Water Analysis - University of Novi Sad i HPLC u analizi... · • High pressure • High...

112
Organic and Inorganic Micropollutants Pat Sandra Research Institute for Chromatography, Kortrijk, Belgium Ghent University, Belgium Water Analysis

Transcript of Water Analysis - University of Novi Sad i HPLC u analizi... · • High pressure • High...

Organic and InorganicMicropollutants

Pat SandraResearch Institute for Chromatography, Kortrijk, Belgium

Ghent University, Belgium

Water Analysis

New Developments inGC and GC/MSfor the analysis

of trace and ultratracecontaminants in water samples

State-of-the-artHPLC and LC/MS

technologiesfor water analysis

Micropollutants ?

• Those listed in official methods• VOCs• Semi-VOCs• PAHs• …

• Endocrine disrupting chemicals• Detergents• Organotin compounds• …

• Drug residues• Pharmaca• Contraceptiva• …

• Odour compounds

Flow diagram analysis of micropollutants

• Sampling• Collection• Storage

• Sample preparation• Extraction• Fractionation/clean-up• Concentration• Derivatization

• Chromatographic analysis• Separation

• Data handling• Identification• Quantification

• Reporting

What chromatographic technique to select ?

• For target compound analysis

If capillary GC can be applied, this shouldalways be the technique of choice !

• For multi-residue analysis

The application of both GC and LC ismandatory !GC preferably on a PDMS type columnLC preferably on a ODS type column

The “21st century” triangle ?

High

Throughput

Productivity Resolution

Robust

High Resolution GC PCB analysis

8 10 12 14 16 18 20

Hz

100

200

300

400

500

600

700

800

900

1000

ECD1 A, (HRES-PCB\LCIE0005.D) 8

.143

8.5

85 8.7

87 8

.906

- P

CB

8 8

.933

9.3

08

9.7

20 -

PC

B 18

9.7

72 9

.933

10.

112

10.

371 1

0.44

0 1

0.50

3 1

0.61

2 -

PCB

28 1

0.65

2 -

PCB

31

10.

850

10.

963

11.

006

11.

120

11.

278

11.

319

- PC

B 52

11.

419

11.

487

11.

514

11.

758

- PC

B 44

11.

842

11.

988

12.

021

12.

134

12.

194

12.

286

12.

401

12.

484

12.

547

- PC

B 70

12.

645

12.

784

12.

980

13.

095

- PC

B 10

1 1

3.21

3 1

3.34

9 13.

445

13.

553

13.

596

13.

654

13.

753

13.

822

13.

858

14.

108

- PC

B 10

5 1

4.19

4 1

4.27

5 1

4.34

6 1

4.37

8

14.

584

14.

626

14.

698

14.

821

- PC

B 15

3 1

4.91

3 -

PCB

151

15.

089

15.

155

15.

238

15.

289

15.

396

- PC

B 13

8 1

5.45

5 1

5.56

9 1

5.67

9 1

5.73

1 1

5.83

5 1

5.96

3 1

6.06

7 1

6.20

9 1

6.32

4 1

6.42

3 1

6.55

7 1

6.61

8 1

6.75

6 -

PCB

180

16.

816

16.

911

17.

066

17.

422

17.

462

17.

550

17.

617

17.

749

18.

092 1

8.51

5 -

PCB

195

19.

008

- PC

b 19

4

20.

148

105 m x 0.25 mm i.d. x 0.25 µm df RTX-51 mL/min hydrogen, constant flow100°C – 1 min – 40°C/min – 168°C – 0.1 min - 3°C/min – 290°C – 24.25 min (60 min)

40 m x 0.10 mm i.d. x 0.10 µm df DB-5

0.4 mL/min hydrogen, constant flow

80°C – 1 min –100°C/min – 160°C – 0 min - 9°C/min – 290°C –10 min (21 min)

High Resolution LC PCB analysis

min0 50 100 150 200 250 300 350

mAU

0

10

20

30

40

50

PCB mixture

Modular Accelerated Column Heater (MACH™)Low Thermal Mass GC Technology

Heating rates: up to 1200°C/min !!

Gerstel MACH™ Twin Module

0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

Time-->

Abundance

TIC: PCB-2.D

Polychlorinated Biphenyls

5 m x 0.180 mm id x 0.18 µm DB5-MSHydrogen: 100 kPa, 2.7 mL/min @ 50°C50°C (3 sec)-150°C/min-350°C (20 sec)

MSD: fast scan, m/z 100-500 (16.7 Scans/sec)

Arochlor 1260PCB 180

PCB 138

PCB 153

Recent developments – state-of-the art !

• In capillary GC and GC-MS

• In HPLC and LC/MS

• In sample preparation

Recent developments – state-of-the art !

• In capillary GC and GC-MS

• The concept of retention time locking• Deconvolution reporting software• Method translation software• Microfluidics• SCAN/SIM mode• Electron impact ionization• Positive and negative chemical ionization

Recent developments – state-of-the art !

• In HPLC and LC/MS

• Sub 2 µm particles• High pressure• High temperature

• Modes of ionization• ESI-APCI-APPI

• Mass Analyzer• Single quadrupole• Triple quadrupole• Ion trap• Time-of-flight

Recent developments – state-of-the art !

• In sample preparation

Recent developments – state-of-the art !

• In sample preparation

In the era of green chemistry … environmentalanalysis should be “environmentally” friendly !

The time is over that 1 L water is extracted with250 mL dichloromethane !

• Important

• miniaturization or even solventless !• from trace to ultratrace … contamination !• the problem of “adsorption” on the walls

Recent developments – state-of-the art !

• In capillary GC and GC-MS

• The concept of retention time locking• Deconvolution reporting software• Method translation software• Microfluidics• SCAN/SIM mode• Electron impact ionization• Positive and negative chemical ionization

1995: Agilent 6890 GCRetention Time Locking.

