Waste-to-Energy in Austria

41
© UV&P 2011 999_2011_ISWA_Novi-Sad_PRINT_2011-11-30 Novi Sad WASTE-TO-ENERGY in Austria, November, 2011 A1020 Vienna, Lassallestrasse 42 / 14, Austria Tel. ++ 431214952016, Fax ++ 431214952020 [email protected]; http://www.uvp.at Franz P. Neubacher M.Sc. Chemical Engineering (T.U. Graz, Austria) M.Sc. Technology & Policy (M.I.T., USA) Waste-to-Energy in Austria

Transcript of Waste-to-Energy in Austria

© UV&P 2011999_2011_ISWA_Novi-Sad_PRINT_2011-11-30

Novi Sad WASTE-TO-ENERGY in Austria,November, 2011

A‐1020 Vienna, Lassallestrasse 42 / 14, AustriaTel. ++ 43‐1‐2149520‐16, Fax ++ 43‐1‐2149520‐[email protected];  http://www.uvp.at

Franz P. NeubacherM.Sc. Chemical Engineering (T.U. Graz, Austria)

M.Sc. Technology & Policy (M.I.T., USA)

Waste-to-Energyin Austria

2 © UV&P 2011999_2011_ISWA_Novi-Sad_PRINT_2011-11-30

Novi Sad WASTE-TO-ENERGY in Austria,November, 2011

Table of Content

1. Introduction to development of waste management in Austria

2. Municipal waste-to-energy plants for combined heat & powerproduction: Examples: Vienna, Linz

3. Integrated waste-to-energy in industrial production processes -Examples: Cement Industry, Lenzing, MMK

4. Lessons to be learned from (expensive) “mistakes” made:• Concept design• Selection of site, • Information and public relations• Economics of Scale• “Miraculous” technologies with overall failures

5. Conclusions and recommendations for know-how transfer and transboundary cooperation

3 © UV&P 2011999_2011_ISWA_Novi-Sad_PRINT_2011-11-30

Novi Sad WASTE-TO-ENERGY in Austria,November, 2011

Legally Registered Landfills in Austria in 1984(approx. 1.800 Sites / 7 Mio. Inhabitants)

© UV&P

4 © UV&P 2011999_2011_ISWA_Novi-Sad_PRINT_2011-11-30

Novi Sad WASTE-TO-ENERGY in Austria,November, 2011

Historic Development of Waste Management Policy and Legislation in Austria

Integrated waste management began in Austria about 30 years ago withincreasing public awareness, environmental regulations and subsidies:

• Technical guidelines for control of waste dumps 1977• Hazardous and Special Waste Management Act, 1983• Federal legislation on the Environmental Protection Fund, 1983• Guidelines for Waste Management in Austria 1988• Federal legislation on clean-up of landfills and contaminated sites, 1993

(including a disposal tax on landfill operations for clean-up activities) • Ban on disposal of hazardous wastes in landfills (except of inorganic wastes

encapsulated in closed salt formations) by July 2001• Decree on landfills including the ban on disposal of wastes exceeding

5 % TOC (Total Organic Carbon) for new landfills by the beginning of 1997 and limitation for existing landfills until beginning of 2004 (limited legal exemptions until end of 2008, and limited exemptions for stabilized residues from MBT Mechanical Biological Treatment).

5 © UV&P 2011999_2011_ISWA_Novi-Sad_PRINT_2011-11-30

Novi Sad WASTE-TO-ENERGY in Austria,November, 2011

Development of the Special Landfill Tax in Austria

Revenue from landfill tax in Mio. € / a(total revenue per year)

Landfill tax in € / ton of waste(e. g. municipal waste)

3 criteria:• Foreseeable for at least 10 years

The development of waste management in Austria towards reduction of landfilled waste as well as recycling and recovery has been very effectively supported by a special landfill tax.

• Environmental standard of the landfill• Quality of waste to be landfilled

€ / ton Mio € / a87 (= US $ 120)

+ 29 Euro/ton, if no collectionand treatment of landfill gas

+ 29 Euro/ton, if no encapsulation or base lining with collection and treatment of leachate

6 © UV&P 2011999_2011_ISWA_Novi-Sad_PRINT_2011-11-30

Novi Sad WASTE-TO-ENERGY in Austria,November, 2011

Environmental Consulting & Engineering for Sustainable Waste Management

©U

V&P

Different technologies are needed for specific wastes in an integrated treatment system, also taking into consideration specific regional conditions.

