002 -3.8376 0.00N009 D+H+F+0.75(L+S) 0.0577 -3.7214 0.00N009 D+H+F+0.75(W+L+Lr) »+X 0.4363 -3.8101 0.00N009 D+H+F+0.75(W+L+Lr) »-X 0.4363 -3.8261 0.00N009 D+H+F+0.75(W+L+R) »+X 0.4349 -1.4825 0.00N009 D+H+F+0.75(W+L+R) »-X 0.4349 -1.4985 0.00N009 D+H+F+0.75(W+L+S) »+X 0.4937 -3.6939 0.00N009 D+H+F+0.75(W+L+S) »-X 0.4937 -3.7099 0.00N009 D+H+F+Lr 0.0007 -4.6134 0.00N009 D+H+F+S 0.0773 -4.4586 0.00N009 D+H+F+W »+X 0.5802 -1.4734 0.00N009 D+H+F+W »-X 0.5802 -1.4947 0.00N009 Dead Load -0.0012 -1.5101 0.00N009 Roof Live Load 0.0019 -3.1034 0.00N009 Snow Unbalanced 0.0784 -2.9485 0.00N009 Wind Load (+) 0.5814 0.0154 0.00N009 Wind Load (-) 0.5814 0.0367 0.00N014 0.6D+W+H »+X 0.5854 -0.5194 -0.25N014 0.6D+W+H »-X 0.5825 -0.5309 -0.26N014 D+F -0.0016 -0.8985 -0.44N014 D+H+F+0.75(L+Lr) -0.0032 -2.2965 -1.15N014 D+H+F+0.75(L+S) -0.0454 -2.0011 -1.00N014 D+H+F+0.75(W+L+Lr) »+X 0.4366 -2.2818 -1.14N014 D+H+F+0.75(W+L+Lr) »-X 0.4344 -2.2904 -1.15N014 D+H+F+0.75(W+L+R) »+X 0.4382 -0.8837 -0.43N014 D+H+F+0.75(W+L+R) »-X 0.4360 -0.8923 -0.43N014 D+H+F+0.75(W+L+S) »+X 0.3944 -1.9864 -0.99N014 D+H+F+0.75(W+L+S) »-X 0.3923 -1.9949 -0.99N014 D+H+F+Lr -0.0037 -2.7625 -1.39N014 D+H+F+S -0.0599 -2.3687 -1.18N014 D+H+F+W »+X 0.5848 -0.8788 -0.43N014 D+H+F+W »-X 0.5819 -0.8903 -0.43N014 Dead Load -0.0016 -0.8985 -0.44N014 Roof Live Load -0.0021 -1.8641 -0.95N014 Snow Unbalanced -0.0583 -1.4702 -0.75N014 Wind Load (+) 0.5835 0.0082 0.00N014 Wind Load (-) 0.5864 0.0197 0.01N019 0.6D+W+H »+X 0.6169 -0.7638 -0.04N019 0.6D+W+H »-X 0.6157 -0.7811 -0.05N019 D+F 0.0558 -1.3227 -0.08N019 D+H+F+0.75(L+Lr) 0.1427 -3.3636 -0.14

Appendix A Page 13 of 26

Page 43: Wind Controlled Design Document

N019 D+H+F+0.75(L+S) 0.1161 -3.0355 -0.24N019 D+H+F+0.75(W+L+Lr) »+X 0.5803 -3.3412 -0.14N019 D+H+F+0.75(W+L+Lr) »-X 0.5794 -3.3542 -0.14N019 D+H+F+0.75(W+L+R) »+X 0.4934 -1.3003 -0.08N019 D+H+F+0.75(W+L+R) »-X 0.4925 -1.3134 -0.08N019 D+H+F+0.75(W+L+S) »+X 0.5537 -3.0131 -0.24N019 D+H+F+0.75(W+L+S) »-X 0.5528 -3.0261 -0.24N019 D+H+F+Lr 0.1717 -4.0439 -0.16N019 D+H+F+S 0.1362 -3.6064 -0.29N019 D+H+F+W »+X 0.6392 -1.2929 -0.08N019 D+H+F+W »-X 0.6381 -1.3102 -0.08N019 Dead Load 0.0558 -1.3227 -0.08N019 Roof Live Load 0.1159 -2.7212 -0.08N019 Snow Unbalanced 0.0804 -2.2837 -0.21N019 Wind Load (+) 0.5822 0.0125 0.00N019 Wind Load (-) 0.5834 0.0299 0.00N024 0.6D+W+H »+X 0.6108 -0.8604 -0.08N024 0.6D+W+H »-X 0.6106 -0.8808 -0.08N024 D+F 0.0483 -1.4924 -0.14N024 D+H+F+0.75(L+Lr) 0.1250 -3.7953 -0.53N024 D+H+F+0.75(L+S) 0.1340 -3.5329 -0.37N024 D+H+F+0.75(W+L+Lr) »+X 0.5614 -3.7690 -0.53N024 D+H+F+0.75(W+L+Lr) »-X 0.5612 -3.7843 -0.53N024 D+H+F+0.75(W+L+R) »+X 0.4847 -1.4661 -0.13N024 D+H+F+0.75(W+L+R) »-X 0.4845 -1.4814 -0.14N024 D+H+F+0.75(W+L+S) »+X 0.5704 -3.5066 -0.37N024 D+H+F+0.75(W+L+S) »-X 0.5702 -3.5219 -0.37N024 D+H+F+Lr 0.1505 -4.5630 -0.67N024 D+H+F+S 0.1626 -4.2130 -0.44N024 D+H+F+W »+X 0.6302 -1.4574 -0.13N024 D+H+F+W »-X 0.6299 -1.4778 -0.14N024 Dead Load 0.0483 -1.4924 -0.14N024 Roof Live Load 0.1023 -3.0705 -0.53N024 Snow Unbalanced 0.1143 -2.7206 -0.31N024 Wind Load (+) 0.5816 0.0147 0.00N024 Wind Load (-) 0.5819 0.0351 0.00N035 0.6D+W+H »+X 0.5513 -0.8633 0.07N035 0.6D+W+H »-X 0.5516 -0.8838 0.07N035 D+F -0.0494 -1.4975 0.11N035 D+H+F+0.75(L+Lr) -0.1210 -3.8065 0.45N035 D+H+F+0.75(L+S) -0.1073 -3.8217 0.98N035 D+H+F+0.75(W+L+Lr) »+X 0.3147 -3.7801 0.45N035 D+H+F+0.75(W+L+Lr) »-X 0.3149 -3.7954 0.45N035 D+H+F+0.75(W+L+R) »+X 0.3863 -1.4712 0.11N035 D+H+F+0.75(W+L+R) »-X 0.3865 -1.4865 0.11N035 D+H+F+0.75(W+L+S) »+X 0.3284 -3.7953 0.98N035 D+H+F+0.75(W+L+S) »-X 0.3286 -3.8107 0.98N035 D+H+F+Lr -0.1449 -4.5761 0.56N035 D+H+F+S -0.1266 -4.5964 1.27N035 D+H+F+W »+X 0.5315 -1.4624 0.11N035 D+H+F+W »-X 0.5318 -1.4828 0.11N035 Dead Load -0.0494 -1.4975 0.11N035 Roof Live Load -0.0955 -3.0786 0.44N035 Snow Unbalanced -0.0772 -3.0989 1.15N035 Wind Load (+) 0.5812 0.0147 -0.00N035 Wind Load (-) 0.5809 0.0352 -0.00N040 0.6D+W+H »+X 0.5428 -0.7810 0.05

Appendix A Page 14 of 26

Page 44: Wind Controlled Design Document

N040 0.6D+W+H »-X 0.5439 -0.7987 0.05N040 D+F -0.0612 -1.3523 0.08N040 D+H+F+0.75(L+Lr) -0.1492 -3.4352 0.18N040 D+H+F+0.75(L+S) -0.1620 -3.5091 -0.01N040 D+H+F+0.75(W+L+Lr) »+X 0.2854 -3.4124 0.18N040 D+H+F+0.75(W+L+Lr) »-X 0.2863 -3.4256 0.18N040 D+H+F+0.75(W+L+R) »+X 0.3734 -1.3295 0.08N040 D+H+F+0.75(W+L+R) »-X 0.3742 -1.3427 0.08N040 D+H+F+0.75(W+L+S) »+X 0.2726 -3.4864 -0.01N040 D+H+F+0.75(W+L+S) »-X 0.2734 -3.4996 -0.01N040 D+H+F+Lr -0.1785 -4.1295 0.21N040 D+H+F+S -0.1956 -4.2281 -0.03N040 D+H+F+W »+X 0.5183 -1.3219 0.08N040 D+H+F+W »-X 0.5194 -1.3396 0.08N040 Dead Load -0.0612 -1.3523 0.08N040 Roof Live Load -0.1173 -2.7772 0.13N040 Snow Unbalanced -0.1344 -2.8759 -0.12N040 Wind Load (+) 0.5806 0.0127 -0.00N040 Wind Load (-) 0.5795 0.0303 -0.00N045 0.6D+W+H »+X 0.5646 -0.5764 0.20N045 0.6D+W+H »-X 0.5673 -0.5886 0.20N045 D+F -0.0203 -0.9956 0.35N045 D+H+F+0.75(L+Lr) -0.0439 -2.5329 0.85N045 D+H+F+0.75(L+S) -0.0758 -2.6329 0.89N045 D+H+F+0.75(W+L+Lr) »+X 0.3887 -2.5172 0.84N045 D+H+F+0.75(W+L+Lr) »-X 0.3907 -2.5263 0.84N045 D+H+F+0.75(W+L+R) »+X 0.4123 -0.9798 0.34N045 D+H+F+0.75(W+L+R) »-X 0.4143 -0.9890 0.34N045 D+H+F+0.75(W+L+S) »+X 0.3568 -2.6171 0.89N045 D+H+F+0.75(W+L+S) »-X 0.3588 -2.6263 0.89N045 D+H+F+Lr -0.0518 -3.0453 1.01N045 D+H+F+S -0.0943 -3.1786 1.08N045 D+H+F+W »+X 0.5565 -0.9746 0.34N045 D+H+F+W »-X 0.5592 -0.9868 0.34N045 Dead Load -0.0203 -0.9956 0.35N045 Roof Live Load -0.0315 -2.0498 0.67N045 Snow Unbalanced -0.0740 -2.1830 0.73N045 Wind Load (+) 0.5795 0.0088 -0.00N045 Wind Load (-) 0.5768 0.0210 -0.01N054 0.6D+W+H »+X 0.5124 -0.6661 -0.08N054 0.6D+W+H »-X 0.5082 -0.6803 -0.08N054 D+F -0.1272 -1.1510 -0.14N054 D+H+F+0.75(L+Lr) -0.3202 -2.9223 -0.59N054 D+H+F+0.75(L+S) -0.3400 -2.5943 -0.54N054 D+H+F+0.75(W+L+Lr) »+X 0.1214 -2.9040 -0.58N054 D+H+F+0.75(W+L+Lr) »-X 0.1182 -2.9146 -0.59N054 D+H+F+0.75(W+L+R) »+X 0.3144 -1.1326 -0.13N054 D+H+F+0.75(W+L+R) »-X 0.3112 -1.1433 -0.13N054 D+H+F+0.75(W+L+S) »+X 0.1015 -2.5759 -0.53N054 D+H+F+0.75(W+L+S) »-X 0.0983 -2.5866 -0.53N054 D+H+F+Lr -0.3845 -3.5128 -0.74N054 D+H+F+S -0.4110 -3.0754 -0.67N054 D+H+F+W »+X 0.4616 -1.1264 -0.13N054 D+H+F+W »-X 0.4573 -1.1407 -0.13N054 Dead Load -0.1272 -1.1510 -0.14N054 Roof Live Load -0.2573 -2.3619 -0.60N054 Snow Unbalanced -0.2838 -1.9245 -0.53

