VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy...

72
VORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423 for LangleyResearchCettter NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. JANUARY 1977 https://ntrs.nasa.gov/search.jsp?R=19770010052 2020-05-27T03:34:47+00:00Z

Transcript of VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy...

Page 1: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

VORTICITY INTERACTION EFFECTS ON BLUNT BODIES

E. Cldy Andegpson uf2d Duvid C, Wilcox

Prepared by DCW INDUSTRIES4

Sherman Oaks, Calif. 9 1 4 2 3

for Langley Research Cettter

N A T I O N A L A E R O N A U T I C S A N D S P A C E A D M I N I S T R A T I O N W A S H I N G T O N , D. C. JANUARY 1977

https://ntrs.nasa.gov/search.jsp?R=19770010052 2020-05-27T03:34:47+00:00Z

Page 2: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

TECH LIBRARY KAFB, NM

_, . . .. . " .~ . .. .. . . - 1. Report No.

. . .

1 2. Government Accession No. NASA CE-2778

4. Title and Subtitle " .. _. . ~ ~ -~ - - - . . . . .

VORTICITY INTERACTION EFFECTS ON BLUNT BODIES

. - " " " . . . 7. Authorls)

~ ~~~

E . Clay Anderson David C . Wi lcox

9. Performing Organization Name and Address DCW I n d u s t r i e s 13535 V e n t u r a B o u l e v a r d , S u i t e 2 0 7 Sherman Oaks, C A 91423

..

2. Sponsoring Agency Name and Address ."". " - - ~ ~~~ .

NASA L a n g l e y R e s e a r c h C e n t e r Hampton, VA 23365

00bL383 3. Recipient's Catalog No.

5. Report Date Jmuary 1977

6. Performing Organization Code - DW-08 Performing Organiraim Sfport No.

DCW-R-08-01 10. Work Unit No.

11. Contract or Grant No.

NASl-13974 13. Type of Report and Period Covered F i n a l R e p o r t - 6 / 1 / 7 5 6 / 1 / 7 6

14.' S&sor<ng Agendy 'Code -

. .. . . . - . . ~ . . - - . ~~

5. Supplementary Notes _ - ~ ~~

Langley technical monitor: Kenneth Sutton Final report .

__ . ."

6. Abstract . _ _ ~.~ " __ ~

A t w o - p a r t s t u d y o f h y p e r s o n i c v i s c o u s s h o c k l a y e r s h a s b e e n c o n d u c t e d I n t h e f i r s t p a r t o f t h e s t u d y , n u m e r i c a l s o l u t i o n s o f t h e v i s c o u s - s h o c k - l a y e r e q u a t i o n s g o v e r n i n g l a m i n a r a n d t u r b u l e n t f l o w s o f a p e r f e c t g a s a n d r a d i a t i n g a n d n o n - r a d i a t i n g m i x t u r e s o f p e r f e c t g a s e s i n c h e m i c a l e q u i l i b r i u m a re p r e s e n t e d f o r h y p e r s o n i c f l o w o v e r s p h e r i c a l l y b l u n t e d c o n e s a n d h y p e r b o l o i d s . T u r b u l e n t p r o p e r t i e s a r e d e s c r i b e d i n terms o f t h e c l a s s i c a l m i x i n g l e n g t h . R e s u l t s a r e c o m p a r e d w i t h b o u n d a r y - l a y e r a n d i n v i s c i d f l o w f i e l d s o l u t i o n s ; a g r e e m e n t w i t h i n v i s c i d f l o w f i e l d d a t a i s s a t i s f a c t o r y . A g r e e m e n t w i t h b o u n d a r y - l a y e r s o l u t i o n s i s g o o d e x c e p t i n r e g i o n s o f s t r o n g v o r t i c i t y i n t e r a c t i o n ; i n t h e s e f l o w r e g i o n s , t h e v i s c o u s - s h o c k - l a y e r s o l u t i o n s a p p e a r . t o b e m o r e s a t i s f a c t o r y t h a n t h e b o u n d a r y - l a y e r s o l u t i o n s . T h e s e c o n d p a r t f o c u s e s u p o n p r e p a r a t i o n f o r f u t u r e a p p l i c a t i o n s ; b o u n d a r y c o n d i t i o n s s u i t a b l e f o r h y p e r s o n i c v i s c o u s s h o c k l a y e r s a r e d e v i s e d f o r a n a d v a n c e d t u r b u l e n c e t h e o r y .