The ability to exactly match chromatographic retention times in one GC system to those in another GC system, using the same

nominal column.Identical Retention Times from Column to Column, Instrument to

Instrument, Lab to Lab, Country to Country

6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00

-12000000

-10000000

-8000000

-6000000

-4000000

-2000000

0

2000000

4000000

6000000

8000000

1e+07

1.2e+07

1.4e+07

1.6e+07

1.8e+07

2e+07

2.2e+07

Time-->

Abundance

TIC: WAXTEST.D (*)Signal: INJ00002.D\FID1A.CH (*)

GC-FID

GC-MS

Introducing the Agilent 7890 GCThe Evolution of Excellence

RTL

• Column 1: 5 runs– Nominal @ 1.000 psi – C20 @ 6.624 min

• Column 2:– Scout (1.000 psi): C20 @ 6.565 min– Calculate from RTL calibration: 0.963 psi for

relocking– Set 0.960 psi: C20 @ 6.640 min– Set 0.970 psi: C20 @ 6.619 min– Set 0.963 psi: C20 @ 6.624 min

Why 1/1000 psi Matters!Key to even better Retention Time Locking (RTL)

6.58 6.59 6.60 6.61 6.62 6.63 6.64 6.65 6.66 6.67 6.68 6.69

80000

90000

100000

110000

120000

130000

140000

150000

160000

170000

180000

190000

200000

Time

Response6.641

6.619

6.6246.624

Column 1 at 1.000 psi

0.97 psi 0.963 psi 0.96 psi

Determination of Hydrocarbon Oil Index15 m x 530 μm x 0.15 µm HP-1 (SIMDIST)

min0 5 10 15 20 25

Norm.

0

50

100

150

200

250

300

350

400

450

FID1 A, (D:\FRANK\DATA\10-4-06\OIL\ASTM2 2006-10-05 09-28-57\101F0103.D)

C10

C20

C40

diesel

mineral oil

Integration parameters forgroup type separation verycritical

Recent developments – state-of-the art !

• In capillary GC and GC-MS

• The concept of retention time locking• Deconvolution reporting software• Method translation software• Microfluidics• SCAN/SIM mode• Electron impact ionization• Positive and negative chemical ionization

10.00 15.00 20.00 25.00 30.00 35.00

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

Time-->

Abundance

TIC: ERC-C5.D

CGC-MS of pesticide (n=200) mixture

Illustration

Total ion chromatogram (TIC)

Time (min)

Abundance (*10-4)

5.00 7.00 9.00 11.00 13.00 15.00 17.00 19.00 21.00 23.00 25.00 27.00 29.000

200

100

300

400

500

600

31.00 33.00 35.00

DRS result

EIC: m/z 183, 197, 283

1 Chlorpyrifos

2 Procymidone

3 Permethrin I

4 Permethrin II

1

2

3

4

Time (min)

Abundance (*10-3)

5.00 7.00 9.00 11.00 13.00 15.00 17.00 19.00 21.00 23.00 25.00 27.00 29.000

80

40

120

160

200

240

31.00 33.00 35.00

N

ClCl

ClO

PO

OS

OO

Cl

Cl

O

N OCl

Cl

O

O

N OCl

Cl

O

O

Recent developments – state-of-the art !

• In capillary GC and GC-MS

• The concept of retention time locking• Deconvolution reporting software• Method translation software• Microfluidics• SCAN/SIM mode• Electron impact ionization• Positive and negative chemical ionization

High Resolution Separation of PCB congeners

min5 10 15 20 25 30

Hz5000

ECD1 A, (PCB\250C0004.D)4.

896

7.64

9 8.94

79.

581

10.5

8710

.955

12.0

0212

.849

13.3

70

14.8

1215

.942

16.1

76

17.6

8518

.317

18.9

22 20.2

1620

.842

21.5

8222

.495

22.9

5023

.675

24.1

6425

.181

26.6

6627

.166

30.0

65

Fast RTL GC-µECD

• 30 m x 250 µm i.d. x 0.25 µm HP-5MS

• 71 kPa hydrogen.• 70°C - 2 min -

25°C/min - 150°C -3°C/min - 200°C -8°C/min - 300°C

• 10 m x 100 µm i.d. x 0.10 µm HP-5MS

• 233 kPa hydrogen.• 70°C - 0.45 min -

110°C/min - 150°C -13.2°C/min - 200°C -35.2°C/min - 300°C

Both splitless injection !

Short Narrow Bore column = equal resolution + shorter analysis time

min4 5 6 7 8 9 10 11

Hz

1000

ECD1 A, (PCB\250C0008.D)3.

657

4.58

94.

744 5.16

85.

361

5.65

65.

845 6.

052

6.41

36.

502

6.77

97.

062

7.48

17.

664

7.77

8 8.07

78.

220

8.38

98.

601

8.86

88.

928

9.20

3

9.53

4

10.0

42 10.2

85

Recent developments – state-of-the art !

• In capillary GC and GC-MS

• The concept of retention time locking• Deconvolution reporting software• Method translation software• Microfluidics• SCAN/SIM mode• Electron impact ionization• Positive and negative chemical ionization

QuickSwap for MS no-vent and Backflush

S/SL Inlet

Aux EPC In

5 psi during run

90 psi during backflush

MSD Transfer line

Quick Swap restrictor

Carrier/Aux flow Column flow

During run

During backflush

25+ psi during run

1 psi during backflush

12 14 16 18 20 22 24

-1200000

-1000000

-800000

-600000

-400000

-200000

200000

400000

600000

800000

1000000

1200000

Time, min

Abundance

PBB Mix-3 (scan) with Quick Swap (A)

PBB Mix-3 (scan) without Quick Swap (B)

*

Analysis of Polybrominated biphenyls: no cold spot

6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00

-5000000

0

5000000

1e+07

1.5e+07

2e+07

Time-->

Abundance

TIC: exp3-6.D\DATA.MS (*)TIC: exp3-1.D\DATA.MS (*)

A: no BF

B: with BF

SPE clean-up (for ECD)GC-MS analysisScan traceHydrocarbons not removed

Determination of PCBs in waste water extract

6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00

-150000

-100000

-50000

0

50000

100000

150000

200000

Time-->

Abundance

TIC: exp3-6.D\DATASIM.MS (*)TIC: exp3-1.D\DATASIM.MS (*)

A: no BF

B: with BF

GC-MS analysisSIM tracePCBs detected – same in both runs

Recent developments – state-of-the art !