Appendix A Page 15 of 26

Page 45: Wind Controlled Design Document

N054 Wind Load (+) 0.5845 0.0103 0.00N054 Wind Load (-) 0.5887 0.0245 0.01N059 0.6D+W+H »+X 0.5414 -0.8235 -0.09N059 0.6D+W+H »-X 0.5387 -0.8422 -0.09N059 D+F -0.0745 -1.4261 -0.15N059 D+H+F+0.75(L+Lr) -0.1861 -3.6215 -0.25N059 D+H+F+0.75(L+S) -0.2248 -3.3142 -0.30N059 D+H+F+0.75(W+L+Lr) »+X 0.2535 -3.5973 -0.25N059 D+H+F+0.75(W+L+Lr) »-X 0.2515 -3.6114 -0.25N059 D+H+F+0.75(W+L+R) »+X 0.3651 -1.4020 -0.15N059 D+H+F+0.75(W+L+R) »-X 0.3630 -1.4160 -0.15N059 D+H+F+0.75(W+L+S) »+X 0.2148 -3.2901 -0.30N059 D+H+F+0.75(W+L+S) »-X 0.2127 -3.3041 -0.30N059 D+H+F+Lr -0.2233 -4.3532 -0.29N059 D+H+F+S -0.2749 -3.9436 -0.35N059 D+H+F+W »+X 0.5116 -1.3939 -0.15N059 D+H+F+W »-X 0.5089 -1.4127 -0.15N059 Dead Load -0.0745 -1.4261 -0.15N059 Roof Live Load -0.1488 -2.9271 -0.14N059 Snow Unbalanced -0.2005 -2.5174 -0.20N059 Wind Load (+) 0.5834 0.0135 0.00N059 Wind Load (-) 0.5861 0.0322 0.00N065 0.6D+W+H »+X 0.5701 -0.8803 0.00N065 0.6D+W+H »-X 0.5692 -0.9012 0.00N065 D+F -0.0214 -1.5270 0.01N065 D+H+F+0.75(L+Lr) -0.0503 -3.8747 -0.03N065 D+H+F+0.75(L+S) -0.1018 -3.6809 -0.09N065 D+H+F+0.75(W+L+Lr) »+X 0.3869 -3.8478 -0.03N065 D+H+F+0.75(W+L+Lr) »-X 0.3862 -3.8635 -0.03N065 D+H+F+0.75(W+L+R) »+X 0.4158 -1.5000 0.01N065 D+H+F+0.75(W+L+R) »-X 0.4151 -1.5157 0.01N065 D+H+F+0.75(W+L+S) »+X 0.3354 -3.6540 -0.09N065 D+H+F+0.75(W+L+S) »-X 0.3348 -3.6697 -0.09N065 D+H+F+Lr -0.0600 -4.6573 -0.04

N065 D+H+F+S -0.1286 -4.3989 -0.13N065 D+H+F+W »+X 0.5616 -1.4911 0.01N065 D+H+F+W »-X 0.5607 -1.5119 0.01N065 Dead Load -0.0214 -1.5270 0.01N065 Roof Live Load -0.0386 -3.1303 -0.05N065 Snow Unbalanced -0.1072 -2.8720 -0.13N065 Wind Load (+) 0.5821 0.0150 0.00N065 Wind Load (-) 0.5830 0.0359 0.00N070 0.6D+W+H »+X 0.5913 -0.8803 -0.00N070 0.6D+W+H »-X 0.5922 -0.9012 -0.00N070 D+F 0.0190 -1.5271 -0.00N070 D+H+F+0.75(L+Lr) 0.0523 -3.8746 0.03N070 D+H+F+0.75(L+S) 0.0013 -3.8299 -0.03N070 D+H+F+0.75(W+L+Lr) »+X 0.4871 -3.8476 0.03N070 D+H+F+0.75(W+L+Lr) »-X 0.4878 -3.8633 0.03N070 D+H+F+0.75(W+L+R) »+X 0.4539 -1.5002 -0.01N070 D+H+F+0.75(W+L+R) »-X 0.4546 -1.5158 -0.01N070 D+H+F+0.75(W+L+S) »+X 0.4362 -3.8030 -0.03N070 D+H+F+0.75(W+L+S) »-X 0.4369 -3.8187 -0.03N070 D+H+F+Lr 0.0633 -4.6571 0.04N070 D+H+F+S -0.0045 -4.5976 -0.04N070 D+H+F+W »+X 0.5989 -1.4912 -0.01

Appendix A Page 16 of 26

Page 46: Wind Controlled Design Document

N070 D+H+F+W »-X 0.5998 -1.5121 -0.01N070 Dead Load 0.0190 -1.5271 -0.00N070 Roof Live Load 0.0443 -3.1300 0.05N070 Snow Unbalanced -0.0236 -3.0705 -0.03N070 Wind Load (+) 0.5807 0.0150 -0.00N070 Wind Load (-) 0.5798 0.0359 -0.00N076 0.6D+W+H »+X 0.6196 -0.8250 0.08N076 0.6D+W+H »-X 0.6223 -0.8436 0.09N076 D+F 0.0715 -1.4285 0.14N076 D+H+F+0.75(L+Lr) 0.1863 -3.6250 0.25N076 D+H+F+0.75(L+S) 0.1456 -3.6810 0.21N076 D+H+F+0.75(W+L+Lr) »+X 0.6188 -3.6010 0.24N076 D+H+F+0.75(W+L+Lr) »-X 0.6209 -3.6150 0.25N076 D+H+F+0.75(W+L+R) »+X 0.5040 -1.4044 0.14N076 D+H+F+0.75(W+L+R) »-X 0.5061 -1.4184 0.14N076 D+H+F+0.75(W+L+S) »+X 0.5781 -3.6569 0.21N076 D+H+F+0.75(W+L+S) »-X 0.5801 -3.6709 0.21N076 D+H+F+Lr 0.2246 -4.3572 0.28N076 D+H+F+S 0.1702 -4.4318 0.23N076 D+H+F+W »+X 0.6482 -1.3964 0.14N076 D+H+F+W »-X 0.6509 -1.4150 0.14N076 Dead Load 0.0715 -1.4285 0.14N076 Roof Live Load 0.1531 -2.9288 0.14N076 Snow Unbalanced 0.0988 -3.0034 0.09N076 Wind Load (+) 0.5794 0.0134 -0.00N076 Wind Load (-) 0.5767 0.0321 -0.00N081 0.6D+W+H »+X 0.6482 -0.6704 0.08N081 0.6D+W+H »-X 0.6524 -0.6844 0.08N081 D+F 0.1235 -1.1575 0.14N081 D+H+F+0.75(L+Lr) 0.3186 -2.9357 0.59N081 D+H+F+0.75(L+S) 0.2871 -3.0342 0.59N081 D+H+F+0.75(W+L+Lr) »+X 0.7492 -2.9176 0.58N081 D+H+F+0.75(W+L+Lr) »-X 0.7524 -2.9281 0.58N081 D+H+F+0.75(W+L+R) »+X 0.5541 -1.1394 0.13N081 D+H+F+0.75(W+L+R) »-X 0.5573 -1.1499 0.13N081 D+H+F+0.75(W+L+S) »+X 0.7176 -3.0161 0.59N081 D+H+F+0.75(W+L+S) »-X 0.7208 -3.0266 0.59N081 D+H+F+Lr 0.3837 -3.5284 0.74N081 D+H+F+S 0.3416 -3.6598 0.74N081 D+H+F+W »+X 0.6976 -1.1334 0.13N081 D+H+F+W »-X 0.7019 -1.1474 0.13N081 Dead Load 0.1235 -1.1575 0.14N081 Roof Live Load 0.2601 -2.3709 0.60N081 Snow Unbalanced 0.2180 -2.5022 0.61N081 Wind Load (+) 0.5783 0.0101 -0.00N081 Wind Load (-) 0.5741 0.0241 -0.01N082 0.6D+W+H »+X 0.0354 -0.0015 -0.17N082 0.6D+W+H »-X 0.0208 -0.0015 -0.10N082 D+F -0.0035 -0.0025 0.02N082 D+H+F+0.75(L+Lr) -0.0088 -0.0062 0.05N082 D+H+F+0.75(L+S) -0.0085 -0.0049 0.04N082 D+H+F+0.75(W+L+Lr) »+X 0.0193 -0.0062 -0.09N082 D+H+F+0.75(W+L+Lr) »-X 0.0084 -0.0062 -0.04N082 D+H+F+0.75(W+L+R) »+X 0.0247 -0.0025 -0.12N082 D+H+F+0.75(W+L+R) »-X 0.0137 -0.0025 -0.07N082 D+H+F+0.75(W+L+S) »+X 0.0196 -0.0049 -0.09N082 D+H+F+0.75(W+L+S) »-X 0.0087 -0.0049 -0.04

Appendix A Page 17 of 26

Page 47: Wind Controlled Design Document

N082 D+H+F+Lr -0.0106 -0.0074 0.05N082 D+H+F+S -0.0102 -0.0057 0.05N082 D+H+F+W »+X 0.0340 -0.0025 -0.17N082 D+H+F+W »-X 0.0195 -0.0025 -0.10N082 Dead Load -0.0035 -0.0025 0.02N082 Roof Live Load -0.0071 -0.0050 0.04N082 Snow Unbalanced -0.0068 -0.0033 0.03N082 Wind Load (+) 0.0229 0.0000 -0.11N082 Wind Load (-) 0.0375 0.0000 -0.18N083 0.6D+W+H »+X 0.4218 0.1549 -0.39N083 0.6D+W+H »-X 0.4145 0.1585 -0.40N083 D+F -0.2869 0.2684 -0.67N083 D+H+F+0.75(L+Lr) -0.7349 0.6999 -1.74N083 D+H+F+0.75(L+S) -0.6866 0.5975 -1.48N083 D+H+F+0.75(W+L+Lr) »+X -0.2894 0.6952 -1.73N083 D+H+F+0.75(W+L+Lr) »-X -0.2949 0.6979 -1.73N083 D+H+F+0.75(W+L+R) »+X 0.1585 0.2638 -0.66N083 D+H+F+0.75(W+L+R) »-X 0.1531 0.2665 -0.66N083 D+H+F+0.75(W+L+S) »+X -0.2411 0.5928 -1.47N083 D+H+F+0.75(W+L+S) »-X -0.2466 0.5955 -1.48N083 D+H+F+Lr -0.8842 0.8437 -2.10

N083 D+H+F+S -0.8198 0.7071 -1.76N083 D+H+F+W »+X 0.3070 0.2623 -0.65N083 D+H+F+W »-X 0.2997 0.2659 -0.66N083 Dead Load -0.2869 0.2684 -0.67N083 Roof Live Load -0.5973 0.5752 -1.43N083 Snow Unbalanced -0.5329 0.4387 -1.09N083 Wind Load (+) 0.5866 -0.0026 0.01N083 Wind Load (-) 0.5939 -0.0062 0.01N084 0.6D+W+H »+X 0.7401 0.1602 0.40N084 0.6D+W+H »-X 0.7473 0.1635 0.41N084 D+F 0.2851 0.2763 0.69N084 D+H+F+0.75(L+Lr) 0.7490 0.7623 1.89N084 D+H+F+0.75(L+S) 0.7435 0.7967 1.98N084 D+H+F+0.75(W+L+Lr) »+X 1.1758 0.7582 1.88N084 D+H+F+0.75(W+L+Lr) »-X 1.1812 0.7606 1.88

N084 D+H+F+0.75(W+L+R) »+X 0.7119 0.2721 0.68N084 D+H+F+0.75(W+L+R) »-X 0.7173 0.2746 0.68N084 D+H+F+0.75(W+L+S) »+X 1.1702 0.7926 1.97N084 D+H+F+0.75(W+L+S) »-X 1.1756 0.7950 1.97N084 D+H+F+Lr 0.9036 0.9243 2.29N084 D+H+F+S 0.8962 0.9702 2.40

