Weak Charm Decays with Lattice QCD Weak Charm Decays with Lattice QCD Aida X. El-Khadra University...

38
Weak Charm Decays with Lattice QCD Aida X. El-Khadra University of Illinois Charm 2007 workshop, Aug. 5-8, 2007
  • date post

    22-Dec-2015
  • Category

    Documents

  • view

    219
  • download

    1

Transcript of Weak Charm Decays with Lattice QCD Weak Charm Decays with Lattice QCD Aida X. El-Khadra University...

Weak Charm Decays with Lattice QCD

Weak Charm Decays with Lattice QCD

Aida X. El-Khadra

University of Illinois

Charm 2007 workshop, Aug. 5-8, 2007

A. El-Khadra, Charm 2007, Aug 5-8, 2007 2

Outline

1. Introduction

2. Light Quark Methods

3. Heavy Quark Methods

4. Semileptonic Decays

5. Leptonic Decay Constants

6. Conclusions and Outlook

A. El-Khadra, Charm 2007, Aug 5-8, 2007 3

Collaborations

Fermilab Lattice collaboration:

Kronfeld, Mackenzie, Simone, Di Pierro, Gottlieb, AXK,Freeland, Gamiz, Laiho, Van de Water, Evans, Jain

Computations at FNAL Lattice QCD clusters

HPQCD:Davies, Hornbostel, Lepage, Shigemitsu, TrottierFollana, Wong

MILC:Bernard, DeTar, Gottlieb, Heller, Hetrick, Sugar, ToussaintLevkova, Renner

A. El-Khadra, Charm 2007, Aug 5-8, 2007 4

Introduction

2 20| | ( ), ( )J D f q f q

parameterize the matrix element in terms of form factors

2 2 2( ) | | | ( ) |cd

dΓknown V f q

dE

c d

u_

D

e

e

Example: Semileptonic D meson decay

A. El-Khadra, Charm 2007, Aug 5-8, 2007 5

“Gold-Plated” Quantities orWhat are the “easy” lattice calculations ?

For stable (or almost stable) hadrons, masses and amplitudes with no more than one initial (final) state hadron,for example:

• , K, D, Ds, B, Bs mesons masses, decay constants, weak matrix elements for mixing, semileptonic and rare decays

• charmonium and bottomonium (c, J/, hc, …, b, (1S), (2S), ..) states below open D/B threshold masses, leptonic widths, electromagnetic matrix elements

This list includes most of the important quantities for CKM physics. Excluded are mesons and other resonances.

A. El-Khadra, Charm 2007, Aug 5-8, 2007 6

B lK l

D lD l

D K lDs l

B D, D* l

00 KK

00 BB ss BB mixing

Vud Vus

Vcd

Vtd

Vub

Vcs Vcb

Vts Vtb

Lattice QCD program relevant to many CKM elements

K

A. El-Khadra, Charm 2007, Aug 5-8, 2007 7

Introduction to Lattice QCD

fermion field lives on sites: (x)L

a

x

… discretize the QCD action (Wilson)

e.g. discrete derivative

in QCD Lagrangian

where c(a) = c(a;s,m) depends on the QCD parameters calculable in pert. theory

)]ˆ()ˆ([2

1 axaxa

)()( 432 aOaca

A. El-Khadra, Charm 2007, Aug 5-8, 2007 8

Introduction to Lattice QCD, cont’d

in general: n 1

errors scale with the typical momenta of the particles, e.g. (QCDa)n for gluons and light quarks. keep 1a QCD

QCD ~ 200 – 300 MeV typical lattice spacing a 0.1 fm 1/a ~ 2 GeV

in practice: need to consider a range of a’s.