• In capillary GC and GC-MS

• The concept of retention time locking• Deconvolution reporting software• Method translation software• Microfluidics• SCAN/SIM mode• Electron impact ionization• Positive and negative chemical ionization

PCI versus EI - Phthalates

TIC with most having m/z 149

MH+: m/z = 223

M+: m/z = 222

EI

PCI-NH4+

149

149

Abundance

Abundance

5.00 10.00 15.00 20.00 25.00 30.00 35.002e+076e+071e+08

1.4e+081.8e+082.2e+082.6e+08

3e+083.4e+08

TIC: 19AP001.D

EI/MS

10.00 15.00 20.00 25.00 30.00 35.00 40.00

200000

600000

1000000

1400000

1800000

2200000

2600000

Time-->

TIC: 21AP010.D

NCI/MS

Recent developments – state-of-the art !

• In HPLC and LC/MS

• Sub 2 µm particles• High pressure• High temperature

• Modes of ionization• ESI-APCI-APPI

• Mass Analyzer• Single quadrupole• Triple quadrupole• Ion trap• Time-of-flight

Using - smaller particle sizes

(sub-2 micron) - short columns- high pressure- high temperature

fast analysis with no lossin efficiency

High Productivity – High Throughput

Pesticides in water (DIN 38 407 F12)(triazines, phenylurea)

Classical method >60 min – 1200 method: 15 min with maintained R

Selectivity changes at increased temperaturePhenylurea pesticides – 15 cm x 4.6 mm i.d. x 1.8 µm

80°C

40°C

Phenylurea pesticides –Speed/Selectivity

Column: Zorbax StableBond C18, 50 mm L x 2.1 mm ID x 1.8 µm particles

Sample: Standard solution Phenylureapesticides (100 ppm each)

Injection: 1 µlDetection: UV, 245 nmMobile phase: ACN/Water 30/70Flow-rate: 0.35 ml/min

min0 2 4 6 8 10 12

mAU

0

50

100

150

200

min0 2 4 6 8 10 12

mAU

0

50

100

150

200

250

min0 2 4 6 8 10 12

mAU

0

50

100

150

200

250

300

1 2

3 4/5 6 7

1 2 3

4 5 6 7

1 2 3 4 5

6 7

40°C

60°C

80°C

1. Fenuron, 2. Metoxuron, 3. Chlortoluron, 4. Diuron,5. Isoproturon, 6. Linuron, 7. Chloroxuron

Phenylurea pesticides - SpeedColumn: Zorbax StableBond C18, 50 mm L x 2.1 mm ID x 1.8 µm particles

Sample: Standard solution Phenylureapesticides (100 ppm each) Injection: 1 µlDetection: UV, 245 nmMobile phase: ACN/Water 30/70Flow-rate: 0.35 or 0.85 ml/min

min0 1 2 3 4 5

mAU

0

50

100

150

200

250

300

min0 1 2 3 4 5

mAU

0

50

100

150

200

2501

2 3 4

5

6 7

1

2 3 4 5

6 7

80°C, 0.35 ml/min

80°C, 0.85 ml/min

2.4 min

1. Fenuron, 2. Metoxuron, 3. Chlortoluron, 4. Diuoron,5. Isoproturon, 6. Linuron, 7. Chloroxuron

16 PAHs in < 4 min

0 1 2 3 4

1

9

10

1112

13

1415

16

5

6

78

32

4

Column: ChromSphere 3 PAH, 100 mm x 2 mm, 3 µmMobile phase: water/acetonitrile, gradient 50 to 100% BTemperature: 30°CInjection: 1 µlSample: 100 ppm PAH mixtureDetection: DAD, 254 nm

1.6 mL/min560 bar

Agilent 1200 HT system equipped with 10 port switching valve: allows elimination of rinsing and regenerationtime

High Throughput

2-Position/10-Port Valve for Automated Alternating Column Regeneration

min0.2 0.4 0.6 0.8 1

injection 1

injection 4000Column 2

Column 1injection 4000

injection 2000

injection 2000

injection 1

min0.2 0.4 0.6 0.8 1

HighEfficiency

1 to 3 m column length !

5 10 15 20

mAU

0

50

100

150

200

250

25 cm

min20 40 60 80

mAU

0

20

40

60

80

100 cm

Recent developments – state-of-the art !

• In HPLC and LC/MS

• Sub 2 µm particles• High pressure• High temperature

• Modes of ionization• ESI-APCI-APPI

• Mass Analyzer• Single quadrupole• Triple quadrupole• Ion trap• Time-of-flight

Relative Applicability of Ionization TechniquesM

olec

ular

Wei

ght

Analyte Polarity

100,000

nonpolar very polar10

APCI

ESI

APPI

EI

Agilent G1978A Multimode Source

• Liquid enters the grounded nebulizer

• A charged aerosol is made in the ESI Zone

• The aerosol is dried by IR lamps

• Neutral analytes and ESI charged analytes pass through the APCI Zone

• ESI and APCI ions enter the capillary

Capillary

HPLC inlet

Nebulizer

Drying gas

Corona needle

ESI Zone

APCI ZoneThermalcontainer

Analysis of some pesticides by NPLC-APESI-MS in the alternating positive and negative mode … NH4OAc !!!

min0 2.5 5 7.5 10 12.5 15 17.5 20 22.50

MSD1 230, EIC=229.7:230.7 (LCMS-B~1\MIX00005.D) API-ES, Pos, Scan, Frag: 70, "apes-POS"

3.689

min0 2.5 5 7.5 10 12.5 15 17.5 20 22.50

MSD1 216, EIC=215.7:216.7 (LCMS-B~1\MIX00005.D) API-ES, Pos, Scan, Frag: 70, "apes-POS"

