What is CESR-c & CLEO-c

28
M. Selen, Aspen/02 1 CLEO-c CLEO-c CESR-c CESR-c CLEO-c & CLEO-c & CESR-c: CESR-c: Probing Physics Behind & Probing Physics Behind & Beyond Beyond the Standard Model the Standard Model Mats Selen, University of Illinois 2002 Aspen Winter Conference on Particle Physics

description

CLEO-c & CESR-c: Probing Physics Behind & Beyond the Standard Model Mats Selen, University of Illinois 2002 Aspen Winter Conference on Particle Physics. What is CESR-c & CLEO-c. CLEO-III detector CESR running at lower energies. CLEO-c Detector. Detector Works Great! Presently - PowerPoint PPT Presentation

Transcript of What is CESR-c & CLEO-c

M. Selen, Aspen/02 1

CLEO-cCLEO-c CESR-cCESR-c

CLEO-c & CESR-c:CLEO-c & CESR-c:

Probing Physics Behind & Beyond Probing Physics Behind & Beyond the Standard Modelthe Standard Model

Mats Selen, University of Illinois

2002 Aspen Winter Conference on Particle Physics

M. Selen, Aspen/02 2

CLEO-cCLEO-c CESR-cCESR-c

What is CESR-c & CLEO-cCLEO-III detector

CESR running at lower energies

M. Selen, Aspen/02 3

CLEO-cCLEO-c CESR-cCESR-c

Solenoid: 1.5 T now,... 1.0T later

Tracking: 93% of 4

p/p = 0.35% @1GeV

dE/dx: 5.7% @minICalorimeter: 93% of 4

E/E = 2% @1GeV = 4% @100MeV

RICH: 83% of 4

% Kaon ID with 0.2% fake @0.9GeV

85% of 4For p>1 GeV

CLEO-c Detector

Detector Works Great!

Presently running on (1S)

(Ecm = 9460 MeV)

M. Selen, Aspen/02 4

CLEO-cCLEO-c CESR-cCESR-c

The Run Plan (More or Less)

2002: Prologue: Upsilons ~1-2 fb-1 each at Y(1S),Y(2S),Y(3S),… Spectroscopy, matrix element, ee, B hb

10-20 times the existing world’s data (started Nov 2001)

2003: (3770) – 3 fb-1

30 million DD events, 6 million tagged D decays (310 times MARK III)

2004: MeV – 3 fb-1

1.5 million DsDs events, 0.3 million tagged Ds decays (480 times MARK III, 130 times BES)

2005: (3100), 1 fb-1 & (3686) –1 Billion J/ decays (170 times MARK III, 20 times BES II)

CLEOc

A 3 yearprogram

4140~S

M. Selen, Aspen/02 5

CLEO-cCLEO-c CESR-cCESR-c

The CESR machine The CESR machine group is good:group is good:

Ecm L (1032 cm-2 s-1)

3.1 GeV 2.0

3.77 GeV 3.0

4.1 GeV 3.6Ebeam~ 1.2 MeV at J/

One day scan of the ’:(1/29/02)

L ~ 1 x 1030

(~BES)

When weadd Wigglers

M. Selen, Aspen/02 6

CLEO-cCLEO-c CESR-cCESR-c

The Big Idea: Tagging

Even though we will have less data, our final errors in many important charm analyses will be significantly smaller than those possible at the b-factories.

e+ e

0D

0D

K+

e+

e-

• Very clean events !• Flavor ID • Unambiguous Reconstruction

Beam constrained mass

MCLogscale!

M. Selen, Aspen/02 7

CLEO-cCLEO-c CESR-cCESR-c

We expect great advances in flavor and electroweak physics during the next decade: Tevatron (CDF, D0, BTeV,CKM). B-Factories (BaBar, Belle). LHC (CMS, ATLAS, LHC-b). Linear Collider (?).

What could CLEO-c possibly have to offer this program?

Why CLEO-c ? Why Now ?Why CLEO-c ? Why Now ?

Drive for show, putt for dough !

M. Selen, Aspen/02 8

CLEO-cCLEO-c CESR-cCESR-c

CLEO-c will play three important roles:

1. We will perform a suite of measurements whose results will significantly increase the precision of Standard Model tests being done by all experiments.

2. We will directly probe physics within and beyond the Standard Model.

3. We perform a comprehensive experimental study of non-perturbative QCD.

M. Selen, Aspen/02 9

CLEO-cCLEO-c CESR-cCESR-c

Measurements that will enable precision Standard Model tests by us as well as other experiments:

fD+ and fDs at ~2% level. Keystone absolute hadronic charm branching

ratios with 1-2% errors. Precision form-factors in semileptonic PP and

PV decays (few % accuracy). Lengthy list of exclusive charm semileptonic

branching fractions with 1-2% errors.

1.

M. Selen, Aspen/02 10

CLEO-cCLEO-c CESR-cCESR-cGoal for this decade:Goal for this decade: high precision measurements of Vub, Vcb, Vts, Vtd, Vcs, Vcd, and associated phases. Over-constrain the various “Unitarity Triangles”- Inconsistencies New Insights !