Improvement: add more terms to the action to make n large

napO )(contlat OO

A. El-Khadra, Charm 2007, Aug 5-8, 2007 9

errors, errors, errors, …

finite lattice spacing, a: napO )( contlatOO

a (fm)

Ltake continuum limit:

computational effort grows like ~ (L/a)6

ml dependence: chiral extrapolation

nf dependence: sea quark effects: results with nf = 2+1 exist

statistical errors: from monte carlo integration

finite volume

perturbation theory latlatcont JZJ

A. El-Khadra, Charm 2007, Aug 5-8, 2007 10

systematic errors, cont’d

• chiral extrapolation, ml dependence:

In numerical simulations, ml > mu,d because of the computationalcost for small m. use chiral perturbation theory to extrapolate to mu,d

need ml < ms/2 and several different values for ml (easier with staggered than Wilson-type actions)

ml

f

ms/2Decay constants, form factors: chiral logs contribute ~ )log( 22

mm

Staggered chiral perturbation theory: (Bernard, Sharpe, Aubin,…)

remove leading O(a2) errors in fits

A. El-Khadra, Charm 2007, Aug 5-8, 2007 11

Light Quark Methods• Asqtad (improved staggered): (Kogut+Susskind, Lepage, MILC)

errors: ~ O(sa2), O(a4), but large due to taste-changing interactions has chiral symmetry; uses square root of the determinant in sea computationally efficient

tested against experiment at the few percent level

A. El-Khadra, Charm 2007, Aug 5-8, 2007 12

lattice QCD/experiment

Testing the rooted Asqtad action

works quite well!

before 2004

HPQCD+MILC+FNAL, C. Davies, et al, Phys. Rev. Lett. 92:022001,2004

A. El-Khadra, Charm 2007, Aug 5-8, 2007 13

Light Quark Methods• Asqtad (improved staggered): (Kogut+Susskind, Lepage, MILC)

errors: ~ O(sa2), O(a4), but large due to taste-changing interactions has chiral symmetry; uses square root of the determinant in sea computationally efficient

• HISQ (Highly Improved Staggered Action): (Follana, Hart, Davies, Follana et. al)

errors: ~ O(sa2), O(a4), ×1/3 smaller than Asqtad comp. cost: efficicient, ×2 Asqtad

• improved Wilson (Clover, …): (Wilson, Sheikholeslami + Wohlert, etc …)

errors: ~ O(sa), O(a2) if tree-level (tadpole) imp.; O(a2) if nonpert. imp. Wilson term breaks chiral symmetry comp. cost: ×4 Asqtad for mlight ~ mstrange , but inefficient at small quark masses

• Domain Wall Fermions: (Kaplan)

errors: ~ O(a2), O(mresa) almost exact chiral symmetry; breaking ~ mres ~ 3 ×10-3

comp. cost: ×L5 Asqtad, L5 ~ 16 - 20

• Overlap Fermions: (Neuberger)

errors: ~ O(a2) exact chiral symmetry comp. cost: ×5-10 DWF

A. El-Khadra, Charm 2007, Aug 5-8, 2007 14

Simulation parameters

Ensembles generated by MILC using the Asqtad action. Each point has400 – 800 configurations.

A. El-Khadra, Charm 2007, Aug 5-8, 2007 15

mQ QCD and amQ 1:

Heavy Quark Methods

• rel. Wilson action has the same heavy quark limit as QCD

• add improvement: preserve HQ limit• smoothly connects light and heavy mass limits, valid for all amQ

• errors: s(a, (a)2 or s /mQ, , (/mQ)n

• good for for charm and beauty

Fermilab (Kronfeld, Mackenzie, AXK):

lattice NRQCD (Lepage, et al., Caswell+Lepage) :

• discretize NRQCD lagrangian: valid when amQ > 1

• errors: (ap)n , (p/mQ)n • good for b quarks, but not charm

HISQ (Follana, Hart, Davies, Follana et. al):

• errors: ~ s (amc)2, (amc)4

• good for charm, but not beauty

A. El-Khadra, Charm 2007, Aug 5-8, 2007 16

Semileptonic Decays: D l

• p (q2) dependence: 0p

lat cont| | | | ( )nV D V D O ap

p 1GeV improved actions help (keep n large)

• finite volume (L):

for a = 0.1 fm, L = 20, pmin = 620 MeV

2ip n

L

• Lattice Result with nf = 2+1 from Fermilab Lattice and MILC collaboration (C. Aubin et al, PRL 2005).

using MILC coarse ensembles with msea = 1/8 ms, …., ¾ ms Asqtad action for light valence quarks Fermilab action for charm quarks staggered chiral pert. thy (mvalence, msea, a2)

but: q2 dependence parameterized using BK model only one lattice spacing (a 0.12 fm)

