Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and...

59
Waves and Sound Chapter 14

Transcript of Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and...

Page 1: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Waves and SoundChapter 14

Page 2: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Review- Chapter 13 – Oscillations about Equilibrium

Mass (M) on an ideal spring with a spring constant o (k) on a Frictionless Table

M

k

x=0

Page 3: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Review- Chapter 13 – Oscillations about Equilibrium

Mass (M) on an ideal spring with a spring constant o (k) on a Frictionless Table

M

k

x=0

Amplitude – A – Max displacement of mass. (m)Period – T – Time for one oscillation. (s)frequency – f – Number of oscillations per second. (Hz)Angular Frequency – w – 2 * PI divided by the period.

Page 4: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Review- Chapter 13 – Oscillations about Equilibrium

Mass (M) on an ideal spring with a spring constant o (k) on a Frictionless Table

M

k

x=0

Amplitude – A – Max displacement of mass. (m)Period – T – Time for one oscillation. (s)frequency – f – Number of oscillations per second. (Hz)Angular Frequency – w – 2 * PI divided by the period.

f= 1T

=2T

Page 5: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Mk

x=0 x=+Ax= -A

M

M

M

M

M

M

M

M

Page 6: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Mx=0 x=+Ax= -A

M

M

M

M

M

M

M

M

t=0

t=T4

t=T2

t=3T4

t=T

Page 7: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Mx=0 x=+Ax= -A

M

M

M

M

M

M

M

M

t=0

t=T4

t=T2

t=3T4

t=T

x=A

v=0 ms

a=−amax

x=0mv=−vmax

a=0m

s2

x=Av=vmax

a=0m

s2

x=−A

v=0 ms

a=amax

x=A

v=0 ms

a=−amax

Page 8: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

x=0 x=+Ax= -A

t=0

t=T4

t=T2

t=3T4

t=T

x=A

v=0 ms

a=−amax

x=0mv=−vmax

a=0m

s2

x=Av=vmax

a=0m

s2

x=−A

v=0 ms

a=amax

x=A

v=0 ms

a=−amax

FS

FN

W

v

v

Page 9: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Mx=0 x=+Ax= -A

t=0

x=A

v=0 ms

a=−amax

x=A cos tv=−vmax sin ta=−amax cos t

∣vmax∣=A∣amax∣=A2

Page 10: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Mx=0 x=+Ax= -A

t=0

x=A

v=0 ms

a=−amax

F net=−kxma=−kx

m −A2cos t=−k A cos tm −A2cos t=−k A cos t

m2=k

= km

Page 11: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Mx=0 x=+Ax= -A

t=0

x=A

v=0 ms

a=−amax

= km

T=2=2m

k

f = 1T

Page 12: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Mx=0 x=+Ax= -A

t=0

x=A

v=0 ms

a=−amax

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Position vs. Time

t(s)

x(m

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15 15.5 16 16.5 17 17.5 18

-4-3.5

-3-2.5

-2-1.5

-1-0.5

00.5

11.5

22.5

33.5

4

Velocity vs. Time

t(s)

v(m

/s)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15 15.5 16 16.5 17 17.5 18

-5

-4

-3

-2

-1

0

1

2

3

4

5

Acceleration vs. Time

t(s)

a(m

/s2)

Page 13: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Mx=0 x=+Ax= -A

t=0

x=A

v=0 ms

a=−amax

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Position vs. Time

t(s)

x(m

)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

-4-3.5

-3-2.5

-2-1.5

-1-0.5

00.5

11.5

22.5

33.5

4

Velocity vs. Time

t(s)

v(m

/s)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

-5

-4

-3

-2

-1

0

1

2

3

4

5

Acceleration vs. Time

t(s)

a(m

/s2)

Page 14: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Mx=0 x=+Ax= -A

t=0

x=A

v=0 ms

a=−amax

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Position vs. Time

t(s)

x(m

)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

-4-3.5

-3-2.5

-2-1.5

-1-0.5

00.5

11.5

22.5

33.5

4

Velocity vs. Time

t(s)

v(m

/s)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

-5

-4

-3

-2

-1

0

1

2

3

4

5

Acceleration vs. Time

t(s)

a(m

/s2)

Page 15: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Mx=0 x=+Ax= -A

t=0

x=A

v=0 ms

a=−amax

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Position vs. Time

t(s)

x(m

)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

-4-3.5

-3-2.5

-2-1.5

-1-0.5

00.5

11.5

22.5

33.5

4

Velocity vs. Time

t(s)

v(m

/s)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

-5

-4

-3

-2

-1

0

1

2

3

4

5

Acceleration vs. Time

t(s)

a(m

/s2)

