William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci

59
Atmospheric Methane: How well Atmospheric Methane: How well can we can we apportion present sources apportion present sources and predict and predict future changes? future changes? William S. Reeburgh William S. Reeburgh Earth System Science Earth System Science University of California Irvine University of California Irvine [email protected] [email protected]

description

Atmospheric Methane: How well can we apportion present sources and predict future changes?. William S. Reeburgh Earth System Science University of California Irvine [email protected]. Wahlen , 1993. Geochemical Approaches. Four R’s of Geochemistry (Dayton Carritt) Routes Rates - PowerPoint PPT Presentation

Transcript of William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci

Page 1: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci

Atmospheric Methane: How well Atmospheric Methane: How well can wecan we apportion present sources apportion present sources and predictand predict future changes? future changes?

William S. ReeburghWilliam S. Reeburgh

Earth System ScienceEarth System Science

University of California IrvineUniversity of California Irvine

[email protected]@uci.edu

Page 2: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci
Page 3: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci
Page 4: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci

Wahlen, 1993

Page 5: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci
Page 6: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Page 7: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Page 8: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci

GeochemicalGeochemical ApproachesApproaches

• Four R’s of GeochemistryFour R’s of Geochemistry (Dayton Carritt)(Dayton Carritt)• RoutesRoutes• Rates Rates • ReactionsReactions • ReservoirsReservoirs

• Inverse Chemical EngineeringInverse Chemical Engineering (W. S. Broecker) (W. S. Broecker) Considers Earth as a chemical plant with no blueprints. Task of Considers Earth as a chemical plant with no blueprints. Task of geochemistry is to produce the missing blueprints with measurements of geochemistry is to produce the missing blueprints with measurements of concentrations, fluxes, reaction rates, etc. concentrations, fluxes, reaction rates, etc.

Page 9: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Page 10: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci

Rate MeasurementsRate Measurements

Flux MeasurementsFlux Measurements (chamber, eddy (chamber, eddy flux)flux)

Sulfate Reduction Sulfate Reduction 3535SOSO44

-2-2 H H223535S (1.4 Ci S (1.4 Ci

mmolemmole-1-1) ) (carrier-free)(carrier-free)

Methane OxidationMethane Oxidation Aerobic and AnaerobicAerobic and Anaerobic

Carbon (Carbon (1414C)C) 1414C-CHC-CH44 1414COCO2 2 (55 (55 mCi mmolmCi mmol-1-1))

Hydrogen (Hydrogen (33H)H) 33H-CHH-CH4 4 33HH220 (3 0 (3 Ci mmolCi mmol-1-1))

Page 11: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci

Methane SourcesMethane Sources

MicrobialMicrobial

Competitive substrates (anoxic Competitive substrates (anoxic conditions)conditions) COCO22 reduction reduction COCO22 + 4H + 4H22 CH CH44 + 2H + 2H22O O

Acetate fermentationAcetate fermentation CHCH33COOH CHCOOH CH44 + CO + CO22

Non-competitive substrates (oxic Non-competitive substrates (oxic conditions?)conditions?) Methylated Compounds Methylated Compounds (methylamines, DMS, DMDS, (methylamines, DMS, DMDS, methane thiol, methane thiol, methyl phosphonate)methyl phosphonate)

Page 12: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci

Methane SourcesMethane Sources

AbioticAbiotic “ “Serpentinization Reaction”Serpentinization Reaction”

6[(Mg6[(Mg1.51.5FeFe0.50.5)SiO)SiO44] + 7H] + 7H22O O olivineolivine

3[Mg3[Mg33SiSi22OO55(OH)(OH)44] + ] + FeFe33OO44 + H + H22

serpentineserpentine magenetitemagenetite

and and

COCO22 + 4H + 4H22 (300 C, 500bar)(300 C, 500bar) CH CH44 + 2H + 2H22OO

“ “Thermal Cracking”, PyrolysisThermal Cracking”, Pyrolysis

1414CHCH44 added by PWR’s added by PWR’s

Page 13: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci

Methane Sinks

Microbial Aerobic Oxidation 2CH2CH44 + O + O2 2 2CO2CO2 2 + 2H+ 2H2200

(decreases pH, dissolves (decreases pH, dissolves carbonates)carbonates)

Anaerobic Oxidation (AOM or AMO)(AOM or AMO) CHCH44 + SO + SO44

-2 -2 HCO HCO33-- + HS + HS--

+ H+ H2200 (increases alkalinity; (increases alkalinity; isotopically light isotopically light carbonates precipitate.)carbonates precipitate.)

““Reverse Methanogenesis”Reverse Methanogenesis” CHCH44 + 2H2H220 CO0 CO2 2 + 4H+ 4H22

Page 14: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci

Methane SinksMethane Sinks

Photochemical Oxidation Photochemical Oxidation (principal atmospheric sink)(principal atmospheric sink)

OO33 + h + h O( O(11D) + OD) + O22 = 315 nm= 315 nm

O(O(11D) + HD) + H22O 2OHO 2OH

CHCH44 + OH H + OH H220 + CH0 + CH33

Page 15: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci
Page 16: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci

Cicerone & Oremland, 1988

Page 17: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci
Page 18: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci

Methane budget is well-constrained. Methane budget is well-constrained. We know the total well, but We know the total well, but individual source terms are individual source terms are uncertain to a factor of 2 or more. uncertain to a factor of 2 or more. A “bird’s eye” budget; considers net A “bird’s eye” budget; considers net additions to the atmosphere. A net additions to the atmosphere. A net atmospheric budget.atmospheric budget.

