WEEK 2 TG2007 - chemistry.tcd.ie · 109.5º Structure V.S.E.P.R. –Valence Shell Electron Pair...

13
1 Atomic Structure Atomic Structure Electron Configuration Electron Configuration 3d 3p 3s 2p 2s 1s 1st SHELL 2nd SHELL 3rd SHELL x y z E Atomic Structure Atomic Structure Electron Configuration Electron Configuration 2p 2s 2nd SHELL x y z x y z x y z x y z 2s 2p x x y z 2p y 2p z Atomic Structure Atomic Structure Ground State Configuration Ground State Configuration Lowest energy orbitals fill first (Aufbau principle) Each orbital can contain up to two electrons electrons have opposite spins (Pauli exclusion principle) Orbitals of equal energy fill evenly (Hunds rule) Atomic Structure Atomic Structure Ground Ground State Configuration State Configuration Eg. Sodium. 11 electrons 1s 2s 2p x,y,z 3s E Na: 1s 2 2s 2 2p 6 3s 1

Transcript of WEEK 2 TG2007 - chemistry.tcd.ie · 109.5º Structure V.S.E.P.R. –Valence Shell Electron Pair...

Page 1: WEEK 2 TG2007 - chemistry.tcd.ie · 109.5º Structure V.S.E.P.R. –Valence Shell Electron Pair Repulsion • eg AMMONIA lone pair 1s 2s 2px,y,z E 3s N H H H 107o Nitrogen VSEPR predicts

1

Atomic StructureAtomic Structure

Electron ConfigurationElectron Configuration

3d

3p

3s

2p

2s

1s1st SHELL

2nd SHELL

3rd SHELL

x y z

E

Atomic StructureAtomic Structure

Electron ConfigurationElectron Configuration

2p

2s2nd SHELL

x y z

x

y

z

x

y

z

x

y

z

2s

2px

x

y

z

2py 2pz

Atomic StructureAtomic Structure

Ground State ConfigurationGround State Configuration

� Lowest energy orbitals fill first

(Aufbau principle)

� Each orbital can contain up to two electrons• electrons have opposite spins

(Pauli exclusion principle)

� Orbitals of equal energy fill evenly

(Hunds rule)

Atomic StructureAtomic Structure

GroundGround State ConfigurationState Configuration

Eg. Sodium. 11 electrons

1s

2s

2px,y,z

3sE

Na: 1s2 2s2 2p6 3s1

Page 2: WEEK 2 TG2007 - chemistry.tcd.ie · 109.5º Structure V.S.E.P.R. –Valence Shell Electron Pair Repulsion • eg AMMONIA lone pair 1s 2s 2px,y,z E 3s N H H H 107o Nitrogen VSEPR predicts

2

Covalent BondingCovalent Bonding

�� SharingSharing of electrons

• Eg. Carbon is 1s2 2s2 2p2 (half full)

C 4 x H+

O 2 x H

H C H

H O H+

H

H

NLi

Na Cl

I

B

Al PSi S

SeZn

Sn

Hg

Cu

Pd

Os

CrTi

Mg

H

C O F

K BrMn

Remember:Remember:� A pair of bonding electrons is represented as a

straight line

H C H

H

H

C H

H

H

H

Lewis Kekulestructure structure

Covalent BondingCovalent Bonding

Hydrogens are ignored and carbons are corners and terminals

Organic Chemists ShorthandOrganic Chemists Shorthand

Quick and convenient

HH

HH

H

H

H

HH

HHH

AlkynesAlkynes

H

H

H

H

H

H

H

H

H

H

Page 3: WEEK 2 TG2007 - chemistry.tcd.ie · 109.5º Structure V.S.E.P.R. –Valence Shell Electron Pair Repulsion • eg AMMONIA lone pair 1s 2s 2px,y,z E 3s N H H H 107o Nitrogen VSEPR predicts

3

Polar Covalent BondsPolar Covalent Bonds

� continuum of possibilities between

ionic and covalent based on ‘degree of

sharing’

δ+ + _δ-

X X X Y X Y

ionicpolarcovalent

covalent

δ = ‘just a little bit’

“partial charge”, not a “full charge”