3.909

min0 2.5 5 7.5 10 12.5 15 17.5 20 22.50

50000 MSD1 202, EIC=201.7:202.7 (LCMS-B~1\MIX00005.D) API-ES, Pos, Scan, Frag: 70, "apes-POS"

4.184

min0 2.5 5 7.5 10 12.5 15 17.5 20 22.50

250000 MSD1 207, EIC=206.7:207.7 (LCMS-B~1\MIX00005.D) API-ES, Pos, Scan, Frag: 70, "apes-POS"

5.237

min0 2.5 5 7.5 10 12.5 15 17.5 20 22.50

MSD1 233, EIC=232.7:233.7 (LCMS-B~1\MIX00005.D) API-ES, Pos, Scan, Frag: 70, "apes-POS"

5.729

min0 2.5 5 7.5 10 12.5 15 17.5 20 22.50

200000 MSD2 195, EIC=194.7:195.7 (LCMS-B~1\MIX00005.D) API-ES, Neg, Scan, Frag: 70, "apes-NEG"

5.842

min0 2.5 5 7.5 10 12.5 15 17.5 20 22.50

250000 MSD2 229, EIC=228.7:229.7 (LCMS-B~1\MIX00005.D) API-ES, Neg, Scan, Frag: 70, "apes-NEG"

16.41

min0 2.5 5 7.5 10 12.5 15 17.5 20 22.50

MSD2 265, EIC=264.7:265.7 (LCMS-B~1\MIX00005.D) API-ES, Neg, Scan, Frag: 70, "apes-NEG"

22.469

Propazine

Atrazine

Simazine

Isoproturon

Diuron

Tri-Cl-phenol

Tetra-Cl-phenol

Penta-Cl-phenol

Adapting an LC Method for LC/MSAP ESI

Replace non-volatile buffer with volatile buffere.g. NH4

+ -OAc, NH4+ -OOCH

Volatile buffer concentration should be < 10 mM

AP CIMust use volatile bufferVolatile buffer concentration should be < 60 mM

Buffers for APESI and APCI

Positive Ion (use pH <7.0; 5 preferred)Acetic acid, CH3COOH

Formic acid, HCOOH

Negative Ion (pH > 7.0; 9 preferred)Ammonium hydroxide

Triethylamine

Post-column addition of acid or base may be used to adjust the pH if the chromatography won't work at the desired pH

LC/MS Portfolio

Recent developments – state-of-the art !

• In HPLC and LC/MS

• Sub 2 µm particles• High pressure• High temperature

• Modes of ionization• ESI-APCI-APPI

• Mass Analyzer• Single quadrupole• Triple quadrupole• Ion trap• Time-of-flight

APISource

Detector

(Single) Quadrupole - CID

Ion GuideTransports

+/- Ions to Quadrupole

Quadrupole MassAnalyzer is ScannedSequentially Passing

All m/z to the Detector

+/- Ions andNeutrals Formedin API Source

min0 5 10 15 20 25

0

500

1000

1500

2000

2500

3000

Oxamyl (80V)Ideal fragmentor voltage: 60V

Carbendazime (80V)Ideal fragmentor voltage: 120V

Methomyl (80V)Ideal fragmentor voltage: 60V

LC-Q-MS

FRAGMENTOR=60 V

FRAGMENTOR=80 V

m/z50 100 150 200 250 300

0

20

40

60

80

100 192.

119

3.1

m/z50 100 150 200 250 300

0

20

40

60

80

100

192.

0

160.

1

193.

1

m/z50 100 150 200 250 300

0

20

40

60

80

100

160.

1

192.

0

161.

1

132.

1

FRAGMENTOR=120 V

N

NN

OO

CH3Mw = 191

[M+H]+

CARBENDAZIME - ACN/H2O (50:50) - Formate 50 mM

FRAGMENTOR = 80 V

N

NN

OO

CH3Mw = 191

FRAGMENTOR = 40 V

160.0

192.0

50 100 150 200 250 300 350 m/z0.00

0.25

0.50

0.75

1.00

1.256x10

Intens.

160.0

192.0

50 100 150 200 250 300 350 m/z0

2

4

6

5x10Intens.

FRAGMENTOR = 120 V

160.0

192.0

50 100 150 200 250 300 350 m/z0

1

2

34x10

Intens.

CARBAMATES IN DRINKING WATER

Waldbronn Analytical Division, Liquid ChromatographyDER30

EPA METHOD 531

1. Column Hypersil ODS (100 mm, 2.1 mm, 5 µm)

2. Mobile phase A: 90% 10mM NH4+OAc - 10% MeOH

B: 10% 10mM NH4+OAc - 90% MeOH

90%A 10%A in 10 min

3. Oven temperature 25°C

4. Flow rate 0.25 ml/min

5. Ionization mode Electrospray (ESI) - +

6. Fragmentor voltage 60 V

7. Capillary voltage 4000V

8. Drying gas 12 l/min 350°C

9. Nebulizer gas 35 psi

Direct injection – water sample – 100 µL injection

min4 5 6 7 8 9 10 11 12

MSD1 278, EIC=277.7:278.7 API-ES, Pos, SIM, Frag: 60

min4 5 6 7 8 9 10 11 12

MSD1 116, EIC=115.7:116.7 API-ES, Pos, SIM, Frag: 60

min4 5 6 7 8 9 10 11 12

MSD1 222, EIC=221.7:222.7 API-ES, Pos, SIM, Frag: 60

min4 5 6 7 8 9 10 11 12

MSD1 202, EIC=201.7:202.7 API-ES, Pos, SIM, Frag: 60

min4 5 6 7 8 9 10 11 12

MSD1 239, EIC=238.7:239.7 API-ES, Pos, SIM, Frag: 60

min4 5 6 7 8 9 10 11 12

*MSD1 278, EIC=277.7:278.7 API-ES, Pos, SIM, Frag: 60

4.26

6

Oxamyl

min4 5 6 7 8 9 10 11 12

*MSD1 116, EIC=115.7:116.7 API-ES, Pos, SIM, Frag: 60

10.0

33

Aldicarb

min4 5 6 7 8 9 10 11 12

*MSD1 222, EIC=221.7:222.7 API-ES, Pos, SIM, Frag: 60

11.3

37

Carbofuran

min4 5 6 7 8 9 10 11 12

*MSD1 202, EIC=201.7:202.7 API-ES, Pos, SIM, Frag: 60

11.8

20

Carbaryl

min4 5 6 7 8 9 10 11 12

*MSD1 239, EIC=238.7:239.7 API-ES, Pos, SIM, Frag: 60"