We can consider consumption or We can consider consumption or oxidation, but the previous oxidation, but the previous constraints do not apply. Oxidation constraints do not apply. Oxidation before emission to atmosphere has a before emission to atmosphere has a large effect.large effect.

Page 19: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci

InversionsInversions

Fung et al., 1997, JGR

Hein et al., 1997, GBC

Mikalof-Fletcher et al., 2004, GBC (CH4 & 13C-CH4)

Butler et al., 2005, JGR

Van der Werf et al., 2004, Science (wildfire contributions)

Bousquet et al., 2000, Nature

Page 20: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci
Page 21: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci
Page 22: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci
Page 23: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci

Recently Reported CHRecently Reported CH44 Sources Sources

Aerobic Methane Production by PlantsAerobic Methane Production by Plants

Siberian thaw lakes/Yedoma soilsSiberian thaw lakes/Yedoma soils

*Ocean Vent Additions: CH*Ocean Vent Additions: CH44-consuming benthic-consuming benthic communitiescommunities

*Methane Clathrate Hydrate, Mud Volcano Additions*Methane Clathrate Hydrate, Mud Volcano Additions

*Large “Fossil CH*Large “Fossil CH44” Additions to Anoxic Basins & Ocean” Additions to Anoxic Basins & Ocean

**oxidized in ocean; not emitted to atmosphereoxidized in ocean; not emitted to atmosphere

Page 24: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci

Aerobic ProductionAerobic Production

Page 25: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci

Aerobic ProductionAerobic Production

Page 26: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci

AerobicAerobic Production?Production?

Page 27: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci

Aerobic Production?Aerobic Production?

Page 28: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci

Siberian thaw lakes/Yedoma soilsSiberian thaw lakes/Yedoma soils

Siberian thaw lakes/Yedoma soilsSiberian thaw lakes/Yedoma soils

Page 29: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci

Lost City Hydrothermal FieldLost City Hydrothermal Field

Kelley Kelley et al.et al. (2005) (2005)Boetius (2005)Boetius (2005)

Page 30: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Treude et al., 2003Treude et al., 2003

Page 31: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci

Michaelis Michaelis et al.et al. (2002) (2002)

3 - 4 m height3 - 4 m height

Page 32: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci

5 5 mm

Boetius Boetius et al.et al. (2000) (2000)

Page 33: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci
Page 34: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci

Clathrate HydratesClathrate Hydrates

Page 35: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci

Mud VolcanoesMud Volcanoes

http://www.crimea-info.orghttp://www.crimea-info.org

Page 36: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci
Page 37: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci

Fossil CHFossil CH44 Additions Additions

Cariaco BasinCariaco Basin

Page 38: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci

Fossil CHFossil CH44 Additions Additions

Black SeaBlack Sea

Page 39: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci
Page 40: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci

Future WorkFuture Work

Add Add 22H-CHH-CH44 and and 1313C-CHC-CH44 to NOAA time to NOAA time seriesseries

Natural hydrate dissociation rate?Natural hydrate dissociation rate?

More ocean measurements of natural More ocean measurements of natural 1414CHCH44

Ocean mixed layer maximum?Ocean mixed layer maximum?

Identify/isolate anaerobic methane Identify/isolate anaerobic methane oxidizer(s)oxidizer(s)

Determine determine mechanism for Determine determine mechanism for anaerobicanaerobic oxidizer(s). oxidizer(s).

Page 41: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci

ResourcesResources

(2003) In Vol. 4 (The Atmosphere) Treatise on Geochemistry(2003) In Vol. 4 (The Atmosphere) Treatise on Geochemistry , Eds. Turekian and Holland,, Eds. Turekian and Holland, Elsevier-Pergamon, Oxford. 2003 (2006 update for on-line version)Elsevier-Pergamon, Oxford. 2003 (2006 update for on-line version)

Page 42: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci

AcknowledgementsAcknowledgements

Support:Support: NSF Ocean SciencesNSF Ocean Sciences W. M. Keck Foundation - MS & AMSW. M. Keck Foundation - MS & AMS

Students:Students: David Heggie - Australian. Geol. Survey Org.David Heggie - Australian. Geol. Survey Org. Marc Alperin - UNC Chapel HillMarc Alperin - UNC Chapel Hill Jennifer King - Univ. of MinnesotaJennifer King - Univ. of Minnesota David Valentine - UC Santa BarbaraDavid Valentine - UC Santa Barbara John Kessler - Princeton postdocJohn Kessler - Princeton postdoc Mary Pack - UCI currentMary Pack - UCI current

Page 43: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci
Page 44: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci
Page 45: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Page 46: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Page 47: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci
Page 48: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci
Page 49: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci
Page 50: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci
Page 51: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci
Page 52: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci

Clathrate HydratesClathrate Hydrates

Page 53: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci
Page 54: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci
Page 55: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci
Page 56: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci
Page 57: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Page 58: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci

Approaches to Estimating the Clathrate-Derived

Methane Flux to the Ocean

Global Methane Budget SinksGlobal Methane Budget Sinks

Aerobic oxidation of methaneAerobic oxidation of methane 2CH2CH44 + O + O2 2 2CO2CO2 2 + 2H+ 2H2200

(decreases pH, dissolves carbonates)(decreases pH, dissolves carbonates)

Anaerobic oxidation of methane (AOM or AMO)Anaerobic oxidation of methane (AOM or AMO) CHCH44 + SO + SO44

-2 -2 HCO HCO33-- + HS + HS-- + H + H2200

(increases alkalinity; carbonates w/light(increases alkalinity; carbonates w/light isotopic signature ppt.)isotopic signature ppt.)

Page 59: William S. Reeburgh Earth System Science University of California Irvine Reeburgh@uci