N084 D+H+F+W »+X 0.8542 0.2708 0.68N084 D+H+F+W »-X 0.8613 0.2740 0.68N084 Dead Load 0.2851 0.2763 0.69N084 Roof Live Load 0.6185 0.6481 1.60N084 Snow Unbalanced 0.6111 0.6939 1.72N084 Wind Load (+) 0.5762 -0.0023 -0.01N084 Wind Load (-) 0.5690 -0.0055 -0.01N085 0.6D+W+H »+X 0.0204 -0.0015 -0.10N085 0.6D+W+H »-X 0.0349 -0.0015 -0.17N085 D+F 0.0034 -0.0025 -0.02N085 D+H+F+0.75(L+Lr) 0.0087 -0.0062 -0.04N085 D+H+F+0.75(L+S) 0.0085 -0.0067 -0.04N085 D+H+F+0.75(W+L+Lr) »+X 0.0225 -0.0062 -0.11N085 D+H+F+0.75(W+L+Lr) »-X 0.0334 -0.0062 -0.17

Appendix A Page 18 of 26

Page 48: Wind Controlled Design Document

N085 D+H+F+0.75(W+L+R) »+X 0.0171 -0.0025 -0.09N085 D+H+F+0.75(W+L+R) »-X 0.0281 -0.0025 -0.14N085 D+H+F+0.75(W+L+S) »+X 0.0222 -0.0067 -0.11N085 D+H+F+0.75(W+L+S) »-X 0.0331 -0.0067 -0.16N085 D+H+F+Lr 0.0105 -0.0074 -0.05N085 D+H+F+S 0.0101 -0.0081 -0.05N085 D+H+F+W »+X 0.0217 -0.0025 -0.11N085 D+H+F+W »-X 0.0363 -0.0025 -0.18N085 Dead Load 0.0034 -0.0025 -0.02N085 Roof Live Load 0.0071 -0.0050 -0.04N085 Snow Unbalanced 0.0068 -0.0056 -0.03N085 Wind Load (+) 0.0329 -0.0000 -0.16N085 Wind Load (-) 0.0183 -0.0000 -0.09————————————————————————————————————————————————————————

Member Unity Checks———————————————————————————————————————————————————————————————————————————————————————Unity Member Status Model Shape Design Shape Messages? ———————————————————————————————————————————————————————————————————————————————————————

0.50 P2-Dry Designed 3plyX8 3plyX8 None 0.45 P1-Dry Designed 3plyX8 3plyX8 None 0.32 P2-Wet Designed 3plyX8 3plyX8 None 0.31 P1-Wet Designed 3plyX8 3plyX8 None ———————————————————————————————————————————————————————————————————————————————————————

Design Group ResultsNDS Wood Design Checks: Post Above GradeDesigned As: 3plyX8Extreme Checks Only

Combined Stresses Check: Member Result fa fb1 fb2 Fa' Fb1' Fb2' Unity Name Case psf psf psf psf psf psf Check P1-Dry 18.01 8322 79967 0 96370 378786 399168 0.24 P1-Dry 19.01 8322 49834 0 96370 378786 399168 0.15 P1-Dry 20.01 13870 10171 0 89881 213417 224532 0.08 P1-Dry 21.01 35059 25870 0 94171 296173 311850 0.27 P1-Dry 22.01 27823 25058 0 93253 272543 286902 0.22 P1-Dry 23.01 34749 49903 0 96370 378786 399168 0.33 P1-Dry 24.01 34749 24624 0 96370 378786 399168 0.23 P1-Dry 25.01 13870 54381 0 96370 378786 399168 0.19 P1-Dry 26.01 13870 31782 0 96370 378786 399168 0.12 P1-Dry 27.01 27503 49575 0 96370 378786 399168 0.26 P1-Dry 28.01 27514 24267 0 96370 378786 399168 0.17 P1-Dry 29.01 42122 31103 0 94171 296173 311850 0.38 P1-Dry 30.01 32475 30021 0 93253 272543 286902 0.28 P1-Dry 31.01 13870 75898 0 96370 378786 399168 0.25 P1-Dry 32.01 13870 45766 0 96370 378786 399168 0.16 P2-Dry 18.01 8319 52214 0 96370 378786 399168 0.16 P2-Dry 19.01 8319 82346 0 96370 378786 399168 0.24 P2-Dry 20.01 13865 9967 0 89881 213417 224532 0.08 P2-Dry 21.01 35054 25667 0 94171 296173 311850 0.27

Appendix A Page 19 of 26

Page 49: Wind Controlled Design Document

P2-Dry 22.01 37778 24855 0 93253 272543 286902 0.31 P2-Dry 23.01 35054 60342 0 96370 378786 399168 0.37 P2-Dry 24.01 35054 82941 0 96370 378786 399168 0.46 P2-Dry 25.01 13865 44642 0 96370 378786 399168 0.16 P2-Dry 26.01 13865 67241 0 96370 378786 399168 0.23 P2-Dry 27.01 37778 59530 0 96370 378786 399168 0.40 P2-Dry 28.01 37778 82129 0 96370 378786 399168 0.50 P2-Dry 29.01 42117 30900 0 94171 296173 311850 0.38 P2-Dry 30.01 45749 29817 0 93253 272543 286902 0.44 P2-Dry 31.01 13865 56201 0 96370 378786 399168 0.19 P2-Dry 32.01 13865 86333 0 96370 378786 399168 0.28

Strong Flexure Check: Member Result Offset fb Fb Fb' Unity Name Case # ft psf psf psf Check P1-Dry 18.01 0 -79967 216000 378786 0.21 P1-Dry 19.01 0 -49834 216000 378786 0.13 P1-Dry 20.01 0 10171 216000 213417 0.05 P1-Dry 21.01 0 25870 216000 296173 0.09 P1-Dry 22.01 0 25058 216000 272543 0.09 P1-Dry 23.01 9.28 49916 216000 378786 0.13 P1-Dry 24.01 8.96 24624 216000 378786 0.07 P1-Dry 25.01 0 -54381 216000 378786 0.14 P1-Dry 26.01 0 -31782 216000 378786 0.08 P1-Dry 27.01 9.28 49575 216000 378786 0.13 P1-Dry 28.01 8.96 24267 216000 378786 0.06 P1-Dry 29.01 0 31103 216000 296173 0.11 P1-Dry 30.01 0 30021 216000 272543 0.11 P1-Dry 31.01 0 -75898 216000 378786 0.20 P1-Dry 32.01 0 -45766 216000 378786 0.12 P2-Dry 18.01 0 -52214 216000 378786 0.14 P2-Dry 19.01 0 -82346 216000 378786 0.22 P2-Dry 20.01 0 -9967 216000 213417 0.05 P2-Dry 21.01 0 -25667 216000 296173 0.09 P2-Dry 22.01 0 -24855 216000 272543 0.09 P2-Dry 23.01 0 -60342 216000 378786 0.16 P2-Dry 24.01 0 -82941 216000 378786 0.22 P2-Dry 25.01 0 -44642 216000 378786 0.12 P2-Dry 26.01 0 -67241 216000 378786 0.18 P2-Dry 27.01 0 -59530 216000 378786 0.16 P2-Dry 28.01 0 -82129 216000 378786 0.22 P2-Dry 29.01 0 -30900 216000 296173 0.10 P2-Dry 30.01 0 -29817 216000 272543 0.11 P2-Dry 31.01 0 -56201 216000 378786 0.15 P2-Dry 32.01 0 -86333 216000 378786 0.23

Axial Check: Member Result Offset Axial fa Fa Fa' CP Unity Name Case # ft State psf psf psf Check P1-Dry 18.01 0.00 Comp. -8322 237600 96370 0.25 0.09 P1-Dry 19.01 0.00 Comp. -8322 237600 96370 0.25 0.09 P1-Dry 20.01 0.00 Comp. -13870 237600 89881 0.42 0.15 P1-Dry 21.01 0.00 Comp. -35059 237600 94171 0.32 0.37 P1-Dry 22.01 0.00 Comp. -27823 237600 93253 0.34 0.30 P1-Dry 23.01 0.00 Comp. -35059 237600 96370 0.25 0.36 P1-Dry 24.01 0.00 Comp. -35059 237600 96370 0.25 0.36 P1-Dry 25.01 0.00 Comp. -13870 237600 96370 0.25 0.14

Appendix A Page 20 of 26

Page 50: Wind Controlled Design Document

P1-Dry 26.01 0.00 Comp. -13870 237600 96370 0.25 0.14 P1-Dry 27.01 0.00 Comp. -27823 237600 96370 0.25 0.29 P1-Dry 28.01 0.00 Comp. -27823 237600 96370 0.25 0.29 P1-Dry 29.01 0.00 Comp. -42122 237600 94171 0.32 0.45 P1-Dry 30.01 0.00 Comp. -32475 237600 93253 0.34 0.35 P1-Dry 31.01 0.00 Comp. -13870 237600 96370 0.25 0.14 P1-Dry 32.01 0.00 Comp. -13870 237600 96370 0.25 0.14 P2-Dry 18.01 0.00 Comp. -8319 237600 96370 0.25 0.09 P2-Dry 19.01 0.00 Comp. -8319 237600 96370 0.25 0.09 P2-Dry 20.01 0.00 Comp. -13865 237600 89881 0.42 0.15 P2-Dry 21.01 0.00 Comp. -35054 237600 94171 0.32 0.37 P2-Dry 22.01 0.00 Comp. -37778 237600 93253 0.34 0.41 P2-Dry 23.01 0.00 Comp. -35054 237600 96370 0.25 0.36 P2-Dry 24.01 0.00 Comp. -35054 237600 96370 0.25 0.36 P2-Dry 25.01 0.00 Comp. -13865 237600 96370 0.25 0.14 P2-Dry 26.01 0.00 Comp. -13865 237600 96370 0.25 0.14 P2-Dry 27.01 0.00 Comp. -37778 237600 96370 0.25 0.39 P2-Dry 28.01 0.00 Comp. -37778 237600 96370 0.25 0.39 P2-Dry 29.01 0.00 Comp. -42117 237600 94171 0.32 0.45 P2-Dry 30.01 0.00 Comp. -45749 237600 93253 0.34 0.49 P2-Dry 31.01 0.00 Comp. -13865 237600 96370 0.25 0.14 P2-Dry 32.01 0.00 Comp. -13865 237600 96370 0.25 0.14

Strong Shear Check: Member Result Offset fv Fv Fv' CD Unity Name Case # ft psf psf psf Check P1-Dry 18.01 0 4139 25200 40320 1.60 0.10 P1-Dry 19.01 0 2072 25200 40320 1.60 0.05 P1-Dry 21.01 0 242 25200 31500 1.25 0.01 P1-Dry 22.01 0 235 25200 28980 1.15 0.01 P1-Dry 23.01 0 2905 25200 40320 1.60 0.07 P1-Dry 24.01 0 1355 25200 40320 1.60 0.03 P1-Dry 25.01 0 3052 25200 40320 1.60 0.08 P1-Dry 26.01 0 1502 25200 40320 1.60 0.04 P1-Dry 27.01 0 2912 25200 40320 1.60 0.07 P1-Dry 28.01 0 1363 25200 40320 1.60 0.03 P1-Dry 29.01 0 291 25200 31500 1.25 0.01 P1-Dry 30.01 0 281 25200 28980 1.15 0.01 P1-Dry 31.01 0 4101 25200 40320 1.60 0.10 P1-Dry 32.01 0 2034 25200 40320 1.60 0.05 P2-Dry 18.01 0 1559 25200 40320 1.60 0.04 P2-Dry 19.01 0 3626 25200 40320 1.60 0.09 P2-Dry 21.01 0 240 25200 31500 1.25 0.01 P2-Dry 22.01 0 233 25200 28980 1.15 0.01 P2-Dry 23.01 0 1368 25200 40320 1.60 0.03 P2-Dry 24.01 0 2918 25200 40320 1.60 0.07 P2-Dry 25.01 0 1221 25200 40320 1.60 0.03 P2-Dry 26.01 0 2771 25200 40320 1.60 0.07 P2-Dry 27.01 0 1360 25200 40320 1.60 0.03 P2-Dry 28.01 0 2910 25200 40320 1.60 0.07 P2-Dry 29.01 0 289 25200 31500 1.25 0.01 P2-Dry 30.01 0 279 25200 28980 1.15 0.01 P2-Dry 31.01 0 1597 25200 40320 1.60 0.04 P2-Dry 32.01 0 3663 25200 40320 1.60 0.09