~ .~ - .. " 7. Key Words- (Suggested by Authorbl J 1- ~~

~~~

18. Distrlbution Statemem

J i s c o u s S h o c k L a y e r ; Radia t ion Unclass i f ied - Unlimited 3oundary Layer ; Gasdynamics Curbulence Model ; $ t r e a m l i n e S w a l l o w i n g ; J o r t i c i t y I n t e r a c t i o n ; Subject Category 02

. _ ~ " _ _ = _ _ ~~ _ _ ~" ~ - ~ " "" - ~~

19. Security Classlf. (of this report) 20. Security Ctdssif. (of this pl'~e) 22. Price' 21. No. of Pages

U n c l a s s i f i e d U n c l a s s i f i e d 54.25 70 -_. __ _" 1 " ~~ . ~ . - - -. "" -

For sale by the National Technical Information Scrvice. Springfield, Virginia 22151

Page 3: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423
Page 4: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

CONTENTS

SECTION PAGE

1

2

3

NOTATION ...................................... V

INTRODUCTION .................................. 1

MIXING LENGTH APPLICATIONS .................... 5 2.1 Governing Equations ...................... 5

2.1.1 Boundary Conditions . . . . . . . . . . . . . . . 8 2.1.2 Radiative Transport . . . . . . . . . . . . . . . 9 2.1.3 Thermodynamic and Transport

Properties ........................ 9 2.2 Eddy-Viscosity Approximations . . . . . . . . . . . . 10

Approximation ..................... 10

Approximation ..................... 11 2.3 Solution Method .......................... 13 2.4 Results and Discussion . . . . . . . . . . . . . . . . . . . 17

2.2.1 Inner-Eddy-Viscosity

2.2.2 Outer-Eddy-Viscosity

2.4.1 Perfect Gas Solutions with Strong Vorticity Interaction . . . . . . 17

Nonradiating Gas Mixtures in Chemical Equilibrium . . . . . . . . . . . . . . 24

2.4.2 Solutions for Radiating and

DEVELOPMENT OF AN ADVANCED TURBULENCE MODEL . . . 35 3.1 The Model Equations ...................... 36 3.2 Surface Boundary Conditions .............. 37 3.3 Turbulent-Nonturbulent Interface

Structure ................................ 43 3.3.1 Interface Structure for a

Conventional Boundary Layer . . . . . . . 43 3.3.2 Interface Structure for

Stagnation Point Flow . . . . . . . . . . . . . 45 3.3.3 Tentative Modification to the

Model Equations . . . . , . . . . . . . . . . . . . . 48

iii

Page 5: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

CONTENTS ( c o n c l u d e d )

SECTION PAGE

3 DEVELOPMENT OF AN ADVANCED TURBULENCE MODEL ( c o n t i n u e d )

3 .4 C o m p u t i n g - T i m e Reduct ion ................. 53

4 CONCLUDING REMARKS ............................ 58

REFERENCES .................................... 59

Page 6: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

NOTATION

SYMBOL DEFINITION

A+

'i

c R

cP

C

C *

P , i

e

H

Ht

h

h A

K

k

kt

M*

Damping f a c t o r [ E q u a t i o n s (15 ) and (16)J

Mass f r a c t i o n of s p e c i e s i , pi /p

Mass f r a c t i o n o f e l e m e n t R

F r o z e n s p e c i f i c h e a t o f mix tu re , C C . C

S p e c i f i c heat of s p e c i e s i , C* /C*

I n v i s c i d f l o w v e l o c i t y g r a d i e n t '

N

i=1 1 P , i

P , i P,W

Turbulent mixing energy

Def ined quan t i ty , h + -

T o t a l e n t h a l p y , H + -

Enthalpy o f mix tu re , 1 Cihi

Enthalpy of undecomposed ablation mater ia l

Enthalpy o f s p e c i e s i ,hr /UE2

I n t e r m i t t e n c y f a c t o r s

Flow index : 0 f o r p l a n e f low; 1 for axisymmetr ic f low

U 2 2

V 2 2

N

i=l

Thermal conduct iv i ty o f mix tu re , K * / u ; ~ ~ C:,m

Roughness height

Roughness height Reynolds number, pwuTk/pw