12.4

50

Pirimicarb

Direct injection – 0.3 ppb spiked water sample – 100 µL injection

SPE Conditions

1. SPE Cartridge C18 – Agilent - Supelco - Varian

2. Conditioning 2 x 3 mL MeCN-MeOH 50%-50% 1 x 3 mL MeOH2 x 3 mL H2O

3. Loading 50 mL Sample

4. Washing 2 x 3 mL H2O

5. Drying the cartridge under vacuum for 10 minutes

6. Elution 3 x 1 mL MeCN-MeOH 50%-50%

7. Evaporate to dryness and redissolve in 200 µL H2O -> LCMS

min2 4 6 8 10 12

*MSD1 TIC, MS File API-ES, Pos, SIM, Frag: 60

2 4 6 8 10 12

*MSD1 278, EIC=277.7:278.7 API-ES, Pos, SIM, Frag: 60

3.98

4

Oxamyl

2 4 6 8 10 12

*MSD1 163, EIC=162.7:163.7 API-ES, Pos, SIM, Frag: 60

4.93

0

Methomyl

2 4 6 8 10 12

*MSD1 116, EIC=115.7:116.7 API-ES, Pos, SIM, Frag: 60

9.99

3

Aldicarb

2 4 6 8 10 12

*MSD1 222, EIC=221.7:222.7 API-ES, Pos, SIM, Frag: 60

11.3

08

Carbofuran

2 4 6 8 10 12

*MSD1 202, EIC=201.7:202.7 API-ES, Pos, SIM, Frag: 60

11.7

80

Carbaryl

min2 4 6 8 10 12

*MSD1 239, EIC=238.7:239.7 API-ES, Pos, SIM, Frag: 60

12.4

14

Pirimicarb

SPE – 0.05 ppb – LC/MS Analysis

LC-MS-MS

Oxamyl (50V)Ideal fragmentor voltage: 60V

Carbendazime (50V)Ideal fragmentor voltage: 80V

Methomyl (50V)Ideal fragmentor voltage: 50V

2 4 6 8 10 Time [min]0

1

2

3

4

5

5x10

Intens.

MRM (Multiple Reaction Monitoring)

170 210 250 290

210

222

268 280165

Quad Mass Filter (Q3)Quad Mass Filter (Q1)

Collision Cell

Spectrum with backgroundions (from ESI)

Q1 lets onlytarget ion 210 pass through

190 210

210

Collision cell breaks ion 210 apart

150 170 190 210

210158

191

Q3 monitors onlycharacteristic fragments 158 and 191 from ion 210 for quant and qual.

160

158

190

191

no chemical background

Pharmaceuticals

Dec., 2006Page 73

Filter water samples in the field or in the laboratory using 0.7-µm glass fiber filters.

Pump 1-L of the filtered water sample, at a flow rate of 10 mL/min, through an Oasis HLB (SPE) cartridge containing 0.5 g of sorbent.

Elute the HLB column with 6 mL of methanol followed by 4 mL of 0.1% TFA in methanol.

Add internal standard (ISTD). The extract is reconstituted to 1 mL.

The resulting solvent extract is then concentrated to approximately 100 µL.

1 L final volume of 1 mL.

Pharmaceuticals in waste water

Pharmaceuticals

Dec., 2006Page 74

5x10

1

2

Abundance vs. Acquisition Time (min)3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7 7.1 7.2 7.3 7.4 7.5

-TIC MRM (347.0, 329.0, 296.0, 179.0 ... m/z); from 470018.d

2x10

2

4

-TIC MRM (347.0, 329.0, 296.0, 179.0 ... m/z); from 480081.d

5x10

1

-TIC MRM (347.0, 329.0, 296.0, 179.0 ... m/z); from 620083.d

4x10

1

2

-TIC MRM (347.0, 329.0, 296.0, 179.0 ... m/z); from 620093.d

4x10

123

-TIC MRM (347.0, 329.0, 296.0, 179.0 ... m/z); from 620094.d

4x10

2

4

-TIC MRM (347.0, 329.0, 296.0, 179.0 ... m/z); from 620096.d

4x10

2

4

-TIC MRM (347.0, 329.0, 296.0, 179.0 ... m/z); from 620097.d

5x10

1

-TIC MRM (347.0, 329.0, 296.0, 179.0 ... m/z); from 620098.d

470018

480081

620083

620093

620094

620096

620097

620098

Hydrochlorothiazide(lowering high blood pressure)

Ibuprofen

Gemfibrozil(lowering cholesterol)

TOF- Identification of Unknowns with Accurate Mass Measurement

– Use of databases for compound id from empirical formula

– Use of in-source accurate-mass fragmentation for confirmation

Analysis of a unknown compound and identification

• Extracted mass spectrum peak 5.29

3

3

3

Analysis of a unknown compound and identification

Conclusion compound is of the groupsteroids: 17 oxo-dexamethason

Molecular Weight: 504.588 g/molMolecular Formula: C28H37FO7

Molecular Weight: 332.409 g/molMolecular Formula: C20H25FO3

IUPAC Name: 9-fluoro-11-hydroxy-10,13,16-trimethyl-7,8,9,10,11,12,13,14,15,16-decahydro-6H-cyclopenta[a]phenanthrene-3,17-dione

Dexamethason Dipropionate

3

Recent developments – state-of-the art !