Successful project design must be based on the

1st and 2nd Law of Thermodynamics!

Our project designs are profitable for our clients

and protect the environment.

(UV&P, since 1991)

©U

V&P

7 © UV&P 2011999_2011_ISWA_Novi-Sad_PRINT_2011-11-30

Novi Sad WASTE-TO-ENERGY in Austria,November, 2011

Example for Public Education in Prevention of Waste: “The Beautiful Danube starts here …“

© EbS, Austria

8 © UV&P 2011999_2011_ISWA_Novi-Sad_PRINT_2011-11-30

Novi Sad WASTE-TO-ENERGY in Austria,November, 2011

Separated collection of

Source Separation & Separate Collection of Municipal Wastesfor Recovery of Materials and Energy

Type of wastefraction

Incinerationin % weight Comments

Paper, Cardboard

approx. 5 – 15

Sorting and processing

Plastics, Composites

approx. 30 – 70

„Plastic PackagingBag“, „Oekobox“

Packaging glass, Laminated glass

approx. 2 – 10

Plastics, Composite films

Construction waste

approx. 10 – 40

Wood, shavings,plastic pipes, foils, packaging, carpeting

Biological waste approx. 5 – 10

Plastics, non-biodegradablematerials

Bulky waste, scrap tires

approx. 70 – 90

without metals and recyclable fractions

Non-recyclablegarbage

approx. 45 – 98

without metals, due to biological processes(MBT)

Separate collection and recyclingmust be complemented bywaste-to-energy

9 © UV&P 2011999_2011_ISWA_Novi-Sad_PRINT_2011-11-30

Novi Sad WASTE-TO-ENERGY in Austria,November, 2011

Efficient Use of Non-renewable Resources Example Mineral Oil

More efficient useof crude oil forproduction of

valuable materials, including recycling

and recovery of energy from waste

100 kg differencein weight of vehicle

may change fuelconsumption by

0,3 l / 100 km

Zero disposal! (despite Landfill

Directive1999/31/EC)

10 © UV&P 2011999_2011_ISWA_Novi-Sad_PRINT_2011-11-30

Novi Sad WASTE-TO-ENERGY in Austria,November, 2011

Site‐specific Options for Utilization of Energy

Condensing Turbine (electricity only) Co-Generation (electricity + heat)

Energy utilization approx. 80 %Energy utilization approx. 20 %

incineration/boiler

incineration/boiler

flue-gastreatment

condensingturbine

waste waterand residuetreatment

calorific value of fueland latent heat

100%heat losses

ca. 15%

flue-gastreatment

waste waterand residuetreatment

heat lossesca. 15%

thermalenergyca. 70%

co-generation

calorific value of fuel and latent heat

100%

generation of electricityca. 18%

generation of electricityca. 12%

loss of heatby cooling

ca. 64% ©U

V&

P

11 © UV&P 2011999_2011_ISWA_Novi-Sad_PRINT_2011-11-30

Novi Sad WASTE-TO-ENERGY in Austria,November, 2011

Technical Requirements according to State‐of‐the‐Art

Fundamentals: 1st and 2nd Law of Thermodynamics!Austrian Standard ÖNORM S 2108-1 (2006-05-01) Thermal treatment of wastes - Part 1

Requirements and boundary conditions:

• Logical mass balances /emissions at minimum for S, Cl, F, Cr, Cd, Hg; which is fundamental for treatment of flue-gas and options for recoveryand treatment of residues

• Necessary flue-gas treatment (for different wastes according to wastecode) i.e., fine particulates, SOx, Halogens, POP, Hg, NOx

• Suggestion for utilization in specific production processes(e.g. main burner cement clinker kiln)

• Suggestions for recovery of (inorganic) material from thermal treatmentprocess (e.g., recovery of metal from shredder residues)

12 © UV&P 2011999_2011_ISWA_Novi-Sad_PRINT_2011-11-30

Novi Sad WASTE-TO-ENERGY in Austria,November, 2011

Collection, Storage, and Recovery of Scrap Tiresin Upper Austria (since 1973)