A. El-Khadra, Charm 2007, Aug 5-8, 2007 17

From V. Pavlunin @ FPCP 2007:

Semileptonic Decays cont’d

The shape is determined more accurately than the normalisationin the Lattice QCD calculation

A. El-Khadra, Charm 2007, Aug 5-8, 2007 18

Kronfeld (Fermilab Lattice and MILC, 2005):

Semileptonic Decays cont’d

A. El-Khadra, Charm 2007, Aug 5-8, 2007 19

Kronfeld (Fermilab Lattice and MILC, 2005):

Semileptonic Decays cont’d

A. El-Khadra, Charm 2007, Aug 5-8, 2007 20

Semileptonic Decays: Improvements

add more lattice spacings to analysis: reduce discretisation errors

q2 dependence: z-expansion (Arnesen et al, Becher+Hill, Flynn+Nieves, …)

based on unitarity and analyticity

model independent analysis of the shape (fig)

A. El-Khadra, Charm 2007, Aug 5-8, 2007 21

Semileptonic Decays: Improvements

Van de Water + Mackenzie (Fermilab Lattice and MILC, 2006/7):

B PRELIMINARY

q2 dependence fit using z-expansion

A. El-Khadra, Charm 2007, Aug 5-8, 2007 22

Semileptonic Decays: Improvements

add more lattice spacings to analysis: reduce discretisation errors

q2 dependence: z-expansion (Arnesen et al, Becher+Hill, Flynn+Nieves, …)

based on unitarity and analyticity

model independent analysis of the shape (fig)

finite volume: twisted boundary conditions (Tantalo, Bedaque, Sachrajda,….)

arbitrarily small momenta pi < 2/L

further technical improvements:• random wall sources (MILC):

improve statistics

• double ratios to extract form factors (FNAL, RBC/UKQCD, Becirevic, Haas,

improve statistics Mescia)

reduce systematic errors…..

repeat calculation with other valence quarks, e.g. HISQ (HPQCD)

A. El-Khadra, Charm 2007, Aug 5-8, 2007 23

Leptonic D and Ds Meson Decay Constants

• important test of LQCD methods

• results from two groups (FNAL/MILC & HPQCD) using MILC ensembles at a = 0.09 fm, 0.12 fm, 0.15 fm

A. El-Khadra, Charm 2007, Aug 5-8, 2007 24

FNAL/MILC

Fermilab action for charmAsqtad light valence quarks

a = 0.09 fm: msea = 1/10 ms, 1/5 ms, 2/5 ms a = 0.12 fm: msea = 1/8 ms, 1/4 ms, 1/2 ms, ¾ ms

a = 0.15 fm: msea = 1/10 ms, 1/5 ms, 2/5 ms, 3/5 ms

+ 8-12 valence quark masses/ensemble

partial nonpert. renormalisation(~1.5% error)

staggered chiral PT fits to all valence and sea quark masses and lattice spacings together

blind analysis for Lattice 2007

HPQCD

HISQ action for charm and lightvalence quarks

a = 0.09 fm: msea = 1/5 ms, 2/5 ms

a = 0.12 fm: msea = 1/8 ms, 1/4 ms, 1/2 ms

a = 0.15 fm: msea = 1/5 ms, 2/5 ms

+ mvalence = msea

nonpert. renormalization from PCAC(no error)

cont. chiral PT + O(a2) terms, fit to alllattice spacings and masses together

Comparison of parameters

A. El-Khadra, Charm 2007, Aug 5-8, 2007 25

Chiral fits

Example: FNAL/MILC fits with mvalence = msea at a = 0.09 fm

PREMLIMINARY

A. El-Khadra, Charm 2007, Aug 5-8, 2007 26

Chiral fits

FNAL/MILC: staggered chiral PT fit to all data with extrapolation to physical masses and removal of O(a2) errors (left most point) compared to chiral fits at each lattice spacing.