Appendix A Page 21 of 26

Page 51: Wind Controlled Design Document

NDS Wood Design Checks: Post Below GradeDesigned As: 3plyX8Extreme Checks Only

Combined Stresses Check: Member Result fa fb1 fb2 Fa' Fb1' Fb2' Unity Name Case psf psf psf psf psf psf Check P1-Wet 18.01 8350 117545 0 327108 377552 399168 0.31 P1-Wet 19.01 8350 68651 0 327108 377552 399168 0.18 P1-Wet 20.01 13917 11035 0 198947 213057 224532 0.06 P1-Wet 21.01 35106 28069 0 266412 295449 311850 0.11 P1-Wet 22.01 27870 27188 0 247798 271937 286902 0.11 P1-Wet 23.01 35106 65056 0 327108 377552 399168 0.19 P1-Wet 24.01 35106 28385 0 327108 377552 399168 0.09 P1-Wet 25.01 13917 82090 0 327108 377552 399168 0.22 P1-Wet 26.01 13917 45419 0 327108 377552 399168 0.12 P1-Wet 27.01 27870 65937 0 327108 377552 399168 0.18 P1-Wet 28.01 27870 29266 0 327108 377552 399168 0.09 P1-Wet 29.01 42169 33747 0 266412 295449 311850 0.14 P1-Wet 30.01 32522 32572 0 247798 271937 286902 0.14 P1-Wet 31.01 13917 113131 0 327108 377552 399168 0.30 P1-Wet 32.01 13917 64237 0 327108 377552 399168 0.17 P2-Wet 18.01 8347 66372 0 327108 377552 399168 0.18 P2-Wet 19.01 8347 115267 0 327108 377552 399168 0.31 P2-Wet 20.01 13912 10815 0 198947 213057 224532 0.06 P2-Wet 21.01 35101 27848 0 266412 295449 311850 0.11 P2-Wet 22.01 37825 26967 0 247798 271937 286902 0.12 P2-Wet 23.01 35101 72761 0 327108 377552 399168 0.21 P2-Wet 24.01 35101 109432 0 327108 377552 399168 0.31 P2-Wet 25.01 13912 55727 0 327108 377552 399168 0.15 P2-Wet 26.01 13912 92398 0 327108 377552 399168 0.25 P2-Wet 27.01 37825 71880 0 327108 377552 399168 0.21 P2-Wet 28.01 37825 108551 0 327108 377552 399168 0.31 P2-Wet 29.01 42164 33526 0 266412 295449 311850 0.14 P2-Wet 30.01 45796 32352 0 247798 271937 286902 0.16 P2-Wet 31.01 13912 70698 0 327108 377552 399168 0.19 P2-Wet 32.01 13912 119592 0 327108 377552 399168 0.32

Strong Flexure Check: Member Result Offset fb Fb Fb' Unity Name Case # ft psf psf psf Check P1-Wet 18.01 2.24 -117545 216000 377552 0.31 P1-Wet 19.01 2.24 -68651 216000 377552 0.18 P1-Wet 20.01 2.24 11035 216000 213057 0.05 P1-Wet 21.01 2.24 28069 216000 295449 0.10 P1-Wet 22.01 2.24 27188 216000 271937 0.10 P1-Wet 23.01 2.24 -65056 216000 377552 0.17 P1-Wet 24.01 2.24 -28385 216000 377552 0.08 P1-Wet 25.01 2.24 -82090 216000 377552 0.22 P1-Wet 26.01 2.24 -45419 216000 377552 0.12 P1-Wet 27.01 2.24 -65937 216000 377552 0.17 P1-Wet 28.01 2.24 -29266 216000 377552 0.08 P1-Wet 29.01 2.24 33747 216000 295449 0.11 P1-Wet 30.01 2.24 32572 216000 271937 0.12 P1-Wet 31.01 2.24 -113131 216000 377552 0.30 P1-Wet 32.01 2.24 -64237 216000 377552 0.17

Appendix A Page 22 of 26

Page 52: Wind Controlled Design Document

P2-Wet 18.01 2.24 -66372 216000 377552 0.18 P2-Wet 19.01 2.24 -115267 216000 377552 0.31 P2-Wet 20.01 2.24 -10815 216000 213057 0.05 P2-Wet 21.01 2.24 -27848 216000 295449 0.09 P2-Wet 22.01 2.24 -26967 216000 271937 0.10 P2-Wet 23.01 2.24 -72761 216000 377552 0.19 P2-Wet 24.01 2.24 -109432 216000 377552 0.29 P2-Wet 25.01 2.24 -55727 216000 377552 0.15 P2-Wet 26.01 2.24 -92398 216000 377552 0.24 P2-Wet 27.01 2.24 -71880 216000 377552 0.19 P2-Wet 28.01 2.24 -108551 216000 377552 0.29 P2-Wet 29.01 2.24 -33526 216000 295449 0.11 P2-Wet 30.01 2.24 -32352 216000 271937 0.12 P2-Wet 31.01 2.24 -70698 216000 377552 0.19 P2-Wet 32.01 2.24 -119592 216000 377552 0.32

Axial Check: Member Result Offset Axial fa Fa Fa' CP Unity Name Case # ft State psf psf psf Check P1-Wet 18.01 0.00 Comp. -8396 237600 327108 0.86 0.03 P1-Wet 19.01 0.00 Comp. -8396 237600 327108 0.86 0.03 P1-Wet 20.01 0.00 Comp. -13994 237600 198947 0.93 0.07 P1-Wet 21.01 0.00 Comp. -35184 237600 266412 0.90 0.13 P1-Wet 22.01 0.00 Comp. -27948 237600 247798 0.91 0.11 P1-Wet 23.01 0.00 Comp. -35184 237600 327108 0.86 0.11 P1-Wet 24.01 0.00 Comp. -35184 237600 327108 0.86 0.11 P1-Wet 25.01 0.00 Comp. -13994 237600 327108 0.86 0.04 P1-Wet 26.01 0.00 Comp. -13994 237600 327108 0.86 0.04 P1-Wet 27.01 0.00 Comp. -27948 237600 327108 0.86 0.09 P1-Wet 28.01 0.00 Comp. -27948 237600 327108 0.86 0.09 P1-Wet 29.01 0.00 Comp. -42247 237600 266412 0.90 0.16 P1-Wet 30.01 0.00 Comp. -32599 237600 247798 0.91 0.13 P1-Wet 31.01 0.00 Comp. -13994 237600 327108 0.86 0.04 P1-Wet 32.01 0.00 Comp. -13994 237600 327108 0.86 0.04 P2-Wet 18.01 0.00 Comp. -8393 237600 327108 0.86 0.03 P2-Wet 19.01 0.00 Comp. -8393 237600 327108 0.86 0.03 P2-Wet 20.01 0.00 Comp. -13989 237600 198947 0.93 0.07 P2-Wet 21.01 0.00 Comp. -35179 237600 266412 0.90 0.13 P2-Wet 22.01 0.00 Comp. -37902 237600 247798 0.91 0.15 P2-Wet 23.01 0.00 Comp. -35179 237600 327108 0.86 0.11 P2-Wet 24.01 0.00 Comp. -35179 237600 327108 0.86 0.11 P2-Wet 25.01 0.00 Comp. -13989 237600 327108 0.86 0.04 P2-Wet 26.01 0.00 Comp. -13989 237600 327108 0.86 0.04 P2-Wet 27.01 0.00 Comp. -37902 237600 327108 0.86 0.12 P2-Wet 28.01 0.00 Comp. -37902 237600 327108 0.86 0.12 P2-Wet 29.01 0.00 Comp. -42242 237600 266412 0.90 0.16 P2-Wet 30.01 0.00 Comp. -45874 237600 247798 0.91 0.19 P2-Wet 31.01 0.00 Comp. -13989 237600 327108 0.86 0.04 P2-Wet 32.01 0.00 Comp. -13989 237600 327108 0.86 0.04

Strong Shear Check: Member Result Offset fv Fv Fv' CD Unity Name Case # ft psf psf psf Check P1-Wet 18.01 0 7860 25200 40320 1.60 0.19 P1-Wet 19.01 0 4591 25200 40320 1.60 0.11 P1-Wet 20.01 0 738 25200 22680 0.90 0.03 P1-Wet 21.01 0 1877 25200 31500 1.25 0.06

Appendix A Page 23 of 26

Page 53: Wind Controlled Design Document

P1-Wet 22.01 0 1818 25200 28980 1.15 0.06 P1-Wet 23.01 0 4350 25200 40320 1.60 0.11 P1-Wet 24.01 0 1898 25200 40320 1.60 0.05 P1-Wet 25.01 0 5489 25200 40320 1.60 0.14 P1-Wet 26.01 0 3037 25200 40320 1.60 0.08 P1-Wet 27.01 0 4409 25200 40320 1.60 0.11 P1-Wet 28.01 0 1957 25200 40320 1.60 0.05 P1-Wet 29.01 0 2257 25200 31500 1.25 0.07 P1-Wet 30.01 0 2178 25200 28980 1.15 0.08 P1-Wet 31.01 0 7565 25200 40320 1.60 0.19 P1-Wet 32.01 0 4296 25200 40320 1.60 0.11 P2-Wet 18.01 0 4438 25200 40320 1.60 0.11 P2-Wet 19.01 0 7708 25200 40320 1.60 0.19 P2-Wet 20.01 0 723 25200 22680 0.90 0.03 P2-Wet 21.01 0 1862 25200 31500 1.25 0.06 P2-Wet 22.01 0 1803 25200 28980 1.15 0.06 P2-Wet 23.01 0 4866 25200 40320 1.60 0.12 P2-Wet 24.01 0 7318 25200 40320 1.60 0.18 P2-Wet 25.01 0 3727 25200 40320 1.60 0.09 P2-Wet 26.01 0 6179 25200 40320 1.60 0.15 P2-Wet 27.01 0 4807 25200 40320 1.60 0.12 P2-Wet 28.01 0 7259 25200 40320 1.60 0.18 P2-Wet 29.01 0 2242 25200 31500 1.25 0.07 P2-Wet 30.01 0 2163 25200 28980 1.15 0.07 P2-Wet 31.01 0 4728 25200 40320 1.60 0.12 P2-Wet 32.01 0 7997 25200 40320 1.60 0.20

Nodal Reactions———————————————————————————————————————————————————————Node Result Case Name FX FY MZ lb lb lb-ft———————————————————————————————————————————————————————

N001 0.6D+W+H »+X -1721.517 -NA- -NA-N001 0.6D+W+H »-X -955.962 -NA- -NA-N001 D+F 119.534 -NA- -NA-N001 D+H+F+0.75(L+Lr) 304.039 -NA- -NA-N001 D+H+F+0.75(L+S) 294.496 -NA- -NA-N001 D+H+F+0.75(W+L+Lr) »+X -1040.889 -NA- -NA-N001 D+H+F+0.75(W+L+Lr) »-X -466.723 -NA- -NA-N001 D+H+F+0.75(W+L+R) »+X -1225.394 -NA- -NA-N001 D+H+F+0.75(W+L+R) »-X -651.228 -NA- -NA-N001 D+H+F+0.75(W+L+S) »+X -1050.432 -NA- -NA-N001 D+H+F+0.75(W+L+S) »-X -476.266 -NA- -NA-N001 D+H+F+Lr 365.541 -NA- -NA-N001 D+H+F+S 352.817 -NA- -NA-N001 D+H+F+W »+X -1673.703 -NA- -NA-N001 D+H+F+W »-X -908.149 -NA- -NA-N001 Dead Load 119.534 -NA- -NA-

N001 Roof Live Load 246.007 -NA- -NA-N001 Snow Unbalanced 233.283 -NA- -NA-N001 Wind Load (+) -1027.682 -NA- -NA-N001 Wind Load (-) -1793.237 -NA- -NA-