Fotos: Neubacher, 1999

13 © UV&P 2011999_2011_ISWA_Novi-Sad_PRINT_2011-11-30

Novi Sad WASTE-TO-ENERGY in Austria,November, 2011

Example of Shredded Tires for Waste‐to‐Energy in Cement Clinker Production in Gmunden

(Fotos: UV&P / G. Danzinger, 2002)

14 © UV&P 2011999_2011_ISWA_Novi-Sad_PRINT_2011-11-30

Novi Sad WASTE-TO-ENERGY in Austria,November, 2011

Overall Development of the Utilization of Alternative Fuels in the Austrian Cement Clinker Industry 1988 ‐ 2009

Sour

ce: A

ssoc

iatio

n of

Aus

trian

Cem

ent I

ndus

try, V

ienn

a 20

11

Less than 7% of total waste incineration for cement clinker production in Austria

Alternative fuels 2010: approx. 377.081 tSubstitution of primary fuels 2010: 62,8%

GJ / a

15 © UV&P 2011999_2011_ISWA_Novi-Sad_PRINT_2011-11-30

Novi Sad WASTE-TO-ENERGY in Austria,November, 2011

Large Waste Incineration Facilities in Austria

Large facilites for thermal treatment of waste in Austria:• 16 fluidized bed incinerators• 14 grate systems• 3 rotary kilns (for hazardous wastes)• 9 cement kilns with co-firing of waste fuels

Subtotal: 42 facilities in operation

Planned projects:• 4 fluidized bed incinerators• 1 grate system

Subtotal: 5 facilities plannedTotal:Total: 47 47 large waste incineration facilities in Austria large waste incineration facilities in Austria

Austria (approx. 8 Mio. people) Serbia (approx. 7,5 Mio. people)

16 © UV&P 2011999_2011_ISWA_Novi-Sad_PRINT_2011-11-30

Novi Sad WASTE-TO-ENERGY in Austria,November, 2011

Development of Emissions fromWaste Incinerationaccording to State‐of‐the‐Art in Austria and Switzerland

Dust Cd HCI SO2 NOx Hg PCDD/F*

1970 100 0,2 1.000 500 300 0,5 50

1980 50 0,1 100 100 300 0,2 20

1990 1 0,005 5 20 100 0,01 0,05

2000 1 0,001 1 5 40 0,005 0,05

Source: Vogg (values for 1970 - 1990); RVL (values for 2000)

* Values in ng/m3N = 10-6 mg/m3

Values in mg/m3N (11% O2, dry):

17 © UV&P 2011999_2011_ISWA_Novi-Sad_PRINT_2011-11-30

Novi Sad WASTE-TO-ENERGY in Austria,November, 2011

Municipal Waste‐to‐Energy Plant Spittelau, Vienna

(Re-) Start-up: 1989

Site: city of Vienna

Technology: grate firing

Fuel capacity: 85 MW

Efficiency: up to 90 % (co-generation)

Steam production: 2 x 50 t / h (32 bar, 240°C)

Average wastethroughput: up to 780 t / d

Fuel: municipal waste

18 © UV&P 2011999_2011_ISWA_Novi-Sad_PRINT_2011-11-30

Novi Sad WASTE-TO-ENERGY in Austria,November, 2011

Atmospheric Emissions from Supply of Heat (Example Vienna)

Pollutants in tons per year based on the same heating capacity

Source: Kirchner, IIR Conference: Efficient future Waste Treatment Technologies, 2008

19 © UV&P 2011999_2011_ISWA_Novi-Sad_PRINT_2011-11-30

Novi Sad WASTE-TO-ENERGY in Austria,November, 2011

Reduction of Greenhouse ‐ Gas Emissions by Municipal Waste Incineration compared to (legally banned) Landfilling in Vienna

Source: Kirchner, IIR Conference: Efficient future Waste Treatment Technologies, 2008

CO2- equivalent [kg/ton waste]

Reduction in household heating fromwaste-to-energy plant (district heating)

Reduction from reduced landfilling dueto incineration in waste-to-energy plant

Reduction from electricity generatedfrom waste-to-energy plant CO2-reduction from waste-to-energy plant