Page 16: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Mx=0 x=+Ax= -A

t=0

x=A

v=0 ms

a=−amax

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Position vs. Time

t(s)

x(m

)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

-4-3.5

-3-2.5

-2-1.5

-1-0.5

00.5

11.5

22.5

33.5

4

Velocity vs. Time

t(s)

v(m

/s)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

-5

-4

-3

-2

-1

0

1

2

3

4

5

Acceleration vs. Time

t(s)

a(m

/s2)

Page 17: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Mx=0 x=+Ax= -A

t=0

x=A

v=0 ms

a=−amax

A mass of 20 kg is attached to a spring of k = 100 N/m and pulled out from the equilibrium position to a point of x = + 0.8 m and released from rest. The mass oscillates back and fourth in simple harmonic motion.

a. Find the angular frequency of the motion.b. Find the period of the motion of the motion.c. Find the frequency of the motion.d. Find the maximum velocity and acceleration.e. Write specific equations for x, v, and a as a function of t.f. Draw simple graphs of x, v, and a versus time.

Page 18: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Mx=0 x=+Ax= -A

t=0

x o≠A

vo≠0ms

x=A cos t v=−Asin t

Page 19: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Mx=0 x=+Ax= -A

t=0

x o≠A

vo≠0ms

x=A cos tat t=0.0 s

x o=A cos

v=−Asin tat t=0.0 s

vo=−Asin

Page 20: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Mx=0 x=+Ax= -A

t=0

x o≠A

vo≠0ms

x=A cos tat t=0.0 s

x o=A cos

v=−Asin tat t=0.0 s

vo=−Asin −vo

=A sin

[−vo/]xo

=A sinAcos

=tan

Page 21: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Mx=0 x=+Ax= -A

t=0

x o≠A

vo≠0ms

x=A cos tat t=0.0 s

x o=A cos

v=−Asin tat t=0.0 s

vo=−A sin −vo

=A sin

[−vo/]xo

=A sinA cos

=tan

=arctan −vo

xo

Page 22: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Mx=0 x=+Ax= -A

t=0

x o≠A

vo≠0ms

x=A cos tat t=0.0 s

x o=A cos

v=−Asin tat t=0.0 s

vo=−A sin −vo

=A sin

xo2[−vo

]2

=A2cos2A2 sin2

x o2[−vo

]2

=A2[cos2sin2]

A= x o2[−vo

]2

Page 23: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Mx=0 x=+Ax= -A

t=0

A mass of 20 kg is attached to a spring of k = 100 N/m and pulled out from the equilibrium position. The initial position of x = + 0.8 m and the initial velocity is 1.2 m/s. The mass oscillates back and fourth in simple harmonic motion.

a. Find the angular frequency of the motion.b. Find the period of the motion of the motion.c. Find the frequency of the motion.d. Find the maximum velocity and acceleration.e. Write specific equations for x, v, and a as a function of t.f. Draw simple graphs of x, v, and a versus time.

Page 24: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Mx=0 x=+Ax= -A

t=0

Energy

E total=E potentialEkinetic

E total=UK

ETotal=12

k x212

m v2

12

k A2=12

k x 212

m v2

Page 25: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Mx=0 x=+Ax= -A

t=0

Magnitude of Velocity as a Function of Position.

∣v∣= km[ A2−x2]

Page 26: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Mx=0 x=+Ax= -A

t=0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

25

50

75

100

125

150

175

200

225

Energy vs Time

K

U

Etotal

t(s)

Ene

rgy(

Joul

es)

Page 27: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Mx=0 x=+Ax= -A

t=0

-3 -2 -1 0 1 2 30

25

50

75

100

125

150

175

200

225

Energy vs. Position

U

Etotal

x(m)

En

erg

y(J)

U

K

Page 28: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Pendulum

Θ

T

w=mg

Page 29: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Pendulum

Θ

T

w=mg

Θw y=mg cos

w x=−mg sin

Page 30: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Pendulum

Θ

T

w=mg

Θw y=mg cos

w x=−mg sin

T=2 Lg

L

Page 31: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Physical Pendulum

T=2 lg I

ml 2

ΘCenter of Mass

lL

Page 32: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Physical Pendulum

T=2 lg I

ml2

ΘCenter of Mass

lL

I=13

mL2

Page 33: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Physical Pendulum

T=2 lg I

ml2

ΘCenter of Mass

lL

I=13

mL2

l=12

L

Page 34: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Physical Pendulum

T=2 lg I

ml2

ΘCenter of Mass

lL

T=2 lg I

ml2

Page 35: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Physical Pendulum

T=2 lg I

ml2

ΘCenter of Mass

lL

I=13

mL2

l=12

L

T=2 lg I

ml2=2 L

2g 13 mL2

m L22

Page 36: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Physical Pendulum

T=2 lg I

ml2

ΘCenter of Mass

lL

I=13

mL2

l=12

L

T=2 lg I

ml2=2 L

2g 13 mL2

m L22=2 L

g 23

Page 37: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Damped Harmonic Motion