Many experiments will contribute to these measurements.CLEO-c will enable precise new measurements to be translated into greatly improved CKM precision!

Vub/Vub 25%lB

l

D

Vcd/Vcd 7%lD

Vcs/Vcs =11%l

B D

Vcb/Vcb 5%

Bd Bd

Vtd/Vtd =36%

Bs Bs

Vts/Vts 39% Vtb/Vtb 29%

Vus/Vus =1%

l Vud/Vud 0.1%

e

pn

t

b

W

M. Selen, Aspen/02 11

CLEO-cCLEO-c CESR-cCESR-c

Flavor Physics CLEO-c will improve precision: Example:

d

d

BB

BB

d

d

Bf

Bf

M

M )()(5.0

)(

1.8% ~15% (LQCD)

Length of this side

=22)1(

1

ts

td

V

V

Lattice predicts fB/fD & fBs/fDs with small errors.If precision measurements of fD & fDs existed (i.e. CLEO-c),we could obtain precision estimates of fB & fBs. This is also needed for precision determinations of Vtd and Vts.Similarly, fD/fDs checks LQCD fB/fBs calcultation.

M. Selen, Aspen/02 12

CLEO-cCLEO-c CESR-cCESR-c

fDs from Absolute Br(Ds

Measure absolute Br (Ds

Fully reconstruct one D (tag)

Require one additional charged track and no additional photons. Compute MM2

Ds Vcs, (Vcd) known from unitarity to 0.1% (1.1%)

Reaction Energy(MeV) L fb-1 PDG CLEO-c

f Ds Ds+ 4140 3 17% 1.7%

f Ds Ds+ 4140 3 33% 1.6%

f D+ D+ 3770 3 UL 2.3%

|fD|2

|VCKM|2

MC

M. Selen, Aspen/02 13

CLEO-cCLEO-c CESR-cCESR-c

The importance of absolute Charm BRs

Stat: 3.1% Sys 4.3% theory 4.6%Dominant Sys: slow, form factors

& B(DK) dB/B=1.3%

Vcb from zero recoil in B D*l+

Vub/Vcb from at hadron machines requires:

-b

-b c

p

B(/\cpK) poorly known: 9.7% > B >3.0% at 90% C.L

CLEO LP01310)1.20.24.14.46( cbV

M. Selen, Aspen/02 14

CLEO-cCLEO-c CESR-cCESR-c

HQET spin symmetry test

*+o

o +B

DB1

D

h

h

Test factorization with B DDs

Understanding charm content of B decay (nc)

Precision Z bb and Z cc (Rb & Rc)

At LHC/LC H bb H cc

The importance of absolute Charm BRs

M. Selen, Aspen/02 15

CLEO-cCLEO-c CESR-cCESR-c

Absolute Branching Ratios

~ Zero background in hadronic tag modes

Measure absoluteBr (D X) with double tags Br = # of X/# of D tags

CLEO-c sets absolute scale for all heavy quark measurements

KD

tagD

MC

Decay s L Double PDG CLEOc fb-1 tags (B/B %) (B/B %)

D0 K-+ 3770 3 53,000 2.4 0.6D+ K- ++ 3770 3 60,000 7.2 0.7Ds 4140 3 6,000 25 1.9

M. Selen, Aspen/02 16

CLEO-cCLEO-c CESR-cCESR-c

COMPARISON

0

5

10

15

20

25

30

Erro

r (%

)

Df

sDf

)KD(Br

)D(BrS

)KD(Br 0

Current

Compare B factories & Compare B factories & CLEO-CCLEO-C

CLEO-c 3 fb-1

Statistics limited abcdefghi

BaBar 400 fb-1

Systematics & Background limited

M. Selen, Aspen/02 17

CLEO-cCLEO-c CESR-cCESR-c

|f(q2)|2

|VCKM|2

Absolute magnitude & shape of form factors is a great test of theory.

b

c

u

d

HQET

l

l

1) Measure D form factor in Dl (CLEO-c): Calibrate LQCD to 1%.2) Extract Vub at BaBar/Belle using calibrated LQCD calc. of B form factor.3) Precise (5%) Vub is a vital CKM cross check of sin2.4) Absolute rate gives direct measurements of Vcd and Vcs.

223K

2cs3

2F

2|)(qf|p|V|

24

G

q

d

d

B

D

i.e.

Semileptonic Form Factors.Semileptonic Form Factors.