Appendix A Page 24 of 26

Page 54: Wind Controlled Design Document

N004 0.6D+W+H »+X 1127.711 1806.916 -NA-N004 0.6D+W+H »-X 658.628 1806.916 -NA-N004 D+F -105.873 3011.526 -NA-N004 D+H+F+0.75(L+Lr) -269.292 7571.522 -NA-N004 D+H+F+0.75(L+S) -260.839 6014.391 -NA-N004 D+H+F+0.75(W+L+Lr) »+X 624.134 7571.522 -NA-N004 D+H+F+0.75(W+L+Lr) »-X 272.322 7571.522 -NA-N004 D+H+F+0.75(W+L+R) »+X 787.553 3011.526 -NA-N004 D+H+F+0.75(W+L+R) »-X 435.741 3011.526 -NA-N004 D+H+F+0.75(W+L+S) »+X 632.586 6014.391 -NA-N004 D+H+F+0.75(W+L+S) »-X 280.774 6014.391 -NA-N004 D+H+F+Lr -323.765 9091.521 -NA-N004 D+H+F+S -312.495 7015.346 -NA-N004 D+H+F+W »+X 1085.362 3011.526 -NA-N004 D+H+F+W »-X 616.279 3011.526 -NA-N004 Dead Load -105.873 3011.526 -NA-N004 Roof Live Load -217.892 6079.995 -NA-N004 Snow Unbalanced -206.622 4003.820 -NA-N004 Wind Load (+) 722.151 -0.000 -NA-

N004 Wind Load (-) 1191.234 -0.000 -NA-

N007 0.6D+W+H »+X -860.494 -NA- -NA-N007 0.6D+W+H »-X -1626.049 -NA- -NA-N007 D+F -117.141 -NA- -NA-N007 D+H+F+0.75(L+Lr) -301.647 -NA- -NA-N007 D+H+F+0.75(L+S) -292.104 -NA- -NA-N007 D+H+F+0.75(W+L+Lr) »+X -894.304 -NA- -NA-N007 D+H+F+0.75(W+L+Lr) »-X -1468.470 -NA- -NA-N007 D+H+F+0.75(W+L+R) »+X -709.799 -NA- -NA-N007 D+H+F+0.75(W+L+R) »-X -1283.964 -NA- -NA-N007 D+H+F+0.75(W+L+S) »+X -884.761 -NA- -NA-N007 D+H+F+0.75(W+L+S) »-X -1458.927 -NA- -NA-N007 D+H+F+Lr -363.148 -NA- -NA-N007 D+H+F+S -350.425 -NA- -NA-N007 D+H+F+W »+X -907.351 -NA- -NA-N007 D+H+F+W »-X -1672.905 -NA- -NA-N007 Dead Load -117.141 -NA- -NA-N007 Roof Live Load -246.007 -NA- -NA-N007 Snow Unbalanced -233.283 -NA- -NA-N007 Wind Load (+) -1555.764 -NA- -NA-N007 Wind Load (-) -790.210 -NA- -NA-N008 0.6D+W+H »+X 636.765 1806.286 -NA-N008 0.6D+W+H »-X 1105.847 1806.286 -NA-N008 D+F 103.754 3010.477 -NA-N008 D+H+F+0.75(L+Lr) 267.173 7570.473 -NA-N008 D+H+F+0.75(L+S) 258.72 8156.638 -NA-N008 D+H+F+0.75(W+L+Lr) »+X 698.057 7570.473 -NA-N008 D+H+F+0.75(W+L+Lr) »-X 1049.869 7570.473 -NA-N008 D+H+F+0.75(W+L+R) »+X 534.638 3010.477 -NA-N008 D+H+F+0.75(W+L+R) »-X 886.45 3010.477 -NA-N008 D+H+F+0.75(W+L+S) »+X 689.605 8156.638 -NA-N008 D+H+F+0.75(W+L+S) »-X 1041.417 8156.638 -NA-N008 D+H+F+Lr 321.646 9090.472 -NA-N008 D+H+F+S 310.376 9872.025 -NA-

N008 D+H+F+W »+X 678.266 3010.477 -NA-N008 D+H+F+W »-X 1147.349 3010.477 -NA-N008 Dead Load 103.754 3010.477 -NA-

Appendix A Page 25 of 26

Page 55: Wind Controlled Design Document

N008 Roof Live Load 217.892 6079.995 -NA-N008 Snow Unbalanced 206.622 6861.548 -NA-N008 Wind Load (+) 1043.595 0.000 -NA-N008 Wind Load (-) 574.512 0.000 -NA-

Appendix A Page 26 of 26

Page 56: Wind Controlled Design Document

APPENDIX BFOUNDATION DESIGN

Appendix B, Page 1 of 2

Page 57: Wind Controlled Design Document

Wind UpliftD D D

D+Lr D+Lr D+Lr

D+S D+S D+S

D+W D+W

Vertical, P (lbs): Moment, Ma (ft-lb):

Uplift, Q (lbs):

(EP486.1 Table 1, without the allowable increase factor)

(EP486.1 Table 1)

Actual post embedment depth, d

Enter d0/d ratio calculated d values below are equal

INTERMEDIATE CALCULATIONS

Collar width, w

UPLIFT RESISTANCE

REQUIRED POST EMBEDMENT, d(Shear Criterion) ft (Moment Criterion) ft

Required post embedment, d (based on shear and moment requirements)

Required embedment < Actual Embedment Vertical allowable soil pressures are increased per EP486 Footnotes, TablU = lbs > Q = % %

Sv = psf > Sa = S s = P/π( w/2) 2 S v→ ASAE EP486.1, 2003, Table 1

3.3 ft

V a = Shear at Ground Surface, M a = Moment at Ground Surface, Q=Uplift at Ground Surface, S a = Actual Vertical Soil Pressure

psfU=Uplift Resistance of Soil, S v = Allowable Vertical Soil Pressure (including increases)

Depth Increase: 73.3 Width Increase: 20.0

SU

MM

AR

Y

2394.7 1153.5 lbs3866.7 3142.4

d 3.27 d 3.27

Collar thickness, tc (ft) 2

Post bearing width, b (ft) 0.530

ASAE EP486.1, 2003 , FIG. 2

Gravity Acceleration, G (lbf/lb) 1

Soil Friction Angle, q (deg) 26

Post Cross Section Area, Ap (in2) 31

0.65

(ft) 2

Concrete Density, C (pcf) 150

Soil Density, α (pcf) 105

Collar thickness, tc (in) 24

Footing thickness, tf (in) 8

Post Width (ft) 4.5

Collar width, w (in) 24

RE

QU

IRE

D P

OS

T E

MB

ED

ME

NT

DE

PT

H A

ND

UP

LIF

T R

ES

IST

AN

CE

CA

LC

UL

AT

ION

NON-CONSTRAINED FOOTING WITH BOTTOM CONCRETE COLLAR (ASAE EP486.1 2003)

Initial Allowable vertical soil pressure, Sv (psf) 2000

Allowable lateral bearing soil pressure, S' (psf/ft) 200

(ft) 4

Horizontal, Va (lbs): 602 1850

W-0.6D (Uplift)

0602 1850

FINAL REACTIONS:

0

1153.469872

00 0

301090909872

1153.458

01850(lbs) 2959 Wind Load (lbs) 602 (ft-lbs)Wind Load

0LiveR Load (lbs) 6080

0 Snow Load (ft-lbs)(ft-lbs)LiveR Load (lbs) 0 LiveR Load

Dead Load (ft-lbs)(lbs) 0 0

RE

AC

TIO

NS

0Snow Load (lbs) 6862 Snow Load (lbs)

3010 Dead Load

NON CONSTRAINED FOOTING WITH BOTTOM CONCRETE COLLAR (EP 486.1)VERTICAL REACTIONS HORIZONTAL REACTIONS MOMENTS

Dead Load (lbs)

Appendix B, Page 2 of 2

Page 58: Wind Controlled Design Document

APPENDIX CDESIGN OF CRITICAL CONNECTIONS

Appendix C, Page 1 of 8

Page 59: Wind Controlled Design Document

Tributary Width (ft) bt 38 Half of building's length + overhang

Truss Spacing (ft) st 8Dead Load (psf) D 4.5 (50% of Design Dead Load)

Wind Load (psf) L 9.74Net Uplift (lbs) 2139 ← (W-0.6D)(b t )(s t )

Nail Size 16dNumber of nails # 10 K D 2.2

Nail Diameter (in) D 0.162 F yb (psi) 90000

Nail Length (in) L 3.5 2+R e = 3.0

Width of Side Member (in) w 1.5 1+2R e = 3.0

Width of Main Member (in) w 1.5 k 1 = 1.05

Nail Penetration into main member (in) p 1.5 k 2 = 1.09

Specific Gravity of Main Member G 0.55 F em = 5526

Specific Gravity of Side Member 0.55 F es = 5526

Duration Factor CD 1.6 (NDS 2005, Table 2.3.2) R e = 1.0

Wet Service Factor CM 1 p = 2.00

Temperature Factor Ct 1 1+R e = 2.0

Toe Nail Factor Ctn 1 Is 610

End Grain Factor Ceg 1 (NDS 2005, 11.5.2) IIIm 286

Depth Penetration Factor Cd 0.9259259 (Cd=p/10D) IIIs 222

Lateral Design Value (lbs) Z 154 (controlling yield value) IV 154

Total Allowable Lateral Capacity (lbs) Z' 2275 ← Z'=(# of Nails) x Z x C D x C d x C eg x C tn x C M x C t

PASS 2138.66 ÷ 2275 = 0.9399167 Unity Check < 1

Truss to Post Connection - Uplift - Vertical Shear L

OA

DA

LL

OW

AB

LE

CA

PA

CIT

Y

NAILS - WOOD TO WOOD - SHEAR - NDS 2005, ASDIntermediate Calculations

Appendix C, Page 2 of 8

Page 60: Wind Controlled Design Document

Load at Eave from Roof Alone, (lbs) Fr 840

Load Resisted by Diaphragm, (lbs) Q2 498

Frame Deflection (in) Δ2 0.303Frame Stiffness (lbf/in) k 133.3Resistance at Eave from Post on Opposite Side (lbs) R2 20 ← R 2 = (k)(Δ2 )/2posts

Wind Shear at Top of Post (lbs) V2 -322 ← V 2 = Q 2 -F r +R 2

Nail Size 16dNumber of nails # 10 K D 2.2

Nail Diameter (in) D 0.162 F yb (psi) 90000

Nail Length (in) L 3.5 2+R e = 3.0

Width of Side Member (in) w 1.5 1+2R e = 3.0

Width of Main Member (in) w 1.5 k 1 = 1.05

Nail Penetration into main member (in) p 1.5 k 2 = 1.09

Specific Gravity of Main Member G 0.55 F em = 5526

Specific Gravity of Side Member 0.55 F es = 5526

Duration Factor CD 1.6 (NDS 2005, Table 2.3.2) R e = 1.0

Wet Service Factor CM 1 p = 2.00

Temperature Factor Ct 1 1+R e = 2.0

Toe Nail Factor Ctn 1 Is 610

End Grain Factor Ceg 1 (NDS 2005, 11.5.2) IIIm 286

Depth Penetration Factor Cd 0.9259259 (Cd=p/10D) IIIs 222

Lateral Design Value (lbs) Z 154 (controlling yield value) IV 154

Total Allowable Lateral Capacity (lbs) Z' 2275 ← Z'=(# of Nails) x Z x C D x C d x C eg x C tn x C M x C t

PASS -322.17 ÷ 2275 = -0.141591 Unity Check < 1

AL

LO

WA

BL

E C

AP

AC

ITY

NAILS - WOOD TO WOOD - SHEAR - NDS 2005, ASDIntermediate Calculations

Truss to Post Connection - Horizontal Shear at Frame 2, the Controlling Frame for Horizontal ShearL