CO2-emission waste-to-energy plant

CO2- Net reduction

20 © UV&P 2011999_2011_ISWA_Novi-Sad_PRINT_2011-11-30

Novi Sad WASTE-TO-ENERGY in Austria,November, 2011

Example for Waste‐to‐Energy in Industrial Production:RVL Lenzing, Upper Austria

Fuel mix in 2010 at Lenzing AG:

Fuel Input: 12.600.863 GJ / a

Source: Rosenauer, 2008

Planning (UV&P): 1993/94Start Up: 1998Technology: fluidized bedFuel capacity: 110 MWSteam production: 120 t / h

(80 bar, 500°C)Waste throughput: up to 1.000 t / d

6,3 %

27,6 %

5,2 %

1,8 %

47,4 %11,7 %

21 © UV&P 2011999_2011_ISWA_Novi-Sad_PRINT_2011-11-30

Novi Sad WASTE-TO-ENERGY in Austria,November, 2011

Industrial Site of Lenzing in Salzkammergut, Upper Austria

The 3 arguments:1. Energy demand

2. Reduction of odour3. No landfilling

The waste-to-energyplant RVL is integratedin the industrial site of Lenzing Austria – with

advanced environmentaltechnology to protect

the natural environmentin the famous touristregion around Lake

Attersee.

22 © UV&P 2011999_2011_ISWA_Novi-Sad_PRINT_2011-11-30

Novi Sad WASTE-TO-ENERGY in Austria,November, 2011

Control of Cleaned Flue‐Gas from Waste Incineration(Example: RVL Lenzing, operation since 1998)

23 © UV&P 2011999_2011_ISWA_Novi-Sad_PRINT_2011-11-30

Novi Sad WASTE-TO-ENERGY in Austria,November, 2011

Illustration for Efficiency of Controlled Incinerationand Multi‐stage Flue‐Gas Cleaning (Example RVL, 1994)

Comparison of organic compounds from incineration plant / cars

Incineration plant 14 cars=Calculation:Car exhaust contains ca. 20 g C-org / kg fuel(Source: Schopp G., Ö. Chemz. 1993/9)

Flue gas of the incinerationplant with multi-stage fluegas cleaning contains lessthan 1.980 g C-org / h(Source: Expertise ZAMG, 22.12.1993)

Cleaned flue-gas of an incineration plant containsless organic compounds than the exhaust of 14 cars

24 © UV&P 2011999_2011_ISWA_Novi-Sad_PRINT_2011-11-30

Novi Sad WASTE-TO-ENERGY in Austria,November, 2011

Risk Assessment for Atmospheric Emission of “Dioxins“(Example: RVL Lenzing 1994)

1 ng =10-9 g = 0,000 000 001 g1 pg = 10-12 g = 0,000 000 000 001 g

No increased health risk due to very small concentration of dioxinsin the cleaned flue-gas of the waste incineration facility.

The precautionary protectionstandard (federal health bureau, Berlin) is 1 pg / kg weight and day(factor 1000 safety compared withNOEL - No Observeable EffectLevel). In the worst case a personinhales 0,012 pg dioxin withapprox. 20 m3 air per day. In comparison the protectionstandard for a 60 kg person is 60 pg/day. Therefore the inhaledmaximum is less than 1/1000 of theprotection standard. Thus theadditional risk can be consideredirrelevant.

Risk assessment:

Dispersion Immission< max. 0,0006 pg/m3

max. mean annual

Emission< 0,1 ng/m3

Effect of doseprevention≤ 1 pg/kg, d

Exposureinhaled air< 0,02 pg/d

?Effect

25 © UV&P 2011999_2011_ISWA_Novi-Sad_PRINT_2011-11-30

Novi Sad WASTE-TO-ENERGY in Austria,November, 2011

Illustration for Risk Assessment regarding “Dioxins“Example RVL, 1994

Assumption: 3 cigarettes per day = marginalvalue of impact (no effect observable)

Thus the precautious protectionstandard (=1/1000) is equivalentto 1 cigarette per year.