M

F net=−kx−bvma=−kx−bv

Page 38: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Damped Harmonic Motion

M

F net=−kx−bvma=−kx−bv

A=Ao e−bt2m

x=Ao e−bt2m cos t

Page 39: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Damped Harmonic Motion

M

F net=−kx−bvma=−kx−bv

A=Ao e−bt2m

x=Ao e−bt2m cos t

= km−[ b2m]2

=o2−[ b

2m]2

o= km

Page 40: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Damped Harmonic Motion – under damped

M

bvmaxkA

Page 41: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Damped Harmonic Motion – under damped

M

0 25-10

-7.5

-5

-2.5

0

2.5

5

7.5

10

Damped Harmonic Oscillator

x(m)

t(s)

bvmaxkA

Page 42: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Forced Damped Harmonic Motion

M

F applied=F o sin t

F net=F osin t −kx−bv

ma=F osin t −kx−bv

Page 43: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Forced Damped Harmonic Motion

M

F applied=F o sin t

F net=F o sin t −kx−bv

ma=F osin t −kx−bv

x=A cos t

A=F o /m

2−o22

bm2

Page 44: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Forced Damped Harmonic Motion

M

F applied=F o sin t

F net=F o sin t −kx−bv

ma=F o sin t −kx−bv

x=A cos t

A=F o /m

2−o22

bm2

Page 45: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Forced Damped Harmonic Motion

M

F applied=F o sin t

A=F o /m

2−o22

bm2

Resonance – small amplitude driving force produces large amplitude oscillations.

Page 46: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Forced Damped Harmonic Motion

M

F applied=F o sin t

A=F o /m

2−o22

bm2

Resonance – small amplitude driving force produces large amplitude oscillations.Resonates when:

=o

Page 47: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Chapter 14 - sound

Page 48: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Transverse Waves – motion of medium perpendicular to the velocity of the wave.

-5 -2.5 0 2.5 5 7.5 10 12.5 15 17.50

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Transverse wave

x

y

v y

Page 49: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Longitudinal Waves – motion of medium parallel to the velocity of the wave.

v

x

Page 50: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

0 2 4 6 8 10 12 14 16 18-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Y vs. X

x(m)

y(m

)

wavelength

Amplitude A

Page 51: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

0 2.5 5 7.5 10 12.5 15 17.5 20-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Y vs. Time

t(s)

y(m

)

Period T

Amplitude A

Page 52: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Pulse y x = 4

x21

Page 53: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Pulse y x = 4

x21

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

0.250.5

0.751

1.251.5

1.752

2.252.5

2.753

3.253.5

3.754

Y vs. X

x(m)

y(m

)

Page 54: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Pulse y x = 4

x21

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

0.250.5

0.751

1.251.5

1.752

2.252.5

2.753

3.253.5

3.754

Y vs. X

x(m)

y(m

)

Now have pulse move at a constant velocity of 3 m/s.

Page 55: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Pulse y x = 4

x21Now have pulse move at a constant velocity of 3 m/s in the positive x direction.

If moving in positive x direction:

Replace x with x-vt

If moving in negative x direction:

Replace x with x+vt

Page 56: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Pulse y x = 4

x21Now have pulse move at a constant velocity of 3 m/s in the positive x direction.

If moving in positive x direction:

Replace x with x-vt

y x , t = 4

x−vt 21= 4

x−3t21

Page 57: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Pulse

Now have pulse move at a constant velocity of 3 m/s in the positive x direction.

y x , t = 4

x−vt 21= 4

x−3t 21

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

0.250.5

0.751

1.251.5

1.752

2.252.5

2.753

3.253.5

3.754

Y(x,t) vs X

x(m)

y(m

)

t= 0.0 s

Page 58: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Pulse

Now have pulse move at a constant velocity of 3 m/s in the positive x direction.

y x , t = 4

x−vt 21= 4

x−3t 21

t= 2.0 s

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

0.250.5

0.751

1.251.5

1.752

2.252.5

2.753

3.253.5

3.754

Y(x,t) vs X

x(m)

y(m

)

∆x=6m

Page 59: Waves and Sound Chapter 14 - College of Arts and …joetrout/phys183/waves_and_sound.pdfWaves and Sound Chapter 14 Review- Chapter 13 – Oscillations about Equilibrium Mass (M) on

Pulse

Now have pulse move at a constant velocity of 3 m/s in the positive x direction.

y x , t = 4

x−vt 21= 4

x−3t 21

t= 3.0 s

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

0.250.5

0.751

1.251.5

1.752

2.252.5

2.753

3.253.5

3.754

Y(x,t) vs X

x(m)

y(m

)

∆x=9m