OA

D

Appendix C, Page 3 of 8

Page 61: Wind Controlled Design Document

Tributary Width (ft) bt 38 Half of building's length + overhang

Truss Spacing (ft) st 8Dead Load (psf) D 4.5 (50% of Design Dead Load)

Wind Load (psf) L 9.74Net Uplift (lbs) 2139 ← (W-0.6D)(b t )(s t )

Number of straps/brackets/hangers 2Specific Gravity G 0.55Duration Factor CD 1 C D is included by bracket manufacturerWet Service Factor CM 1Design Value per strap/bracket/hanger 1140Total Allowable Capacity (lbs) 2280

PASS 2138.66 ÷ 2280 = 0.9380078 Unity Check < 1

Number of Endwall Posts 10Number of Nails per Post 4Maximum Shear (lbs) Vmax 1704 (see Ceiling Diaphragm Shear Strength Check Section)

Nail Size 16dNumber of nails # 40 K D 2.2

Nail Diameter (in) D 0.162 F yb (psi) 90000

Nail Length (in) L 3.5 2+R e = 3.0

Width of Side Member (in) w 1.5 1+2R e = 3.0

Width of Main Member (in) w 7 k 1 = 1.05

Nail Penetration into main member (in) p 2 k 2 = 1.09

Specific Gravity of Main Member G 0.55 F em = 5526

Specific Gravity of Side Member 0.55 F es = 5526

Duration Factor CD 1.6 (NDS 2005, Table 2.3.2) R e = 1.0

Wet Service Factor CM 1 p = 2.00

Temperature Factor Ct 1 1+R e = 2.0

Toe Nail Factor Ctn 1 Is 610

End Grain Factor Ceg 1 (NDS 2005, 11.5.2) IIIm 286

Depth Penetration Factor Cd 1 (Cd=p/10D) IIIs 222

Lateral Design Value (lbs) Z 154 (controlling yield value) IV 154

Total Allowable Lateral Capacity (lbs) Z' 9830 ← Z'=(# of Nails) x Z x C D x C d x C eg x C tn x C M x C t

PASS 1704 ÷ 9830 = 0.173404 Unity Check < 1

Ceiling Ledger to Endwall Posts Connection - Shear Transfer from Ceiling Diaphragm to Endwall

LO

AD

LO

AD

Truss to Glulam Header Connection - Uplift A

LL

OW

AB

LE

CA

PA

CIT

Y

NAILS - WOOD TO WOOD - SHEAR - NDS 2005, ASDIntermediate Calculations

AL

LO

WA

BL

E C

AP

AC

ITY

H10A Simpson Hurricane Tie

Appendix C, Page 4 of 8

Page 62: Wind Controlled Design Document

Number of Endwall Posts 10Number of Nails per Post 4Maximum Shear (lbs) Vmax 1776 (see Endwall Shear Strength Check Section)

Nail Size 16dNumber of nails # 40 K D 2.2

Nail Diameter (in) D 0.162 F yb (psi) 90000

Nail Length (in) L 3.5 2+R e = 3.0

Width of Side Member (in) w 1.5 1+2R e = 3.0

Width of Main Member (in) w 7 k 1 = 1.05

Nail Penetration into main member (in) p 2 k 2 = 1.09

Specific Gravity of Main Member G 0.55 F em = 5526

Specific Gravity of Side Member 0.55 F es = 5526

Duration Factor CD 1.6 (NDS 2005, Table 2.3.2) R e = 1.0

Wet Service Factor CM 0.7 p = 2.00

Temperature Factor Ct 1 1+R e = 2.0

Toe Nail Factor Ctn 1 Is 610

End Grain Factor Ceg 1 (NDS 2005, 11.5.2) IIIm 286

Depth Penetration Factor Cd 1 (Cd=p/10D) IIIs 222

Lateral Design Value (lbs) Z 154 (controlling yield value) IV 154

Total Allowable Lateral Capacity (lbs) Z' 6881 ← Z'=(# of Nails) x Z x C D x C d x C eg x C tn x C M x C t

PASS 1776 ÷ 6881 = 0.2580512 Unity Check < 1

LO

AD

AL

LO

WA

BL

E C

AP

AC

ITY

NAILS - WOOD TO WOOD - SHEAR - NDS 2005, ASDIntermediate Calculations

Bottom Girt to Endwall Posts Connection - Shear Transfer from Wall Sheathing to Endwall Posts

Appendix C, Page 5 of 8

Page 63: Wind Controlled Design Document

Tension Load in Diaphragm Chord (lbs) Tmax 535 ← Tension from Roof Diaphragm Chord Forces Section

Number of straps/brackets/hangers 1Specific Gravity G 0.55Duration Factor CD 1 C D is included by the manufacturerWet Service Factor CM 1Design Value per strap/bracket/hanger 1850Total Allowable Capacity (lbs) 1850

PASS 534.716 ÷ 1850 = 0.2890357 Unity Check < 1

Tension Load in Diaphragm Chord (lbs) Tmax 1153 ← Tension from Roof Diaphragm Chord Forces Section

Number of straps/brackets/hangers 1Specific Gravity G 0.55Duration Factor CD 1 C D is included by the manufacturerWet Service Factor CM 1Design Value per strap/bracket/hanger 1505Total Allowable Capacity (lbs) 1505

PASS 1153.46 ÷ 1505 = 0.7664171 Unity Check < 1

Purlin to Purlin Connection at Splice, Diaphragm Tension ChordL

OA

DA

LL

OW

AB

LE

CA

PA

CIT

Y

Ceiling Joist to Ceiling Joist Connection at Splice, Diaphragm Tension Chord

LO

AD

HTP37Z Simpson Strap

AL

LO

WA

BL

E C

AP

AC

ITY

MSTA21 Simpson Strap

Appendix C, Page 6 of 8

Page 64: Wind Controlled Design Document

Tension Load in Diaphragm Chord (lbs) Tmax 535 ← Tension from Roof Diaphragm Chord Forces Section

Nail Size 16dNumber of nails # 5 K D 2.2

Nail Diameter (in) D 0.162 F yb (psi) 90000

Nail Length (in) L 3.5 2+R e = 3.0

Width of Side Member (in) w 1.5 1+2R e = 3.0

Width of Main Member (in) w 7 k 1 = 1.05

Nail Penetration into main member (in) p 2 k 2 = 1.09

Specific Gravity of Main Member G 0.55 F em = 5526

Specific Gravity of Side Member 0.55 F es = 5526

Duration Factor CD 1.6 (NDS 2005, Table 2.3.2) R e = 1.0

Wet Service Factor CM 1 p = 2.00

Temperature Factor Ct 1 1+R e = 2.0

Toe Nail Factor Ctn 1 Is 610

End Grain Factor Ceg 1 (NDS 2005, 11.5.2) IIIm 286

Depth Penetration Factor Cd 1 (Cd=p/10D) IIIs 222

Lateral Design Value (lbs) Z 154 (controlling yield value) IV 154

Total Allowable Lateral Capacity (lbs) Z' 1229 ← Z'=(# of Nails) x Z x C D x C d x C eg x C tn x C M x C t

Nail Size 60d RS nailNumber of nails # 1 K D 2.27

Nail Diameter (in) D 0.177 F yb (psi) 90000

Nail Length (in) L 6 2+R e = 3.0

Width of Side Member (in) w 3.5 1+2R e = 3.0

Width of Main Member (in) w 5.5 k 1 = 1.04

Nail Penetration into main member (in) p 2.5 k 2 = 1.02

Specific Gravity of Main Member G 0.55 F em = 5526

Specific Gravity of Side Member 0.55 F es = 5526

Duration Factor CD 1.6 (NDS 2005, Table 2.3.2) R e = 1.0

Wet Service Factor CM 1 p = 2.50

Temperature Factor Ct 1 1+R e = 2.0

Toe Nail Factor Ctn 1 Is 1508

End Grain Factor Ceg 1 (NDS 2005, 11.5.2) IIIm 374

Depth Penetration Factor Cd 1 (Cd=p/10D) IIIs 513

Lateral Design Value (lbs) Z 178 (controlling yield value) IV 178

Total Allowable Lateral Capacity (lbs) Z' 284 ← Z'=(# of Nails) x Z x C D x C d x C eg x C tn x C M x C t

1229 + 284 = 1513 Unity Check < 1

PASS 535 ÷ 1513 = 0.3534128 Unity Check < 1

Purlin to Endwall Truss Connection, Diaphragm Tension ChordA

LL

OW

AB

LE

CA

PA

CIT

Y

AL

LO

WA

BL

E C

AP

AC

ITY

NAILS - WOOD TO WOOD - SHEAR - NDS 2005, ASDIntermediate Calculations

LO

AD

NAILS - WOOD TO WOOD - SHEAR - NDS 2005, ASDIntermediate Calculations

Appendix C, Page 7 of 8

Page 65: Wind Controlled Design Document

Tension Load in Diaphragm Chord (lbs) Tmax 535 ← Tension from Roof Diaphragm Chord Forces Section

Screw Size # 8Number of screws # 4 (# of effective screwsn not total)Screw Diameter (in) D 0.164Screw Length (in) L 3Width of Side Member (in) w 1.5Width of Main Member (in) 1.5Screw Penetration into main member (in) p 1.5Specific Gravity G 0.55Duration Factor CD 1.6 ← NDS 2005, Table 2.3.2

Toe Nail Factor Ctn 1Temperature Factor Ct 1Wet Service Factor CM 1Reference Withdrawal Design Value W 141 ← NDS 2005, Equation 11.2-2

Total Allowable Withdrawal Capacity (lbs) W' 1357 ← W'=(# of Screws) x Z x C D x C t x C tn x C M

534.716 ÷ 1357 = 0.3939471

Tension Load in Diaphragm Chord (lbs) Tmax 1153 ← Tension from Roof Diaphragm Chord Forces Section

Nail Size 16dNumber of nails # 6 K D 2.2

Nail Diameter (in) D 0.162 F yb (psi) 90000

Nail Length (in) L 3.5 2+R e = 3.0

Width of Side Member (in) w 1.5 1+2R e = 3.0

Width of Main Member (in) w 7 k 1 = 1.05

Nail Penetration into main member (in) p 2 k 2 = 1.09

Specific Gravity of Main Member G 0.55 F em = 5526

Specific Gravity of Side Member 0.55 F es = 5526

Duration Factor CD 1.6 (NDS 2005, Table 2.3.2) R e = 1.0

Wet Service Factor CM 1 p = 2.00

Temperature Factor Ct 1 1+R e = 2.0

Toe Nail Factor Ctn 1 Is 610

End Grain Factor Ceg 1 (NDS 2005, 11.5.2) IIIm 286

Depth Penetration Factor Cd 1 (Cd=p/10D) IIIs 222

Lateral Design Value (lbs) Z 154 (controlling yield value) IV 154

Total Allowable Lateral Capacity (lbs) Z' 1474 ← Z'=(# of Nails) x Z x C D x C d x C eg x C tn x C M x C t

PASS 1153.46 ÷ 1474 = 0.7823026 Unity Check < 1

Ceiling Joist to Corner Post Connection, Diaphragm Tension Chord

Purlin to Endwall Truss Connection, Diaphragm Tension Chord - BLOCKING TO TRUSS L

OA

DL

OA

DA

LL

OW

AB

LE

CA

PA

CIT

Y

NAILS - WOOD TO WOOD - SHEAR - NDS 2005, ASDIntermediate Calculations

WOOD SCREWS - WITHDRAWAL - NDS 2005, ASD

Note: if a certain adjustment factor is not shown, its value is assumed to be 1.0

AL

LO

WA

BL

E C

AP

AC

ITY

Appendix C, Page 8 of 8

Page 66: Wind Controlled Design Document

APPENDIX DPURLIN DESIGN

GIRT DESIGN

Appendix D, Page 1 of 10

Page 67: Wind Controlled Design Document

Appendix D, Page 2 of 10

Page 68: Wind Controlled Design Document

Appendix D, Page 3 of 10

Page 69: Wind Controlled Design Document

Appendix D, Page 4 of 10

Page 70: Wind Controlled Design Document

Appendix D, Page 5 of 10

Page 71: Wind Controlled Design Document

Appendix D, Page 6 of 10

Page 72: Wind Controlled Design Document

Appendix D, Page 7 of 10

Page 73: Wind Controlled Design Document

Appendix D, Page 8 of 10

Page 74: Wind Controlled Design Document

Appendix D, Page 9 of 10

Page 75: Wind Controlled Design Document

Appendix D, Page 10 of 10

Page 76: Wind Controlled Design Document

Note:This section provided to show that the Main Wind Force Resisting Systemis adequate for the 10 psf minimum wind load as required by ASCE 7-05.