Conclusion : An incineration plant with multi-stage flue gas cleaning isfactor 1000 below the protection standard

thus = equivalent to 1 additional cigarette in 1000 years

26 © UV&P 2011999_2011_ISWA_Novi-Sad_PRINT_2011-11-30

Novi Sad WASTE-TO-ENERGY in Austria,November, 2011

Treatment Methods for Residual Municipal Solid Waste Development from 1980 to 2013 in Austria

Source: Gerd Mauschitz, Klimarelevanz der Abfallwirtschaft IV, Studie im Auftrag des Bundesministeriums für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft

27 © UV&P 2011999_2011_ISWA_Novi-Sad_PRINT_2011-11-30

Novi Sad WASTE-TO-ENERGY in Austria,November, 2011

Forecasted GHG – Emissions for the Treament of Residual Waste for the Year 2013 in Austria 

Total emissions (106 tons of CO2 equivalent)

28 © UV&P 2011999_2011_ISWA_Novi-Sad_PRINT_2011-11-30

Novi Sad WASTE-TO-ENERGY in Austria,November, 2011

Discussion on Mechanical ‐ Biological Treatment (MBT) vs. Mechanical Processing (MP) and Recovery (Austria, 2007)

29 © UV&P 2011999_2011_ISWA_Novi-Sad_PRINT_2011-11-30

Novi Sad WASTE-TO-ENERGY in Austria,November, 2011

Mechanical Processing Plant (instead of  MBT) in Ahrental, AustriaCapacity < 116,000 tons per year

30 © UV&P 2011999_2011_ISWA_Novi-Sad_PRINT_2011-11-30

Novi Sad WASTE-TO-ENERGY in Austria,November, 2011

Example RHKW Residual Waste Heat and Power Plant Linz: Co‐Generation Project based on Waste Derived Fuel

Planning (UV&P): 2006/07Start Up: 2011Technology: fluidized bedFuel capacity: 66 MW (+ 10%)Efficiency: ca. 80 %

(co-generation)Steam production: 78 t / h

(42 bar, 405°C)Average wastethroughput: up to 800 t / dFuels: municipal and

commercial waste, sewage sludge, screening wastes, shredderresidues

Mechanical waste processing and 

intermediate storage

Pipe conveyor for waste transport from fuel storage to power plant

power plant includingfluidized bed boiler

smoke stack (180 m – existing) 

31 © UV&P 2011999_2011_ISWA_Novi-Sad_PRINT_2011-11-30

Novi Sad WASTE-TO-ENERGY in Austria,November, 2011

Specific Treatment Costs and Composition of Costs of  typical Municipal Waste Incinerators in Austria

The specific investment costs depend on the size (economies of scale), appropriate selectionof site (available infrastructure, etc.) and competent design / competitive prices for supply of equipment)

Major revenues include production of steam (electricity and heat), revenues for waste treatment, and recovery of inorganic materials (in special cases)

based on average calorific value of approx. 10 MJ / kg and annual operation of 8.000 h

Source: White Book „Waste-to-Energy in Austria“, 2010

32 © UV&P 2011999_2011_ISWA_Novi-Sad_PRINT_2011-11-30

Novi Sad WASTE-TO-ENERGY in Austria,November, 2011

Example for future Perspective: MMK Cardboard Industry with New Energy Center, Frohnleiten, Styria

Planning (UV&P): 2005/07

Technology: fluidized bed

Fuel capacity: 160 MW

Efficiency: ca. 80 % (co-generation)

Steam production: 190 t / h (70 bar, 470°C)

Average RDF up to 1.360 t / dthroughput: (< 450.000 t / a)

Fuels: refuse derived fuel, residues from paper recycling, waste wood, sludge from waste water treatment(biomass, coal)

Vis

ual d

esig

n by

arc

hite

ct G

ango

ly, 2

007

33 © UV&P 2011999_2011_ISWA_Novi-Sad_PRINT_2011-11-30

Novi Sad WASTE-TO-ENERGY in Austria,November, 2011

Central‐ and South–Eastern Europe Region: Inhabitants / Land filling in % of MSW (EUROSTAT, 2008)

