What's in the Box? - Carbon Capture Simulation Initiative ... · Speedup TOUGH2 Benchmark 6% 30 ......

44
What's in the Box? Systematic approaches for inferring algebraic models from experimental data or simulations This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Nick Sahinidis 1,2 Acknowledgments: Yan Zhang 1,2 , Alison Cozad 1,2 , David Miller 1 1 National Energy Technology Laboratory, Pittsburgh, PA,USA 2 Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA

Transcript of What's in the Box? - Carbon Capture Simulation Initiative ... · Speedup TOUGH2 Benchmark 6% 30 ......

What's in the Box? Systematic approaches for inferring algebraic models from experimental data or simulations

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof,nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of anyinformation, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercialproduct, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring bythe United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United StatesGovernment or any agency thereof.

Nick Sahinidis1,2Acknowledgments: Yan Zhang1,2, Alison Cozad1,2, David Miller1

1National Energy Technology Laboratory, Pittsburgh, PA,USA2Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA

Carnegie Mellon University 2

• Build a model of output variables z as a function of input variables x over a specified interval

LEARNING PROBLEM

Independent variables:Operating conditions, inlet flow 

properties, unit geometry

Dependent variables:Efficiency,  outlet flow conditions, 

conversions, heat flow, etc.

Process simulation

Carnegie Mellon University 3

• Polynomial chaos expansion– Best subset selection method– Application in risk assessment

• ALAMO: Automatic Learning of Algebraic Models for Optimization– Best subset selection method– Adaptive sampling– Comparisons with least squares and the lasso– Application in optimization

OUTLINE

Carnegie Mellon University 4

POLYNOMIAL CHAOS EXPANSION• Build polynomial surrogate models of a given simulator

SimulatorInput x Output z

x

y z = p(x)

Key steps:• Choose basis functions B• Determine coefficients α

Polynomial chaos expansion: 

z

Carnegie Mellon University 5

OVERVIEW OF PCE METHODS

• Intrusive PCE methods (Xiu and Karniadakis, 2003)

– Substitute PCE’s into partial differential equations

– Solve new equations for coefficients

• Nonintrusive PCE methods (Webster et al., 1996, Isukapalli et al., 1998, Ghiocel and Ghanem, 2002, Li and Zhang, 2007, Eldred and Burkardt, 2009, Blatman and Sudret, 2010, Oladyshkin et al., 2011) 

– No manipulation of partial differential equations

– Estimate coefficients by projection

– Estimate coefficients by fitting curves

Carnegie Mellon University 6

PROPOSED PCE ALGORITHM

Sample

Carnegie Mellon University 7

PROPOSED PCE ALGORITHM

z = constant

Initialization with a constant

Sample

Carnegie Mellon University 8

PROPOSED PCE ALGORITHM

z = constant

Initialization with a constant

Sample

Error small? StopYes

Error = ( zsurrogate – zsimulation )2

Carnegie Mellon University 9

PROPOSED PCE ALGORITHM

Initialization with a constant

Sample

Add basis terms

Solve a mixed‐integer problem for a best subset 

of basis functions

Error small?

No

Add higher‐order terms to current PCE:

Best subset selected by MIP:

Carnegie Mellon University 10

PROPOSED PCE ALGORITHM

Initialization with a constant

Sample

Solve a mixed‐integer problem for a best subset 

of basis functions

Overfitting? Stop

Error small?

Yes

No

Terms  T

R2

Cross validation Q2

Accuracy

Ideal model

1

Underfitting Overfitting

Add basis terms

Carnegie Mellon University 11

PROPOSED PCE ALGORITHM

Initialization with a constant

Sample

Solve a mixed‐integer problem for a best subset 

of basis functions

Overfitting? Stop

Error small? StopYes

Yes

No

No

Novelty of proposed method:

Math programming for basis selection

• Global optimal subset

• Obtains more accurate modelsAdd basis terms

Carnegie Mellon University 12

TESTING ON A BENCHMARK PROBLEM• CO2 injection into a deep saline aquifer• Simulated using TOUGH2

ECO2N manual, 2005

30 m

30 m

30 m

30 m

30 m

22 m

6000 m

Shale layers

Lower Shale (impermeable)

Upper Shale Cap (impermeable)

Sym

met

ry P

lane

(no

flux)