APPENDIX E

DIAPHRAGM DESIGN WITH MINIMUM 10 PSF WIND REQUIREMENT

Appendix E, Page 1 of 15

Page 77: Wind Controlled Design Document

Project Name:Location:

Method 2 - Analytical Procedure - Low-Rise Building (ASCE 7-05, 6.5, 6.5.12.2.2)

Building Inputs: Calculation Inputs:120 ft Basic Wind Speed, V 90 mph72 ft Topographic Factor, Kzt 1.0016 ft

Post Sidewall Spacing, s 8 ftPost Endwall Spacing, s 8 ft Envelope:

21.25 ft Wind Directionality Factor 0.853.5 II

Eave Overhang 2 ft B

Definitions:Case A - Wind Direction Normal to Roof Ridge, Pressure Coefficients Vary With Roof Angle.Case B - Wind Direction Parallel to Ridge, Pressure Coefficients are Constant for all Roof Angles.Interior Zones - Zones 1 - 6 Below Edge Zones - Zones 1E - 6E Below

Intermediate Calculations:Importance Factor, I 1.00 Table 6-1 16.26 degNom. Height of Atmospheric Boundary (zg) 1200 0.18 -0.18

Vel. Press. Exp. Coefficient, Kz 0.635

3-s Gust Speed Power Law Exponent (α) 7 Velocity Pressure, qh 11.2 psf

Wind Load Results:A. Main Wind Force Resisting System: ASCE 7-05, Figure 6-10 Equation: p = qh[(GCpf-(Gcpi)]

P (psf) P (psf)

Gcpf I* II** III~ Gcpf I* II** III~

Zone 1: Windward Side Wall 0.50 3.6 7.6 5.6 0.40 2.5 6.5 4.5Zone 2: Windward Roof -0.69 -9.7 -5.7 -7.7 -0.69 -9.7 -5.7 -7.7Zone 3: Leeward Roof -0.45 -7.1 -3.1 -5.1 -0.37 -6.2 -2.1 -4.1Zone 4: Leeward Side Wall -0.40 -6.4 -2.4 -4.4 -0.29 -5.3 -1.2 -3.2Zone 5: Gable Wall -0.45 -7.0 -3.0 -5.0Zone 6: Gable Wall -0.45 -7.0 -3.0 -5.0Zone 1E: Windward Side Wall Edge 0.75 6.4 10.4 8.4 0.61 4.8 8.8 6.8Zone 2E: Windward Roof Edge -1.07 -14.0 -10.0 -12.0 -1.07 -14.0 -10.0 -12.0Zone 3E: Leeward Roof Edge -0.65 -9.3 -5.3 -7.3 -0.53 -7.9 -3.9 -5.9Zone 4E: Leeward Side Wall Edge -0.59 -8.6 -4.6 -6.6 -0.43 -6.8 -2.8 -4.8Wind load should not be less than 10 psf on vertical projection. (ASCE 7-05, 6.1.4.1)Because the structure is less than 30ft high, the torsional cases 1T, 2T, 3T and 4T do not apply. (ASCE 7-05, Fig. 6-10, note 5)

B. Components and Cladding: ASCE 7-05, Figure 6-11 Equation: p = qh[(Gcp)-(Gcpi)]

Note: Only negative loads are shown because they are larger than positive and so control the design.

Component: Roof Purlins

Effective Area: 21.33 ft2 Effective Area: 21.33 ft2

Zone Gcp P (psf) Zone Gcp P (psf)

I* II** III~ I* II** III~

4: Wall Interior -1.0 -13.7 -9.7 -11.7 1: Roof Interior -0.9 -11.7 -7.6 -9.65: Wall Edge -1.3 -16.4 -12.4 -14.4 2: Roof Edge -1.5 -19.2 -15.2 -17.2

3: Roof Corners -2.4 -28.9 -24.8 -26.8* Internal Pressure Positive ** Internal Pressure Negative ~ Internal Pressure Zero

Dane County, Wisconsin

Component: Wall Girts

Building Midheight, hBuilding CategoryRoof Pitch (rise per 12 units of run)

Case A

Calculated Roof AngleInternal Press. Coefficient, Gcpi

Effective Wind Area: span length multiplied by an effective width that need not be less than one-third the span length.

Case B

Exposure Category

ASCE 7-05 Load Calculations

Enclosed Building

72'x120'x16' Post-Frame Building

Wall Height, zLength Normal to Ridge, L Length Parallel to Ridge, B

Appendix E, Page 2 of 15

Page 78: Wind Controlled Design Document

Wall Dead Load 3 psf

Roof Dead LoadSteel Roofing 1 psfsurface area Bottom Chord Load 5 psf

Purlins 1.25 psfsurface area

Bracing/Hardware 1.5 psfsurface area

Total Top Chord 3.75 psfsurface area

Top Chord Load On Horizontal Projection 3.91 psfhorizontal projection

TOTAL ROOF LOAD 9 psf

Floor Live Load

Minimum Floor Live Load = n/a psf (ASCE 7-05, Table 4-1)

Minimum Roof Live Load Top Chord 20 psfBottom Chord 0 psf

Total (on horizontal projection) 20 psf (ASCE 7-05, Table 4-1)

Snow Load Calculations

A. Flat-Roof Snow Load, pf Equation: p f = 0.7(C e )(C t )(I)(p g )Notes

Ground Snow Load, pg: 30 psf Figure 7-1Exposure Factor, Ce: 1.0 Table 7-2 Partially exposed roof

Thermal Factor, Ct: 1.1 Table 7-3 Heated buildingImportance Factor, I: 1.0 Table 7-4

pf 23.1 psf

B. Sloped-Roof Snow Load, ps Equation: p s = (C s )(p f )Notes

Roof Slope Factor, Cs: 1.00 Figure 7-2ps 23.1 psf

C. Unbalanced Roof Snow Load Hip and Gable Roofs1) Required for Hip and Gable Roofs with a slope less than 70/W + 0.5 and exceeding 70 degrees2) The unbalanced snow load is applied to the leeward roof and windward roof as indicated

Inputs:Horizontal Distance Eave to Ridge, W 38 ftEquations: W ≤ 20 ft. (ASCE 7-05, Figure 7-5)

▪ 0 Windward Unbalanced

▪ (pg)(I) Leeward UnbalancedW > 20 ft

▪ 0.3*ps Windward Unbalanced

▪ ps + hd(γ)/(√(S)) Leeward Unbalanced, the latter extended from the ridge a distance of [8(√(S))(hd)]/3

Intermediate Calculations:Roof Angle = 16.26 degrees hd = 2.13 ft

g = 17.9 pcf S = Roof slope run for a rise of 1 = 3.4286

punbal, leeward = 43.7 psf for a distance of 10.5 ft from the ridge, then 23.1 psf to eaves

punbal, windward = 6.9 psf

TOP CHORD BOTTOM CHORD

Appendix E, Page 3 of 15

Page 79: Wind Controlled Design Document

Seismic Load CalculationsCalculation Inputs:

Building and Site Inputs: Spectral Response Acceleration, S1 0.05

Site Class D Spectral Response Acceleration, SS 0.15Basic Structural System: Response Modification Factor, R 6.5

Height to Highest Level (ft), hn 16Light Framed Walls w/ Shear Panels Weight of Structure (lbs), W 6240Seismic Design Category: D (ASCE 7-05, 11.6) (9 psf)(72+2 +2 ft)(8 ft)+2(3 psf)(16 ft)(8 ft)

Effective Weight of Structure (lbs), We 5760(9 psf)(72+2 +2 ft)(8 ft)+2(3 psf)(16 ft)(8 ft)(3/8)

Seismic Use Group II Building Inputs: Load from Roof

Occupancy Importance Factor, IE 1 Fixity Factor 0.375 (lbs)

Sms 0.240 Wind Force with 10 psf min, Fw = 1320 lbs 840

SDs 0.160 Wind Force with Roof and Walls, Fw = 256 lbs -223

Sm1 0.120 Wind Force with Walls only, Fw = 479 lbs 0

SD1 0.080

CT 0.02

Cu 1.7

Acceleration Site Coefficient, Fa 1.6

Velocity Site Coefficient, Fv 2.4

App. Fund. Period, Ta 0.16

Fundamental Period, T 0.27Seismic Coefficient, Cs 0.025

Cs min 0.007

Cs max 0.045Seismic Base Shear, V = 154 lbs Controlling Wind Load:

Lateral Seismic Force at Roof, FR = 142 lbs Wind Force per Frame, Fw = 1320 lbs [F R = 154 x 5760 / 6240 ]

D+W 1320 lbs

D+0.7E 99.3 lbs

Story Drift and Wind DeflectionsAllowable Story Drift = 0.02 hs1 (ASCE 7-05, Table 12.12-1)

Story Height, hs1 = 192 inAllowable Story Drift = 3.84 in

Other Deflection Criterion = l/120 (ASCE 7-05, Section 12.12.2 and IBC 2009, Table 1604.3)

Allowable Deflection at Eave = 1.6 in (controlling deflection criterion)Actual Calculated Deflection = 1.46 in (see DAFI outputs)

Story Drift from Elastic Analysis, δ1e = n/a in (seismic does not control the strength or serviceability design)

Deflection Amplification Factor, Cd = 4.5

Calculated Story Drift at Eave , δ1 = n/a in

Controlling Load CombinationsWall Posts D+0.75(S+W) Post Foundation (Lateral Loading) D+W and 0.6D+WRoof Diaphragm D+W and 0.6D+W Post Foundation (Uplift) 0.6D+WEndwall Shearwalls D+W and 0.6D+W Wall Girts D+W and 0.6D+WRoof Truss D+S Purlins 0.6D+W or D+S

Story drift requirements are satisfied - calculated story drift is less than controlling allowable story drift

All other structural systems:

Wind Resolved to Horizontal Point Load at Eave, FwIntermediate Seismic Calculations

Strength Comparison Serviceability ComparisonWind Controls the Strength Design

(D+0.7E)C d < D+W: Wind Controls

Serviceability Requirements

Seismic vs. Wind ComparisonControlling Load Combination

Appendix E, Page 4 of 15

Page 80: Wind Controlled Design Document

▪ Ultimate Strength, Pu, lbf 3300

▪ Allowable Shear Strength, va, lbf/ft 110▪ Effective In-Plane Stiffness, c, lbf/in 2920▪ Effective Shear Modulus, G, lbf/in 2190

Reference: Lukens & Bundy, 1987

The Diaphragm Horizontal Roof Stiffness, Ch

Ch = ch,1 roof+ch,2 roof+ch,3 ceiling

ch,1 roof = ch,2 roof = G(cosθroof)(bh,1 roof/s)

ch,3 ceiling = G(cosθceiling)(bh,1 ceiling/s)

bh,1 roof = 38 ft (half of the building's width+overhang)

bh, ceiling = 72 ft (building's width)

s= 8 ft (column spacing)

θroof 16.26 degrees

θceiling 0

ch,1 roof = 9986 lbf/in

ch,2 roof = 9986 lbf/in

ch,3 ceiling = 19710 lbf/in

Ch = 39683 lbf/in (The total horizontal shear stiffness of roof diaphragm)

Frame Stiffness, k (See Visual Analysis Results in Appendix)

k = p/Δ

p = horizontal load at eaveΔ = frame displacement at eave

p = 100 lbf (applied to eave in Visual Analysis Model)Δ = 0.75 in (resulting truss displacement in Visual Analysis Model)

k = 133.3 lbf/in (bare frame stiffness)