Polar Covalent BondsPolar Covalent Bonds

ElectronegativityElectronegativity

� Eg. K=0.8 , H=2.1 , C=2.5 , O=3.5 , F=4.0

NLi

Na Cl

I

B

Al PSi S

SeZn

Sn

Hg

Cu

Pd

Os

CrTi

Mg

H

C O F

K BrMn

Polar Covalent BondsPolar Covalent Bonds

ExamplesExamples

H

H

C

HH

H

MgBr

C

HH

H

Cl

C

HH

δ-

δ+

δ-

δ+

Polar Covalent BondsPolar Covalent Bonds

Dipole MomentDipole Moment

� overall polarity of a molecule

• sum of all individual polarities

Example

O

H

HN

H HH

C

Cl

Cl ClCl

δ−

δ−

δ−

δ−

δ−

δ+

δ+

δ+

δ+

δ−

δ+

δ+

Page 4: WEEK 2 TG2007 - chemistry.tcd.ie · 109.5º Structure V.S.E.P.R. –Valence Shell Electron Pair Repulsion • eg AMMONIA lone pair 1s 2s 2px,y,z E 3s N H H H 107o Nitrogen VSEPR predicts

4

Intermolecular BondingIntermolecular Bonding

DipoleDipole--dipoledipole

� Molecules with dipole moment

� Attraction of permanent partial charges

� MEDIUM strength• Eg Propanone (acetone)

δ+

δ+

δ+

LIQUIDLIQUID

Intermolecular BondingIntermolecular Bonding

Hydrogen BondingHydrogen Bonding

� Strong form of dipole-dipole interaction

� Require H bonded to highly

electronegative atom (N, O or Halogen)

• Eg. Ethanol

δ−

δ+

OH δ

δ+

O

H

LIQUIDLIQUID

Intermolecular BondingIntermolecular Bonding

Van Van derder WaalsWaals forcesforces

� Non polar molecules

� ‘Instantaneous’ dipole arises due to

electrons random movements in atoms

� WEAK

• Eg. Methane

δ−δ

+

CH H

H

H

δ−δ

+

CH H

H

H

δ−

δ+

CH H

H

H

δ−

δ+

CH H

H

H

one split secondnext split second

GASGAS

Structures in 3D!!!Structures in 3D!!!

Alkynes as PharmaceuticalsAlkynes as Pharmaceuticals

� anti-cancer compounds

OHOOH

OH O HNO

OCH3

COOH

Dynemicin A

Page 5: WEEK 2 TG2007 - chemistry.tcd.ie · 109.5º Structure V.S.E.P.R. –Valence Shell Electron Pair Repulsion • eg AMMONIA lone pair 1s 2s 2px,y,z E 3s N H H H 107o Nitrogen VSEPR predicts

5

StructureStructure

�� V.S.E.P.R.V.S.E.P.R. – VValence SShell EElectron PPair RRepulsion• Useful for predicting structure

• Electron pairs repel

• Shape reflects this. egMETHANE

tetrahedral

C

H

HH

H

109.5º

StructureStructure

�� V.S.E.P.R.V.S.E.P.R. – VValence SShell EElectron

PPair RRepulsion

• eg AMMONIA

lonelone

pairpair

1s

2s

2px,y,z

3sE

NH

HH

107o

NitrogenNitrogen VSEPR predicts 109.5º

StructureStructure

�� V.S.E.P.R.V.S.E.P.R. – VValence SShell EElectron

PPair RRepulsion

• eg WATER

1s

2s

2px,y,z

3sE O

HH

105o

lonelone

pairspairs

OxygenOxygen VSEPR predicts 109.5º

StructureStructure

�� V.S.E.P.R.V.S.E.P.R. – VValence SShell EElectron

PPair RRepulsion

• Multiple bonds

C C

H

H

H

H

C C

H

H

H

H

121o

118o

C C HH

CC HH

180o

VSEPR predicts 120o

Page 6: WEEK 2 TG2007 - chemistry.tcd.ie · 109.5º Structure V.S.E.P.R. –Valence Shell Electron Pair Repulsion • eg AMMONIA lone pair 1s 2s 2px,y,z E 3s N H H H 107o Nitrogen VSEPR predicts

6

Covalent BondingCovalent Bonding

Combining Atomic Combining Atomic orbitalsorbitals

� Sharing of electrons requires orbital overlap

�� singly occupiedsingly occupied atomic orbitals of individual atoms overlap

2p 1s

HybridisationHybridisation

Hybrid Hybrid OrbitalsOrbitals

� Carbon ‘re-organises’ its orbitals for

covalent bonding

� New orbitals derived from a mathematic mathematic

combinationcombination of ss and pp atomic orbitals

� Why does it bother?