184

m

Hydrostatic pressure

Horizontal injection well

Pressure, gas saturation @ reservoirHorizontal

Vertical

Gridblock i

986 gridblocks986 surrogate models for each output

Carnegie Mellon University 13

POLYNOMIAL SURROGATE MODEL

Q2=0.984th order polynomial

expansion

Carnegie Mellon University 14

COMPARISON AGAINST TOUGH2

Maximum relative error = 6%

For every gridblock i, i = 1 ,…, 986

Carnegie Mellon University 15

TOUGH2Surrogate model

MONTE CARLO SIMULATION

Cumulative probability distribution obtained with 4000 simulations of surrogate models

0 1 2 3 4 5 6

Carnegie Mellon University 16

REDUCED‐ORDER MODELING GAINS

• For the benchmark study and SACROC application, surrogate models developed based on the proposed technique were found to be accurate.

Case Maximum relative error

CPU time to run surrogates in MATLAB

CPU time to run numerical simulator

Speedup

TOUGH2 Benchmark 6% 30 s 15 mins 10 x

SACROC Oilfield Case 7% 45 s 24 hrs 100 x

See Zhang and Sahinidis (IECR, 2013)

Carnegie Mellon University 17

SIMULATION OPTIMIZATION

Pulverized coal plant Aspen Plus® simulation provided by the National Energy Technology Laboratory

Carnegie Mellon University 18

PROCESS DISAGGREGATION

Block 1:Simulator

Model generation

Block 2:Simulator

Model generation

Block 3:Simulator

Model generation

Surrogate ModelsBuild simple and accuratemodels with a functional

form tailored for an optimization framework

Process SimulationDisaggregate process into

process blocks

Optimization ModelAdd algebraic constraints

design specs, heat/mass balances, and logic

constraints

Carnegie Mellon University 19

RECENT WORK IN CHEMICAL ENG

Simulator Modeler Optimizer

Full process

Disaggregated

Kriging Neural nets Polynomial‐based

Michalopoulos et al., 2001

Palmer and Realff, 2002

Huang et al., 2006  Davis and 

Ierapetritou, 2012

Caballero and Grossmann, 2008

Palmer and Realff, 2002

Henao and Maravelias, 2011

Carnegie Mellon University 20

ALAMOAutomated Learning of Algebraic Models for Optimization

trueStop

Update training data

set

Start

false

Initial sampling

Build surrogate model

Adaptive sampling

Model converged?

Black-box function

Carnegie Mellon University 21

ALAMO

trueStop

Update training data

set

Start

false

Initial sampling

Build surrogate model

Adaptive sampling

Model converged?

Black-box functionTraining data

Automated Learning of Algebraic Models for Optimization

Carnegie Mellon University 22

ALAMO

trueStop

Update training data

set

Start

false

Initial sampling

Build surrogate model

Adaptive sampling

Model converged? Current model

Black-box functionTraining data

Automated Learning of Algebraic Models for Optimization

Carnegie Mellon University 23

ALAMO

trueStop

Update training data

set

Start

false

Initial sampling

Build surrogate model

Adaptive sampling

Model converged? Current model

Black-box functionTraining data

Modelerror

Automated Learning of Algebraic Models for Optimization

Carnegie Mellon University 24

ALAMO

trueStop

Update training data

set

Start

false

Initial sampling

Build surrogate model

Adaptive sampling

Model converged?

Black-box functionTraining data

Automated Learning of Algebraic Models for Optimization

Carnegie Mellon University 25

ALAMO

trueStop

Update training data

set

Start

false

Initial sampling

Build surrogate model

Adaptive sampling

Model converged? New model

Black-box functionTraining data

Automated Learning of Algebraic Models for Optimization

Carnegie Mellon University 26

• Goal: Identify the functional form and complexity of the surrogate models

• Functional form: – General functional form is unknown: Our method will identify 

models with combinations of simple basis functions

MODEL IDENTIFICATION

Carnegie Mellon University 27

BEST SUBSET SELECTIONStep 1: Define a large set of potential basis functions

Carnegie Mellon University 28

BEST SUBSET SELECTIONStep 1: Define a large set of potential basis functions

Step 2: Model reduction

Carnegie Mellon University 29

BEST SUBSET SELECTIONStep 1: Define a large set of potential basis functions

Step 2: Model reduction

To identify a simple functional form we need to solve two problems:

1. Model Sizing2. Basis function selection

Carnegie Mellon University 30

MODEL SIZING

Complexity or terms allowed in the model

Goodness-of-fit measure

Solve for the best one‐term 

model

Carnegie Mellon University 31

MODEL SIZING

Complexity or terms allowed in the model

Goodness-of-fit measure

Some measure of error that is sensitive to overfitting(AICc)

Carnegie Mellon University 32

MODEL SIZING

Complexity or terms allowed in the model

Goodness-of-fit measure

Solve for the best two‐term 

model

Carnegie Mellon University 33

MODEL SIZING

Complexity or terms allowed in the model

Goodness-of-fit measure 6th term was not worth the 

added complexity

Final model: 5 terms long

Carnegie Mellon University 34

ALAMO

trueStop

Update training data

set

Start

false

Initial sampling

Build surrogate model

Adaptive sampling

Model converged? Current model

Black-box functionTraining data

Modelerror

Automated Learning of Algebraic Models for Optimization

Carnegie Mellon University 35

• New goal: Search the problem space for areas of model inconsistency or model mismatch

• More succinctly, we are trying to find points that maximizes the model error with respect to the independent variables

– Optimized using a black‐box or derivative‐free solver (SNOBFIT) [Huyer and Neumaier, 08]

– Derivative‐free solvers work well in low‐dimensional spaces[Rios and Sahinidis, 12]

ERROR MAXIMIZATION SAMPLING

Surrogate model

Carnegie Mellon University 36

SYNOPSIS

Model error

New surrogate model

Black‐box function

Surrogate model

Data points

Model i Sample Points Model i+1

New sample point

Derivative‐free optimization

in low dimensions

Mixed‐integer programming for best simple 

model

See paper 589b (Th 8:50 am)

Carnegie Mellon University 37

• Paper 589b: Test the accuracy, efficiency, and model simplicity

• Modeling methods compared– MIP – Proposed methodology– LASSO – The lasso regularization– OLR – Ordinary least‐squares regression

• Sampling methods compared– EMS – Proposed error maximization technique– SLH – Single Latin hypercube (no feedback)

COMPUTATIONAL TESTING

Carnegie Mellon University 38

MODEL SIZING RESULTS

363024181260-6

80

70

60

50

40

30

20

10

0

The LASSO

363024181260-6

80

70

60

50

40

30

20

10

0

Our method

363024181260-6

80

70

60

50

40

30

20

10

0

Least squares

Freq

uenc

y, [%

]

45 problems with 2‐10 available bases,  5 repeats

Number of terms in the true function

Number of terms inthe surrogate model

_

Carnegie Mellon University 39

SUPERSTRUCTURE OPTIMIZATION

Flue gas from power plant

a1

a2

a3

a4

d1

d2

d3

d4

Solid sorbent stream

Cleaned gas

Other capture trains

Cooling waterSteamWork

Solid sorbent CO2capture

See paper 554d (We 4:15pm)

Carnegie Mellon University 40

• Best subset methods provide models that are Accurate representations of black‐box models

• ALAMO provides algebraic models that are Generated from a minimal number of function evaluations Tractable in an optimization framework (low‐complexity models)

• Surrogate models can then be incorporated within an optimization or risk assessment framework

• Learning algorithms are domain independent

• ALAMO site: archimedes.cheme.cmu.edu/?q=alamo

CONCLUSIONS

Carnegie Mellon University 41

Carnegie Mellon University 42

RESULTSModel accuracy Modeling efficiency

Modeling methods

Our method LASSO Least 

squaresError 

maximizationSingle Latin hypercube

Sampling methods

45 test problems, repeated 5 times, tested against 1000 independent data points

Carnegie Mellon University 43

RESULTSModel accuracy Modeling efficiency

Modeling methods

Our method LASSO Least 

squaresError 

maximizationSingle Latin hypercube

Sampling methods

45 test problems, repeated 5 times, tested against 1000 independent data points

80% of the runs yielded <0.1% error

Carnegie Mellon University 44

RESULTSModel accuracy Modeling efficiency

Modeling methods

Our method LASSO Least 

squaresError 

maximizationSingle Latin hypercube

Sampling methods

45 test problems, repeated 5 times, tested against 1000 independent data points

70% of the runs only required ≤10 simulations 

to build