• In sample preparation

EPA Method 524 Compounds1. Dichlorodifluoromethane 21. 1,2-Dichloropropane 41. 1,1,2,2-Tetrachloroethane2. Chloromethane 22. Dibromomethane 42. Brombenzene3. Vinyl chloride 23. Bromodichloromethane 43. 1,2,3-Trichloropropane4. Bromomethane 24. cis-1,3-Dichloropropene 44. n-Propylbenzene5. Chloroethane 25. Toluene 45. 2-Chlorotoluene6. Trichlorofluoromethane 26. trans-1,3-Dichloropropene 46. 1,3,5-Trimethylbenzene7. 1,1-Dichloroethene 27. 1,1,2-Trichloroethane 47. 4-Chlorotoluene8. Methylene chloride 28. Tetrachloroethene 48. tert-Butylbenzene9. trans-1,2-Dichloroethene 29. 1,3-Dichloropropane 49. 1,2,4-Trimethylbenzene10. 1,1-Dichloroethane 30. Dibromochloromethane 50. sec-Butylbenzene11. cis-1,2-Dichloroethene 31. 1,2-Dibromomethane 51. 1,3-Dichlorobenzene12. 2,2-Dichloropropane 32. Chlorobenzene 52. p-Isopropyltoluene13. Bromochloromethane 33. 1,1,1,2-Tetrachloroethane 53. 1,4-Dichlorobenzene14. Chloroform 34. Ethylebenzene 54. n-Butylbenzene15. 1,1,1-Trichloroethane 35. m-Xylene 55. 1,2-Dichlorobenzene16. Carbon tetrachloride 36. p-Xylene 56. 1,2-Dibromo-3-chloropropane17. 1,1-Dichloropropene 37. o-Xylene 57. 1,2,4-Trichlorobenzene18. Benzene 38. Styrene 58. Hexachlorobutadiene19. 1,2-Dichloroethane 39. Bromoform 59. Naphthalene20. Trichloroethene 40. Isopropylbenzene 60. 1,2,3-Trichlorobenzene

Analytes Added to Method 524.2

61. Acetone 73. 1-Chlorbutane

62. Diethyl ether 74. Chloroacetonitrile

63. Methyl iodide 75. 2-Nitropropane

64. Acrylonitrile 76. Methylmethacrylate

65. Allyl Chloride 77. 1,1-Dichloro-2-propanone

66. Carbon disulfide 78. 4-Methyl-2-pentanone (MIBK)

67. Methyl-tert-butyl ether 79. Ethylmethacrylate

68. Propionitrile 80. 2-Hexanone

69. 2-Butanone 81. trans-1,4-Dichloropropanone

70. Methacrylonitrile 82. Pentachloroethane

71. Methyl acrylate 83. Hexachloroethane

72. Tetrahydrofuran 84. Nitrobenzene

Volatile Organic Compounds (VOCs)

• Purge and Trap (P&T)

• Static Headspace (SHS)

• Solid Phase Microextraction (SPME)

• Headspace Sorptive Extraction (HSSE)

EPA Method 524.2

Volatile Organic Compounds (VOCs)… the Purgeables

1

23

4

5 6

7

8 910,11

12

13

14

15 1617,18

19

20

2122

23

24

26

2728

29,30

31

32

33

34

3536

37

3839

40,41

42

43,44

45

4647

48

49

50

51

52

53

54

55

56

57

58

59,60

61

62

63,64

65 66

67

68

69

70

71

7273

74

7576

77

78

79

80

81

82

83

84

85

86

87

88

89

25

0.00 5.00 10.00 15.00 20.00 25.00

Column: 60m x 0.25mm x 1.4 µm, DB-VRX

Semivolatile Organic Compounds (SVOCs)

• Liquid-liquid Extraction (LLE)

• Solid Phase Extraction (SPE)

• Solid Phase Microextraction (SPME)

• Stir Bar Sorptive Extraction (SBSE-Twister)

EPA Method 525.2

1 Isophorone

2 1,3-Dimethyl-2-nitrobenzene (SS)