CH H

2p

2s

1s

HybridisationHybridisation

� Electron configuration of carbon:

x y z

Remember:Remember:

Only SINGLY

occupied orbitals can

overlap

H

HC

HH

2p

2s

1shappy

HybridisationHybridisation

� carbon ‘promotes’ a 2s electron to the

2pz orbital

x y z

CHH

H

H

Happy ☺

Not quite this simple!

Page 7: WEEK 2 TG2007 - chemistry.tcd.ie · 109.5º Structure V.S.E.P.R. –Valence Shell Electron Pair Repulsion • eg AMMONIA lone pair 1s 2s 2px,y,z E 3s N H H H 107o Nitrogen VSEPR predicts

7

HybridisationHybridisation

� one s and three p orbitals hybridisehybridise to

give four sp3 orbitals

+

HybridisationHybridisation

� one s and three p orbitals hybridisehybridise to give four sp3 orbitals

HydridisationHydridisation

Why?Why?

� sp3 orbitals allow better overlap and form

stronger bonds(stronger bonds = more stable compounds)

� the concept of hybridisation also explains

the structure of carbon based molecules

StructureStructure

� sp3 hybridised carbon based molecules are

TETRAHEDRALTETRAHEDRAL.� New single bonds are called sigmasigma bonds

� Bond angles 109.5º

C

H

HH

H

sp3 hybridised

109.5

109.5

Dashed wedge

(away from you)

Solid wedge

(towards you)

Page 8: WEEK 2 TG2007 - chemistry.tcd.ie · 109.5º Structure V.S.E.P.R. –Valence Shell Electron Pair Repulsion • eg AMMONIA lone pair 1s 2s 2px,y,z E 3s N H H H 107o Nitrogen VSEPR predicts

8

StructureStructure

EthaneEthane

� sp3 hybridised

• four sigma bonds for each carbon

StructureStructure

EthaneEthane

� sp3 hybridised

H

C

HH

C

H

HH

HybridisationHybridisation

spsp22 hybridisationhybridisation

� One s orbital and

two p orbitals

hybridisehybridise to give

three sp2 orbitals 3 sp2 hybridised

px,y pzs

Trigonal planar

StructureStructure

spsp22 hybridisationhybridisation

�� BondingBonding

• Each carbon has three sigma (σ) bonds

• And one pi (π) bond

Page 9: WEEK 2 TG2007 - chemistry.tcd.ie · 109.5º Structure V.S.E.P.R. –Valence Shell Electron Pair Repulsion • eg AMMONIA lone pair 1s 2s 2px,y,z E 3s N H H H 107o Nitrogen VSEPR predicts

9

StructureStructure

spsp22 hybridisationhybridisation

�� EtheneEthene

• 5 sigma (σ) bonds

• one pi (π) bond

HC

HC

H

H

Flat

StructureStructure

HybridisationHybridisation

� The double bond itself = one σ and one π bond

H

C

H

H

C

H

AlkenesAlkenes

IntroductionIntroduction

� Hydrocarbons containing one or more

C-C double bond

� General formula: CnH2n

CC C

H

H

H H

H

H

Propene Cyclopentene

AlkenesAlkenes

Degree of Degree of UnsaturationUnsaturation

� Alkenes are said to be ‘unsaturated’

• double bonds = unsaturation

• rings also = unsaturation

CnH2n+2 CnH2n

"Saturated" "Unsaturated"

CC

CC

C CC

CC

CC C

CC

C

H H

H

HH H H

H H

H

H H

H

H

H

H H

H H

H

H H

H H

H

H

H

H

HH H

H

Page 10: WEEK 2 TG2007 - chemistry.tcd.ie · 109.5º Structure V.S.E.P.R. –Valence Shell Electron Pair Repulsion • eg AMMONIA lone pair 1s 2s 2px,y,z E 3s N H H H 107o Nitrogen VSEPR predicts

10

AlkenesAlkenes

Degree of Degree of UnsaturationUnsaturation

� Degree of unsaturation gives the

number of double bonds and rings

• Refered to as the number of ‘double bond

equivalents’ (or DBEs)

O

Myrcen

(oil of bay)αααα -Pinene

(Turpentine)

Carvone

(spermint oil)

AlkenesAlkenes

StereoisomersStereoisomers

� Rotation about C-C double bond would require breaking the π bond

� Does not occur under normal conditions

rotate

StructureStructure

CisCis--TransTrans IsomerismIsomerism

� Restricted rotation gives rise to

cis/trans isomerism

• same side = cis (Z)

• opposide sides = trans (E)