T u r b u l e n t l e n g t h s c a l e

Mixing length [Equat ion (1313

Molecular weight - M* Molecular weight of mix ture

N Number o f s p e c i e s

Y

Page 7: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

SYMBOL

NLe

NLe , T

N P r , T

NRe

NS c n

n+

P+

P

Q

( - > * q r

-qc,w

ReD

r

r* n S -

S

T

NOTATION ( con t inued)

DEFINITION

L e w i s number, p*D?.C*/K*

Turbulent L e w i s number 1 J P

Prandt l number , p*C:/K*

Turbulent Prandt l number , u$C;/K,$

Reynolds number, pzUzr:/pz

Schmidt number, NSc = Npr/NLe

Coordinate measured normal to body , n* / r i

Normal coord ina te [Equa t ion (14)J

Pressu re -g rad ien t pa rame te r [Equa t ion (17)l

P r e s s u r e , p * / [ p ~ ( ~ ~ ) ~ I

D i v e r g e n c e o f n e t r a d i a n t h e a t f l u x , Q*r,W/p, *u* , 3

Net r a d i a n t h e a t f lux i n n - d i r e c t i o n , q;/pzUE2

Component o f r a d i a n t f l u x t o w a r d t h e s h o c k

Component o f r a d i a n t f l u x t o w a r d t h e wall

C o n v e c t i v e h e a t f l u x to t h e wall LEquation (11>3

Reynolds number based on body diameter

Radius measured f rom ax is o f symmetry to po in t on body s u r f a c e , r*/r:

Nose r a d i u s

Product ion r a t e [Equat ion (33)3

U n i v e r s a l f u n c t i o n o f s u r f a c e m a s s - i n j e c t i o n

Un ive r sa l func t ion o f su r f ace roughness

Coordina te measured a long body sur face , s*/ri

Temperature, T*/TEef

Temperature, (U:.) 2/C* P¶O0

Yi

Page 8: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

SYMBOL

U

V

v: V+ W

W

CY - a,a*

*

+ 'i

e

K

1.I

NOTATION (continued) DEFINITION

Freestream velocity

Velocity component tangent to body surface, u*/U2

Friction velocity [Equation (1911

Velocity component normal to body surface, v*/Uz

Entrainment velocity

Scaled mean velocity component [Equation (1811, VW/%

Turbulent dissipation rate

Shock angle defined in Figure 1

Parameters in turbulence model equations

High Reynolds number values of a,a*

Angle defined in Figure 1

Parameters in turbulence model equations

Normal intermittency factor [Equation ( 2 2 1 1

Boundary-Layer thickness

Incompressible displacement thickness [Equation (2111

Number of atoms of the Rth element in species i

Normalized eddy viscosity, YT/p

Eddy viscosity, inner law [Equation (1211

Eddy viscosity, outer law [Equation ( 2 0 ) 1

Transformed n-coordinate, n/ns; also, similarity coordinate for stagnation-point solution

Body angle defined in Figure 1

Body curvature

Molecular viscosity, Y*/y*(TEef) Eddy viscosity

Yii

I

Page 9: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

. I

N O T A T I O N (continued)

D E F I N I T I O N SYMBOL

E

Superscripts

Subscripts

e

i

R

S

W

CO

Coordinate measured along body surface, E = s ; also, similarity coordinate for stagnation-point solution

Density of mixture, p * / p z %

Reynolds number parameter,

Stefan-Boltzmann constant

Parameters in turbulence model equations

Quantities defined by Equations (4b,4c,4d)

0 for plane flow; 1 for axisymmetric flow

Quantity divided by its corresponding shock value

Dimensional quantity

Total differential or fluctuating component

Shock-oriented velocity component (see Figure 1)

Boundary-layer edge

ith species

tth element

Shock

Wall

Freestream

Values for the solid ablation material at the surface

viii

Page 10: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

NOTATION (concluded)

Abbrevia t ions

BL Boundary l a y e r