3 Dichlorovos

4 Hexchlorocyclopentadiene

5 EPTC

6 Mevinphos

7 Vernolate

9 Dimethyl phthalate

10 Terrazole (aka Etridazole)

11 2,6-Dinitrotoluene

12 Tillam (aka Pebulate)

13 Acenaphthylene

14 Acenaphthene-d10 (IS#1)

15 Chlorneb

16 2-Chlorobiphenyl

17 Tebuthiuron

18 2,4-Dinitrotolune

19 Molinate

20 Diethyl phthalate

21 Fluorene

22 Propachlor

23 Ethoprop

24 Cycloate

25 Chlorpropham

26 Trifluralin

27 a-BHC

28 2,3-Dichlorobiphenyl

29 Hexachlorobenzene

30 Gesatamine (aka Atraton)

31 Prometon

32 Atrazine

33 Simazine

34 b-BHC

35 Pentachlorophenol

36 Propazine

37 g-BHC

38 Terbufos

39 Pronamide

40 Diazinon

41 Phenanthrene-d10 (IS#2)

42 Chlorothalonil

43 Phenanthrene

44 Terbacil

45 Methyl paraoxon

46 Disulfoton

47 Anthracene

48 d-BHC

49 2,4,5-Trichlorobiphenyl

50 Metribuzin

51 Alachlor

52 Simetryn

53 Ametryn

54 Heptachlor

55 Prometryne

56 Prebane (aka Terbutryne)

57 Bromacil

58 Di-n-butyl phthalate

59 2,2´,4,4´-Tetrachlorobiphenyl

60 Metolachlor

61 Dursban (aka Chlorpyrifos)

62 Cyanazine

63 Dacthal (aka DCPA methyl ester)

64 Aldrin

65 Triadimefon

66 Dephenimid

67 MGK-264 (isomer A)

68 MGK-264 (isomer B)

69 Heptachlor epoxide

70 2,2´,3´,4,6-Pentachlorobiphenyl

71 Merphos

72 g-Chlordane

73 Tetrachlorvinphos (aka Stirifos)

74 Butachlor

75 Pyrene-d10 (SS)

76 Pyrene

77 a-Chlordane

78 Endosulfan I

79 trans-Nonachlor

80 Fenamiphos

81 Napropamide

82 Tricyclazole

83 p,p´-DDE

84 DEF

85 2,2´,4,4´,5,6´-Hexachlorobiphenyl

86 Dieldrin

87 Carboxin

88 Endrin

89 Chlorobenzilate

90 Endosulfan II

91 p,p´-DDD

92 Endrin aldehyde

93 Norflurazon

94 Benzyl butyl phthalate

95 Endosulfan sulfate

96 p,p´-DDT

97 Hexazinone

98 bis(2-Ethylexyl) adipate

99 Triphenylphosphate (SS)

100 Endrin ketone

101 2,2´,3,3´,4,5´,6,6´-Octachlorobiphenyl

102 Benz[a]anthracene

103 Chrysene-d12 (IS#3)

104 2,2´,3,3´,4,5´,6,6´-Octachlorobiphenyl

105 Methoxychlor

106 Chrysene

107 bis(2-Ethylhexyl)phthalate

108 Fenarimol

109 cis-Permethrin

110 trans-Permethrin

111 Benzo[b]fluoranthene

112 Benzo[k]fluoranthene

113 Fluridone

114 Benzo[a]pyrene

115 Pereylene-d12 (SS)

116 Ideno[1,2,3-cd]pyrene

117 Dibenz[a,h]anthracene

118 Benzo[g,h]perylene

The Semivolatile Organic Compounds (VOCs)

6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0

1-5

6-1927-48

20-26

49-71

72-99

100-115

116-118

Column: 30 m x 0.25 mm x 0.25 µm, DB-5MS

Analytes Interferences

Condition Loadsample

Wash Elute

All modes of LC availableReversed Phase - Normal Phase - Ion Exchange, RAM, MIP, etc.NOT Size Exclusion

-

Multipurpose Sampler for Automated Sample Prep/Injection

Automated – Miniaturized – Solvent Free- Static Headspace (SHS)- In-tube Extraction (ITEX)- Dynamic Headspace (DHS)- Solid Phase Micro-Extraction (SPME)- Stir Bar Sorptive Extraction (SBSE)(TwisterTM)- Headspace Sorptive Extraction (HSSE)

- passive sampling (PSSE) - PATCH- Automatic Liner Exchange (ALEXTM)- LC-GC (on-line clean-up/fractionation)- Solid Phase Extraction (not on line yet)

Gerstel GmbHMulheim a/d RuhrGermany

Channel partner Agilent

CH3

Si O

CH3Best GC stationary phase (apolar)

Decomposition products very specific and not related with solutes of interest

Retention indices available for a wide number of compounds

PDMS/water distribution ∼ Octanol/water distribution, Ko/w values can be applied(if not available log P can be calculated using KOWWIN)

Best Sorptive Extraction MediumPDMS

SBSE - Volatiles - 200 mL5 ppt level - ion monitoring - Aromatics

0

500

1000

1500

2000

2500

Abundance (*10-3)

5.00 7.50 10.00 12.50 15.00 17.50 20.00

Time (min)

1319

20+21

24

28

29+30

32+33

3136

39

PAH Analyser - Conditions

• Twister (10 mm x 0.5 mm)– Sample volume: 10 mL– Extraction: 3 hours, 500 rpm and at room

temperature• Desorption

– TDS, splitless, 20°C, 60°C/min, 300°C (10 min)– Transfer line: 320°C

• Cryo-focussing– CIS, glass wool, split: 10:1, -150°C, 12°C/s, 300°C (5

min)

Linearity

Benzo(g,h,i)perylene

y = 79,392x + 259,29R2 = 0,9998

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 100 200 300 400 500 600

ppt

Peak

Are

a

Fluoranthene

y = 272,03x + 641,24R2 = 0,9999

0

20000

40000

60000

80000

100000

120000

140000

160000

0 100 200 300 400 500 600

ppt

Peak

Are

a

Detection LimitsRepeatability

Compounds Linearity Detection Limit [ppt]

Naphthalene 0.99846 0.4 A-Methylnaphthalene 0.99829 0.5 2-Methylnaphthalene 0.99886 0.7 Acenaphthylene 0.99928 0.3 Acenaphthene 0.99954 1.3 Fluorene 0.99990 1.9 Phenanthrene 0.99992 0.8 Anthracene 0.99933 1.1 Fluoranthene 0.99990 0.1 Pyrene 0.99994 0.7 Benzo(a)anthracene 0.99727 0.1 Chrysene 0.99895 0.2 Benzo(b)fluoranthene 0.99550 0.2 Benzo(k)fluoranthene 0.99820 0.4 Benzo(a)pyrene 0.99611 1.0 Indeno(1.2.3)pyrene 0.99995 1.3 Dibenz(a.h)anthracene 0.99972 0.3 Benzo(g.h.i)perylene 0.99975 0.2

SBSE-TD-GC-MS - On-site SBSE

MSdetection

sniffingdetection Phenolic

2,4,6-tribromoanisole :5.6 ng/l

phenol

Phenolic Phenolic

2,4,6-trichlorophenol

246-tribromophenol

bromodichloroanisol

dibromochloroanisol

CC

CHC

CH

CBr

Cl

Cl

OCH3

CC

CHC

CH

CBr

Br

Cl

OCH3

SBSE-TD-GC-SNIF/MS

EDCs

• Natural and synthetic hormones• Phytoestrogens• Alkylphenols and bisphenol A• Polycyclic aromatic hydrocarbons (PAHs)• Polychloro and bromo biphenyls (PCBs, PBrBs)• Dioxins anf furans• Polybrominated biphenyl ethers (PBDEs)• Organotin compounds• Phthalates• Pesticides• ….