C C

H

CH3

H3C

H

C C

CH3

H

H3C

H

cis trans

StabilityStability

� Trans (E) form has steric strain minimized∴ more stable

C C

H

CH3

H3C

H

C C

CH3

H

H3C

H

cis trans

Page 11: WEEK 2 TG2007 - chemistry.tcd.ie · 109.5º Structure V.S.E.P.R. –Valence Shell Electron Pair Repulsion • eg AMMONIA lone pair 1s 2s 2px,y,z E 3s N H H H 107o Nitrogen VSEPR predicts

11

HybridisationHybridisation

sp sp hybridisationhybridisation

� One s orbital and

one p orbital

hybridisehybridise to give

two sp orbitals

px py,zs

2 sp hybridised

StructureStructure

sp sp hybridisationhybridisation

� Bonding

• Each C has two sigma (σ) bonds

• two pi (π) bonds

StructureStructure

sp sp hybridisationhybridisation

� Ethyne

• two pi (π) bonds

C C HH

Linear

Hybridisation and structureHybridisation and structure

� Hybridisation ‘reshapes’ atomic orbitals for better bonding

� sp3 (4σ bonds)

• Tetrahedral • Eg methane, ethane

� sp2 (3σ +1π bond)

• Flat, planar• Eg. Ethene

� sp (2σ +2π bond)

• Linear• Eg. ethyne

sp2

sp2sp3

sp3

sp3

sp

sp

Cl OH

Page 12: WEEK 2 TG2007 - chemistry.tcd.ie · 109.5º Structure V.S.E.P.R. –Valence Shell Electron Pair Repulsion • eg AMMONIA lone pair 1s 2s 2px,y,z E 3s N H H H 107o Nitrogen VSEPR predicts

12

Reactions and MechanismsReactions and Mechanisms

�� Acid BaseAcid Base• Formal charges

• Lowry–Bronsted theory

• Ka and pKa

• Lewis theory

�� Reaction TypesReaction Types• Addition, substitution, elimination and rearrangement

�� Reaction MechanismsReaction MechanismsN

HH

H

H

Formal ChargesFormal Charges

� Compounds with an unusual number of e-

(a covalent bond is two shared electrons, each atom

“owns” one electron)

N "owns" 5e-N has 5 valence e-no charge

N "owns' 4e-N has 5 valence e-1+ charge

+N

HH

H

ExampleExample

Acids and BasesAcids and Bases

The LowryThe Lowry--BronstedBronsted DefinitionDefinition

� an acid is a substance which donates a proton (H+)

� a base is a substance which accepts a proton (H+)

Example

A:- + B-HH-A + -:B

acid base conjugateacid

conjugatebase

H Cl O H HO

HCl+ +

Acids and BasesAcids and Bases

Acidity Constant (KAcidity Constant (Kaa))

� acids differ in their H+ donating ability

� measured based on their ability to donate H+ to water

H-A + H2O A- + H 3O+

�position of the eq. relates to acid strength•equilibrium favors the rhs ⇒ strong acid

•equilibrium favors the lhs ⇒ weak acid

Page 13: WEEK 2 TG2007 - chemistry.tcd.ie · 109.5º Structure V.S.E.P.R. –Valence Shell Electron Pair Repulsion • eg AMMONIA lone pair 1s 2s 2px,y,z E 3s N H H H 107o Nitrogen VSEPR predicts

13

Acids and BasesAcids and Bases

� quantified by measuring the eq. constant

� often expressed as pKa (= -log Ka)

H-A + H2O A- + H3O+

Keq =[H3O

+] [A

-]

[HA] [H2O]

Ka =[H3O

+] [A

-]

[HA]

Acids and BasesAcids and Bases

Relative Acid StrengthsRelative Acid Strengths

CH3CH2OH

H2O

CH3COOH

HNO3

HCl

Acid pKa

16.0

15.7

4.8

-1.3

-7.0

increasingacid

strength

Ka

10-16

10-15.7

10-4.8

101.3

107

Ka = [H3O

+][A-]

[HA]

Acids and BasesAcids and Bases

The Lewis DefinitionThe Lewis Definition

� a lewislewis acidacid is an electron pair acceptoracceptor.

� a lewislewis basebase is an electron pair donordonor.

Example

H+ + NH3 H NH3

lewis acid lewis base

Acids and BasesAcids and Bases

�� Lewis acidsLewis acids require a unfilled low energy orbital

O

H

CH3

NH H

H

S

H

CH3

��Lewis basesLewis bases require a lone pair of

electrons

Only six electrons,

∴ empty 2p orbitalB

F

F

FH+ No electrons,

∴ empty s orbital