© 2011 The Bortner Vacation Travelogue

22 Mio. 99 %

5 Mio. 83 %

38 Mio. 87 %

10 Mio. 74 %

2 Mio. 66 % 5 Mio.

95 %

10 Mio. 83 %

8 Mio. 3 % MMK

SLO

SK

7 Mio. 100 %

34 © UV&P 2011999_2011_ISWA_Novi-Sad_PRINT_2011-11-30

Novi Sad WASTE-TO-ENERGY in Austria,November, 2011

Short‐term Alternatives for Energy and Metal Recoveryfrom Mixed Municipal Waste in the “Transient Phase“

Separation of mixedmunicipal waste into:

Metal scrap for recycling+

Fine fraction forlandfill / bio-reactor with

recovery of gas +

Refuse-derived fuel forwaste-to-energy plants(Option: Intermediate

Storage)

35 © UV&P 2011999_2011_ISWA_Novi-Sad_PRINT_2011-11-30

Novi Sad WASTE-TO-ENERGY in Austria,November, 2011

Technical Standards for the Intermediate Storageof High‐calorific Wastes (Ministry of Environment, Austria, 2007)

http://publikationen.lebensministerium.at/publication/publication/view/3058/28567

36 © UV&P 2011999_2011_ISWA_Novi-Sad_PRINT_2011-11-30

Novi Sad WASTE-TO-ENERGY in Austria,November, 2011

System for Safe and Clean Storage of Waste‐Derived Fuel (Patent Applications A1037/2008, PCT/EP2009/050238)

State-of-the-art: cylindrical bales with approx. 1,2 m diameter and 1,2 m heightCapacity per packing machine approx. 30 bales/h, 3.000 to 4.000 h/a ⇒ ca. 60.000 to 120.000 t/a

Storage amount dependent on height of pile: up to 60.000 t/ha storage area

Protective cornerstonesagainst accidents and foundationfor monitoring, light poles and hydrants

37 © UV&P 2011999_2011_ISWA_Novi-Sad_PRINT_2011-11-30

Novi Sad WASTE-TO-ENERGY in Austria,November, 2011

Precaution against New “Miraculous“ Technologies

The technical concept should be based on:

• State-of-the-art technology (BAT) for such type of waste• Prove of successful technical operation of a similar type and

size of facility (e.g. > 80% of requested thermal capacity) overa minimum period of 3 years

The financial risks for installation of un-proven technology are significant and have to be legally well-defined and financially secured.

The following scenarios must be considered:

1. Costs for immediate upgrading in case of insufficient performance

2. Costs for installation of a system according to state-of-the-art in case of a continuous failure

3. Costs for alternative treatment of waste during incomplete or malfunctioning of the overall system.

38 © UV&P 2011999_2011_ISWA_Novi-Sad_PRINT_2011-11-30

Novi Sad WASTE-TO-ENERGY in Austria,November, 2011

Necessary cooperation for Successful Implementation of Waste‐to‐Energy Projects

39 © UV&P 2011999_2011_ISWA_Novi-Sad_PRINT_2011-11-30

Novi Sad WASTE-TO-ENERGY in Austria,November, 2011

Overall Costs for Project Development, Implementation and Operation of  large Waste‐to‐Energy Plants

Concept- and feasibility studies approx. 0.2 – 0.5 Mio. EuroManagement, consulting & engineering approx. 10 Mio. Euro

Supply and construction approx. 100 – 200 Mio. Euro

Operation & maintenance of waste-to-energy plant (e.g. 40 years) approx. 600 – 1,600 Mio. Euro

Typical cash-flow of large waste-to-energy plants over lifetime(e.g. RVL Lenzing, EVN Lower Austria, RHKW Linz)

Recommendation: The determining factor for future success is the competent development and systematic evaluation of technical alternatives and feasibility studies byindependent expert teams in cooperation with local partners.

40 © UV&P 2011999_2011_ISWA_Novi-Sad_PRINT_2011-11-30

Novi Sad WASTE-TO-ENERGY in Austria,November, 2011

Know‐how and Interdisciplinary Approach for Successful  Implementation of Waste‐to‐Energy Projects (UV&P, since 1991)

© UV&P“3 legs“ are necessary for dynamic stability!

Ecologicalrequirements

Social and legal acceptance

Economicviability

41 © UV&P 2011999_2011_ISWA_Novi-Sad_PRINT_2011-11-30

Novi Sad WASTE-TO-ENERGY in Austria,November, 2011

Thank you for your Attention !Comments & Questions ?