Pyrethroids Log Ko/w Retention time (min)

SIM ions SIM group

Cis-Resmethrin 7.11 27.79 123/128 1 Trans-Resmethrin 7.11 27.97 123/128 1 Bifenthin 8.15 28.87 181/165 2 Fenpropathrin 5.62 29 97/181 2 λ-Cyhalothrin 6.85 30.4 181/197 3 Acrinathrin 6.73 30.73 181/93 3 Cis-Permethrin 6.18 31.4 183/163 4 Trans-permthrin dimethyl d6 (I.S.) 31.54 183/169 4 Trans-permethrin 6.18 31.58 183/163 4 Cypermethrin I 6.38 32.73 181/163 5 Cypermethrin II 6.38 32.89 181/163 5 Cypermethrin III 6.38 33.01 181/163 5 Cypermethrin IV 6.38 33.07 181/163 5 Fenvalerate 6.76 34.33 125/167 6 Esfenvalerate 6.76 34.75 125/167 6 Deltamethrin 6.18 35.92 181/253 7

Typical example: Pyrethroids

R² Repeatability (%) Detection limit (ng/L) Quantitation Limit (ng/l) Pyrethroids

TDS S/SL LD TDS S/SL LD (1µL)

LD (10 µL) TDS

Cis-Resmethrin 0.990 14.7 12.1 4.8 0.1 0.5 16.4 1.5 0.4 Trans-Resmetrhin 0.981 13.5 17.5 3.1 0.2 0.7 17.1 1.6 0.5 Bifenthin 0.997 5.6 19.8 9.2 0.02 0.09 2.4 0.2 0.05 Fenpropathrin 0.994 6.8 11.4 8.4 0.3 1.3 20.5 2.2 1.1 λ-Cyhalothrin 0.992 12.2 9.9 7.0 0.1 0.6 7.7 0.7 0.3 Acrinathrin 0.990 3.9 6.5 7.7 0.9 3.0 40.8 4.0 2.9 Cis-Permethrin 0.990 9.4 11.6 8.7 0.8 1.2 28.8 2.8 2.6 Trans-permethrin 0.993 4.2 9.4 9.7 0.6 1.6 22.6 2.1 1.9 Cypermethrin I 0.997 3.8 9.5 6.1 0.2 1.6 15.1 1.6 0.6 Cypermethrin II 0.991 4.6 7.1 6.5 0.2 1.6 16.4 1.5 0.6 Cypermethrin III 0.995 9.4 5.3 4.9 0.2 1.1 17.0 1.6 0.6 Cypermethrin IV 0.995 5.6 9.3 10.3 0.2 1.8 17.0 1.6 0.7 Fenvalerate 0.993 10.7 8.6 9.5 0.3 2.0 31.1 3.2 1.0 Esfenvalerate 0.990 3.9 9.5 10.4 0.8 3.4 51.9 5.0 2.7 Deltamethrin 0.990 4.7 7.3 9.9 1.4 6.4 73.4 7.1 4.7

18.00 20.00 22.00 24.00 26.00 28.00 30.00 32.00 34.00 36.0200400600800

10001200140016001800200022002400260028003000

Time-->

Abundance 9Extracted ion: m/z = 169

18.00 20.00 22.00 24.00 26.00 28.00 30.00 32.00 34.00 36.0200400600800

10001200140016001800200022002400260028003000

Time-->

Abundance 9Extracted ion: m/z = 169

18.00 20.00 22.00 24.00 26.00 28.00 30.00 32.00 34.00 36.0

200400600800

1000120014001600

Time-->

Abundance 11 12

Extracted ion: m/z = 125

18.00 20.00 22.00 24.00 26.00 28.00 30.00 32.00 34.00 36.0

200400600800

1000120014001600

Time-->

Abundance 11 12

18.00 20.00 22.00 24.00 26.00 28.00 30.00 32.00 34.00 36.0

200400600800

1000120014001600

Time-->

Abundance 11 12

Extracted ion: m/z = 125

trans-permethrin

fenvalerateesfenvalerate

Aqueous Samples.

In situ derivatization to increase log P

• NaEt4B (pH control)

• Cl COOEt (pyridine/ethanol)

• (CH3COO)2O (pH 12)

• …

Organo-Sn Speciation

• SPME - capillary GC/ICPMS

• SBSE – capillary GC/ICPMS

• In-situ derivatisation - SPME - RTL - ID - capillary GC/MS

- sub ng/L for water samples- µg/kg for sediment samples- robust and fully validated (accreditation)

10 12 14 16 18 20 22 24

40000

80000

120000

160000

200000

240000

Time, min

Abundance

MBT

MBT(d9)

DBT

DBT(d9)

TBT

TBT(d9)

DPhT(d10)MPhT

MPhT(d9)

DPhT

TPhT

TPhT(d15)

EDC Analysis

7 8 9 10 11 12 13 14 15 16

20000

40000

60000

80000

100000

Time, min

Abundance

MBT

MBT(d-9)

DBT

DBT(d-18)

TBT

TBT(d-27)

Water at20 ng/L

PACS-2

10.0011.0012.0013.0014.0015.0016.0017.0018.0019.0020.0021.0022.0023.0024.000

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

3600

3800

4000

4200

4400

4600

4800

5000

Time-->

Abundance

Ion 128.00 (127.70 to 128.70): CAL4.D

CPDCP

TCPTeCP PCP

Ion 164.00 (163.70 to 164.70): CAL4.DIon 196.00 (195.70 to 196.70): CAL4.DIon 232.00 (231.70 to 232.70): CAL4.DIon 266.00 (265.70 to 266.70): CAL4.D

In-situ acetylated Cl-phenols – ng/L !

In-situ Derivatisation-SBSE-TD-GC-MS(SIM) Analysis of Alkylphenols in water *

Sample volume 10 mL, 60 min extractionK2CO3 0.5g, acetic anhydride 0.5 mLcal: 1.0 – 1000 ng L-1 (7 points) → r2 > 0.9981sensitivity (MDL (n = 6), 3.0SD) → 0.11 – 3.6 ng L-1

recovery (10 ng L-1) → 85-106 % (RSD < 3-11 %, n = 6)

1

2

3

15 16 17 18 19 20 21 22 23 24 25

70000

Retention time / min

m/z 135

m/z 164m/z 192m/z 107

m/z 220

Abu

ndan

ce

m/z 248m/z 234m/z 312

60000

50000

40000

30000

20000

10000

0

4

7

85

6

1: 4-t-butylphenol, 2: 4-n-pentylphenol3: 4-n-hexylphenol, 4: 4-t-octylphenol5: 4-n-heptylphenol, 6: nonylphenol7: 4-n-octylphenol, 8: bisphenol A

(50 ng l-1 each)

ppt !* S. Nakamura et al, J. Chromatogr. A, 1038 (2004) 291