DIAPHRAGM DESIGN

Appendix E, Page 5 of 15

Page 81: Wind Controlled Design Document

Endwall Stiffness, ke

ke= G(cosθexterior)(bh,exterior/s) + G(cosθinterior)(bh, interior/s) + n(6EI/L3)

G= 2190 lbf/in

θexterior = 0.0 degrees

θinterior = 0.0 degrees

bh1, exterior = bh1, interior = 60 ft (length of endwall 1 minus door/window openings)

bh2, exterior = bh2, interior = 48 ft (length of endwall 2 minus door/window openings)

s = 16 ft (s=length perpendicular to loading = wall height)

n1 = 10 columns (n 1 =number of columns in endwall 1)

n2 = 8 columns (n 2 =number of columns in endwall 2)

E= psi

I= 48 in4(moment of inertia about weak axis of each individual endwall column)

L= 16 ft (column height)

ke1= lbf/in (stiffness of endwall with four windows)

ke2= lbf/in (stiffness of endwall with 24ft door)

Eave Load

Eave Reactions by Frame Base Fixity Factors:

Pi = s[hr(qwr - qlr) + hwf (qww - qlw)]s= 8 ft

hr= 10.5 ft

hw= 16

qww= 10.0

qlw= 0.0

qwr= 10.0 (load with roof loads did not control)

qlr= 0.0 (load with roof loads did not control)

f pin= 0.5

f fixed= 0.375

Pi, pin= 1480 (Eave Reaction With Pinned Column Base)

Pi, fixed= 1320 (Eave Reaction With Fixed Column Base)

f new= 0.42

Pi= 1378 lbs P i = s[h r (q wr - q lr ) + h w f new (q ww - q lw )]

17117

1700000

13693

Appendix E, Page 6 of 15

Page 82: Wind Controlled Design Document

Summary of DAFI Inputs

Roof Diaphragm Shear Stiffness: 39683 lbf/in (C 1 = C 2 = C 3 = … = C 15 )

Endwall 1 Shear Stiffness: 17117 lbf/in

Endwall 2 Shear Stiffness: 13693 lbf/in

Interior Frame Stiffness: 133.3 lbf/in (k 2 = k 3 = k 4 = … = k 14 )

Eave Load on Interior Frame: 1378 lbf

Summary of DAFI Outputs

Frame Number

123456789

10111213141516

0.2078581

3315.464521.8

5743.33

8248.430.1759985 6984.15

12

1438.58252.78932.17

2120.25

6270.255040.993828.672629.21

12.963

Frame Stiffness

17117133.3133.3133.3133.3133.3133.3

0.1400.1410.1380.133

Shear Displacement

1.43

172.7157.5138.2114.7

1.30

179.5

133.3

188.4193.2194.1

133.31.46

1 8796.152

Diaphragm Stiffness

Diaphragm Number

Shear Load

7520.5739683 0.221660539683

Load Resisted by Frame

9485.7103.4128.7

13.7570.075

689.5 0.55

149.7166.7

0.780.97

0.1580085

133.3133.3

0.1301379 1.41

133.3 183.8

1379 1.45

7

3968339683396833968339683

13791379

DAFI FRAME ANALYSIS OUTPUTS

137913791379

133.3 190.91.38

1.12

1011

133.3133.313693

6

345

DAFI DIAPHRAGM ANALYSIS OUTPUTS

1314

396833968339683396833968339683

89

0.125

153968339683

0.12703160.09648140.06625530.0362517

0.1140.100

0.1895162

Fraction of Applied Load

0.137

1379

13791379

0.0930.109

1.040.083

0.05342980.0835485

1379

1.25 0.121

1379 0.86

1.181379

0.0234905

8937.9

0.113948

Applied Load

Horizontal Displacement

1.35

0.1447302

1379

689.5 0.65

0.0063699

Appendix E, Page 7 of 15

Page 83: Wind Controlled Design Document

Interpretation of DAFI OutputsControlling Frame Number = 9 (Resists the most load compared to other frames)

Deflection of Frame = 1.46 inLoad Resistance by Frame = 194.1 lbf

Resisting Force by Diaphragm, Q = 1183.6 lbf (Eave Load Minus Load Resistance by Frame)

Shear Load in Endwall 1 = 9485.7 lbf DAFI Output: Load Resisted by Frame 1Shear Load in Endwall 2 = 8937.9 lbf DAFI Output: Load Resisted by Frame 16; Wall with 20' Door

Horizontal Diaphragm Shear = 8796.2 lbf DAFI Output: Largest Diaphragm Shear Load

Endwall Shear Strength Check

ke= G(cosθexterior)(bh,exterior/s) + G(cosθinterior)(bh, interior/s) + n(6EI/L3) (endwall stiffness)

G(cosθexterior)(bh1,exterior/s) = 8213 lbf/in (stiffness provided by exterior sheathing of endwall 1)

G(cosθinterior)(bh1, interior/s) = 8213 lbf/in (stiffness provided by interior sheathing of endwall 1)

n(6EI/L3) = 691.7 lbf/in (stiffness provided by columns of endwall 1)

G(cosθexterior)(bh2,exterior/s) = 6570 lbf/in (stiffness provided by exterior sheathing of endwall 2)

G(cosθinterior)(bh2, interior/s) = 6570 lbf/in (stiffness provided by interior sheathing of endwall 2)

n(6EI/L3) = 553.4 lbf/in (stiffness provided by columns of endwall 2)

Shear Load in Endwall 1, Vmax, 1 = 9486 lbf DAFI Output: Load Resisted by Frame 1

Shear Load in Endwall 2, Vmax, 2 = 8938 lbf DAFI Output: Load Resisted by Frame 16; Wall with 24' Door

Allowable Shear Strength, va = 110 lbf/ft (with NO.2 DFL girts, Specific Gravity = 0.50)

EndwallLoad Ratio

1 Exterior Sheathing 0.480

Interior Sheathing 0.480

Bare Frame 0.040

2 Exterior Sheathing 0.480

Interior Sheathing 0.480

Bare Frame 0.040

vmax ≤ va <ok> (actual shear in endwalls is less than allowable shear)

553 n/a

13693 4288 89

13693 361 n/a

6570 110

13693 4288 896570 110

Allowable Load on Component,

va

(lb/ft)

110

110

n/a

4551 76

17117 383 n/a

Shear Load on Component,

vmax

Stiffness of Wall

Component

692

8213

(lb/ft)

17117 4551 76

(lbf/in)

8213

(lbf/in) (lbs)

17117

Total Load on Component

Wall ComponentTotal Stiffness

of Endwall

Appendix E, Page 8 of 15

Page 84: Wind Controlled Design Document

Sidewall Shear Strength CheckWind Parallel To Ridge

Allowable Shear Strength, va = 110 lbf/ft (CD = 1.0)

Fixity Factor, f fixed= 0.375

Tributary Area, At = 810 ft2

Length of Wall, Lsidewall = 79 ft (length of sidewall minus all door and window openings)qww = 10.0 psf (10 psf minimum requirement controls the design)qlw = 0.0 psf (10 psf minimum requirement controls the design)

Maximum Shear Load, Vmax = 8100 lbsActual Shear Load, vsidewall = 51 lbf/ft V max /L sidewall /2walls

vsidewall ≤ va <ok> (actual shear in sidewall is less than allowable shear)

Roof Diaphragm Shear Strength Check

Allowable Shear Strength, va = 110 lbf/ft

Max Shear, Vmax, horizontal = 8796 lbf DAFI Diaphragm Analysis Output

Ch, roof = ch,1 roof + ch2, roof = 19973 lbf/in (horizontal stiffness provided by roof sheathing)

Ch, ceiling = 19710 lbf/in (horizontal stiffness provided by ceiling sheathing)

Ls, roof = 79.17 ft (width of building plus overhangs / cosine of roof angle)

Ls, ceiling = 72 ft (width of building)

vmax, in-plane = Vmax, in-plane / Ls (shear load in plane of the roof or ceiling sheathing)

Roof Component

Load Ratio

θ

(deg)

Roof Sheathing 0.503 16.26

Ceiling Sheathing

0.497 0

vmax ≤ va <ok> (actual shear in diaphragm is less than allowable shear)

11019710 39683

Allowable Shear Load, va

(lb/ft)

110

Max Load in Plane of

Component, Vmax, in-plane

58

4369 4369 61

19973 39683 4427 4612

Shear Load in Plane of

Component, va

(lbf/in) (lbf/in) (lbs) (lbs) (lb/ft)

Horizontal Stiffness of Component

Total Horizontal Stiffness of Diaphragm

Max Horizontal Load on

Component, Vmax, horizontal

Appendix E, Page 9 of 15

Page 85: Wind Controlled Design Document

Roof Diaphragm Chord Forces

ch,1 roof = 9986 lbf/in (horizontal stiffness of roof diaphragm 1)

ch,2 roof = 9986 lbf/in (horizontal stiffness of roof diaphragm 2)

ch,3 ceiling = 19710 lbf/in (horizontal stiffness of ceiling diaphragm)

Ch = 39683 lbf/in (total combined horizontal stiffness diaphragm)

Load Ratio to Each Diaphragm , p = ch,x/Ch (individual diaphragm stiffness / total diaphragm stiffness)

Load on Roof Diaphragm, w = 172.2 lbf/ft (eave load, Pi, divided by column spacing, s)

End Moment, Mex = wxLx2/12 (controls the design)

Midspan Moment, Mmx = wxLx2/24

Tension/ Compression Force, Tx = Mex/bx (controlling moment divided by depth of individual diaphragm)

HTP37z Simpson Strap = 1600 lbs (allowable tension capacity as specified by the manufacturer)MSTA21 Simpson Strap = 1505 lbs (allowable tension capacity as specified by the manufacturer)

Load Ratio,

p

(dec.)Roof Diaphragm 1 0.252Roof Diaphragm 2 0.252

Ceiling Diaphragm 0.497

Px ≤ Pa <ok> (actual tension load is less than allowable tension load)

1425 1505

52002 1368 1600

(ft) (lbs)

120 72 85.5 102636

1600120 38 43.3120 38 43.3 52002 1368

Diaphragm Component

Allowable Tension Load

Ta

Tension/ Compression

Force, Tx

Moment in Diaphragm,

Mx

Load on Diaphragm,

wx

Diaphragm Length, Lx

Diaphragm Depth, bx

(lbs)(lb-ft)(lb/ft)(ft)

Appendix E, Page 10 of 15

Page 86: Wind Controlled Design Document

ENDWALL CEILING LEDGER TO POSTS CONNECTIONNumber of Posts = 10

Number of 16d Nails per Post = 4Maximum Shear, Vmax, horizontal = 4369 lbs (V max, horizontal from Ceiling Diaphragm Shear Strength Check Section)

Allowable Shear Capacity = 9830 lbs

ENDWALL SKIRT BOARD TO POST CONNECTION

Number of Posts = 10Number of 16d Nails per Post = 4Maximum Shear, Vmax, exterior = 4551 lbs (V max from Endwall Shear Strength Check Section)

Maximum Shear, Vmax, interior = 4551 lbs (V max from Endwall Shear Strength Check Section)

Allowable Shear Capacity, Va = 6881 lbs

PURLIN TO PURLIN AT SPLICE AND TO ENDWALL TRUSS CONNECTIONMaximum Tension Force, Tmax = 1368 lbs (T x from Roof Diaphragm Chord Forces Section)

Allowable Tension Capacity, Ta = 1850 lbs (at splice)

Allowable Tension Capacity, Ta = 1513 lbs (at endwall truss)

CEILING JOIST TO CEILING JOIST SPLICE AND TO CORNER POST CONNECTION

Maximum Tension Force, Tmax = 1425 lbs (T x from Roof Diaphragm Chord Forces Section)

Allowable Tension Capacity, Ta = 1505 lbs (at splice)

Allowable Tension Capacity, Ta = 1474 lbs (at corner post)

CONNECTIONS

Appendix E, Page 11 of 15