M. Selen, Aspen/02 18

CLEO-cCLEO-c CESR-cCESR-c

e

eD

eKD

eKD

eD

eD

eKD

eKD

eD

eD

eKD

eKD

c

s

s

s

:12

:11

:10

:9

:8

:7

:6

:5

:4

:3

:2

:1

0*

0

0

0

_0*

_0

0

0

*0

0

Semileptonic dB/B, Vcd, & VcsSemileptonic dB/B, Vcd, & Vcs

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12

Decay modes

Err

or (%

)

CLEO-c

PDG

Vcs /Vcs = 1.6% (now: 11%) Vcd /Vcd = 1.7% (now: 7%)

eKD0

eD0

Use CLEO-c validated lattice + B factoryBlv for ultra precise Vub

D0 l D0 Kl

M. Selen, Aspen/02 19

CLEO-cCLEO-c CESR-cCESR-c

CLEO-c Standard Model tests:

1-2% measurements of |Vcd| and |Vcs|. Dl / DKl semileptonic analyses.

Mixing sensitivity at the 1% level. CP violation sensitivity at the 1-2% level. A variety of rare D decays at the 10-6 level.

2.

M. Selen, Aspen/02 20

CLEO-cCLEO-c CESR-cCESR-c

See hep-ph/0103110Gronau, Grossman & Rosner

e+ e

0D

0D

K+

K+

p̂Dp̂D p̂Dp̂D2

1ψ 0000 INITIAL

• The D0 and D0 are produced coherently in a JPC = 1 state.

Consider time integrated ratios of rates to various final states.

Charm MixingCharm Mixing

M. Selen, Aspen/02 21

CLEO-cCLEO-c CESR-cCESR-c

0D

0D

K-

K-

0D

0D

K+

K-

Ratio of Rates:

One example (many to choose from):

x = /y = /2To 1st order, where

Charm MixingCharm Mixing

M. Selen, Aspen/02 22

CLEO-cCLEO-c CESR-cCESR-c

Observing this is evidence of CP

At the ”(3770)

e+ e

0D

0D

+

K+

e+e ” D0D0

JPC = 1

i.e. CP+

Suppose both D0’s decay to CP eigestates f1 and f2: These can NOT have the same CP :

CP(f1 f2) = CP(f1) CP(f2) (-1)l = CP

+ (since l = 1)

CP ViolationCP Violation

M. Selen, Aspen/02 23

CLEO-cCLEO-c CESR-cCESR-c

Comprehensive study of non-perturbative QCD:

and spectroscopy. Masses & fine structure. Leptonic width of S states. EM transition matrix elements.

New forms of matter: Glueballs (gg) Hybrids (gqq)

3.

M. Selen, Aspen/02 24

CLEO-cCLEO-c CESR-cCESR-c

•Gluons carry color charge: should bind!

• CLEO-c 1st high statistics experiment covering 1.5-2.5 GeV mass range.

• Radiative decays are ideal glue factory:

Gluonic Matter

X

cc̄

•But, like Jim Morrison, glueballs have been sighted too many times without confirmation....

Inclusive spectrum (CLEO-c) Example exclusive mode

Example: fJ(2220)

M. Selen, Aspen/02 25

CLEO-cCLEO-c CESR-cCESR-c

Additional topics

• ’ spectroscopy (10 8 decays) ’chc…

• at threshold (0.25 fb-1)

• measure mto ± 0.1 MeV• heavy lepton, exotics searches

• cc at threshold (1 fb-1)• calibrate absolute BR(cpK)

• R=(e+e- hadrons)/(e+e- +-)• spot checks

If timepermits

Likely tobe addedto runplan

M. Selen, Aspen/02 26

CLEO-cCLEO-c CESR-cCESR-c

Crucial Validation of Lattice QCD: Lattice QCD will be able to calculate with accuracies of 1-2%. The CLEO-c decay constant and semileptonic data will provide a “golden,” & timely test. QCD & charmonium data provide additional benchmarks. (E2 SnowmassWG)

CLEO-c Physics Impact (what Snowmass said)

In a World wherewe have theoreticalmastery of non-perturbative QCDat the 2% level

Now

M. Selen, Aspen/02 27

CLEO-cCLEO-c CESR-cCESR-c

Knowledge of absolute charm branching fractions is now contributing significant errors to measurements involving b’s. CLEO-c can also resolve this problem in a timely fashion

The potential to observe new forms of matter – glueballs, hybrids, etc – and new physics- charm mixing, CP violation, and rare decays provides a discovery component to the program

Vcd Vcs Vcb Vub Vtd Vts

7% 16% 5% 25% 36% 39%

1.7% 1.6% 3% 5% 5% 5%CLEO-cdata and

LQCD

B FactoryData withCLEO-c LatticeValidation

Also endorsed by HEPAP.

PDG

CLEO-c Physics Impact (what Snowmass said)

M. Selen, Aspen/02 28

CLEO-cCLEO-c CESR-cCESR-c

Proposal Timeline•CLEO-C workshop (May 2001) : successful ~120 participants, 60 non-CLEO•Snowmass working groups E2/P2/P5 : acclaimed CLEO-c• HEPAP endorsed CLEO-c

• CESR/CLEO PAC Endorsed CLEO-c (Sept/01)

• Proposal submission to NSF was on October 15.

• Site visit planned for March/02

• Science Board March/02,

• Expect approval shortly thereafter

• See http://www.lns.cornell.edu/CLEO/CLEO-C/ for project description

• We welcome discussion and new members