PREMLIMINARY

A. El-Khadra, Charm 2007, Aug 5-8, 2007 27

FNAL/MILC Error Budget

PRL 2005 Lattice 2007 (PRELIMINARY)

fD fDs/fD fD fDs/fD

HQ disc. 4.2% 0.5% 2.7% 0.2%

Light quark + Chiral fits 4-6% 5% 1.3% 1.3%

stat + fits 1.5% 0.5% ~1%

Inputs (a, mc, ms) 2.8% 0.6% 2.4% 1.0%

+ finite volume, PT matching ≤1.5% each

Total 8.5% 5.0% 4.3% 1.7%

PRELIMINARY

A. El-Khadra, Charm 2007, Aug 5-8, 2007 28

HPQCD

FNAL/MILC (Lattice 2007)

FNAL/MILC (PRL 2005)

Exp. Av. (Pavlunin @FPCP 2007)

PRELIMINARY

fD+ in comparison

A. El-Khadra, Charm 2007, Aug 5-8, 2007 29

HPQCD

FNAL/MILC (Lattice 2007)

FNAL/MILC (PRL 2005)

Exp. Av. (Pavlunin @FPCP 2007)

PRELIMINARY

fDs in comparison

A. El-Khadra, Charm 2007, Aug 5-8, 2007 30

HPQCD

FNAL/MILC (Lattice 2007)

FNAL/MILC (PRL 2005)

Exp. Av. (Pavlunin @FPCP 2007)

PRELIMINARY

fDs / fD+ in comparison

A. El-Khadra, Charm 2007, Aug 5-8, 2007 31

Conclusions and Outlook

Charm physics important test bed for LQCD methods

leptonic decay constants:

HPQCD: ~1-2 % error FNAL/MILC: ~4% error (PRELIMINARY)

semileptonic decay form factors:

existing result from FNAL/MILC can be improved to allow a quantitative comparison of the shapes with experiments:

first fit LQCD and exp. separately to test LQCD then fit together for best determination of CKM elements

HPQCD plans to use HISQ on MILC ensembles

Outlook:

nf = 2+1 ensembles using other sea quark actions are currently being generated. Important test.

A. El-Khadra, Charm 2007, Aug 5-8, 2007 32

nf = 2+1 ensembles used/available today

A. El-Khadra, Charm 2007, Aug 5-8, 2007 33

nf = 2+1 ensembles used/available today …. and soon available …

A. El-Khadra, Charm 2007, Aug 5-8, 2007 34

Back-up slides

A. El-Khadra, Charm 2007, Aug 5-8, 2007 35

Introduction to Lattice QCD, cont’d

the fermion doubling problem

naïve lattice action

in momentum space: sin p zeroes at p = (0,0,0,0), (/a,0,0,0), …

16 degenerate particles (“tastes”)

)( mL

Kogut-Susskind: keep the naïve action, and “stagger” 4 tastes on a hypercube and combine into one quark flavor

still leaves 4 degenerate “tastes” O(a2) errors are large due to taste changing interactions remove perturbatively: improved staggered action (Lepage, MILC) chiral symmetry is preserved light quarks computationally efficient

A. El-Khadra, Charm 2007, Aug 5-8, 2007 36

Light Quark Methods

the fermion doubling problem

naïve lattice action

in momentum space: sin p zeroes at p = (0,0,0,0), (/a,0,0,0), …

16 degenerate particles (“tastes”)

)( mL

Wilson: add a dim 5 term to the action: 22 a

breaks the doubling degeneracy introduces O(a) error remove with improvement (Sheikholeslami+Wohlert) breaks chiral symmetry light quarks computationally inefficient

A. El-Khadra, Charm 2007, Aug 5-8, 2007 37

systematic errors

• finite lattice spacing, a:

)(contlat naO OO

a (fm)

L

take continuum limit:

improved actions are much better …

•by brute force:

computational effort grows like ~ (L/a)6

•by improving the action:

computational effort grows much more slowly

A. El-Khadra, Charm 2007, Aug 5-8, 2007 38

mixing:00 BB b d

d_

b_

W W

u,c,t

u,c,t

B0

_B0

02

02* ||||)( BBVVknownx Btbtdd O

BBB Bfm 2238

b

u_

WB-

_

fB:

Introduction, cont’d