BLSSW Boundary layer c o r r e c t e d f o r s t r eaml ine swa l lowing

TFD T r a n s i e n t f i n i t e d i f f e r e n c e

vs L Viscous shock layer

i x

Page 11: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

E. Clay Anderson* and David C . Wilcox t DCW I n d u s t r i e s

1. INTRODUCTION

V o r t i c i t y i n t e r a c t i o n b e t w e e n t h e boundary l aye r and t h e o u t e r i n v i s c i d e n t r o p y l a y e r i s n o t s i g n i f i c a n t f o r h i g h R e y n o l d s number l amina r f l ows ove r b lun t bod ie s hav ing low a n g l e a f t e r - bodies except a t d i s t a n c e s f a r downstream. However, f o r l a r g e a n g l e a f t e r b o d i e s s u c h as t h o s e b e i n g c o n s i d e r e d for p l a n e t a r y e n t r y p r o b e s , ' v o r t i c i t y i n t e r a c t i o n i s s t r o n g i n t h e r e g i o n n e a r t h e n o s e o f t h e body i f t h e f l o w i s t u r b u l e n t . For f r e e - s t r e a m c o n d i t i o n s w h i c h r e q u i r e a n a n a l y s i s i n c l u d i n g mass i n j e c t i o n a t t h e s u r f a c e , v o r t i c i t y i n t e r a c t i o n c a n b e a s ig - n i f i c a n t i n f l u e n c e f o r l a m i n a r f l o w s if t h e mass i n j e c t i o n r a t e i s s u f f i c i e n t l y l a r g e . A s a r e su l t o f t he h igh speeds a s so - c i a t e d w i t h t y p i c a l p l a n e t a r y e n t r y t r a j e c t o r i e s , r a d i a t i o n h e a t - t r a n s f e r e f f e c t s must a l s o b e i n c l u d e d i n t h e f l o w f i e l d a n a l y s i s .

The use o f h ighe r o rde r boundary - l aye r t heo ry f o r t h e a n a l y s i s o f f l o w f i e l d s w i t h a h i g h degree o f coup l ing be tween t he bound- a r y l ayer ( B L ) and t h e i n v i s c i d f l o w r e q u i r e s a complex i n t e r a - t i ve so lu t ion p rocedure . Because o f t h e d i f f i c u l t i e s e x p e r i - e n c e d i n t h e a p p l i c a t i o n o f h i g h e r o r d e r BL t h e o r y , has developed a n u m e r i c a l t e c h n i q u e f o r s o l v i n g the v iscous- shock- layer (VSL) equa t ions gove rn ing l amina r f l ow o f a p e r f e c t gas a n d f o r b i n a r y m i x t u r e s w i t h f i n i t e r a t e c h e m i c a l r e a c t i o n s . Moss4 has developed VSL s o l u t i o n s f o r multicomponent gas mix- t u r e s f o r b o t h e q u i l i b r i u m a n d f i n i t e r a t e c h e m i s t r y . Moss' has

* Consul tan t

.+owner

Page 12: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

extended the e q u i l i b r i u m c h e m i s t r y a n a l y s i s to i n c l u d e t h e

e f f e c t s o f r a d i a t i o n h e a t t r a n s f e r . T h e s e VSL ana lyses have been found accu ra t e fo r f l ows w i t h s t r o n g v o r t i c i t y i n t e r a c t i o n a n d / o r r a d i a t i o n h e a t t r a n s f e r .

I n r e c e n t p u b l i c a t i o n s by Eaton and Larson6 and Anderson and Moss,7 n u m e r i c a l s o l u t i o n s o f t h e VSL equa t ions gove rn ing t u r - bu len t f low o f a pe r fec t gas have been p re sen ted . Ea ton and La r son cons ide red t he t h in VSL equat ions and presented s o l u t i o n s f o r t u r b u l e n t f l o w ove r s l ende r cones . The i r r e s u l t s w e r e compared wi th expe r imen ta l da t a and showed good agreement. Anderson and Moss cons ide red t u rbu len t f l ow ove r b lun t ax i a l ly symmet r i c bod ie s and u sed t h e f u l l VSL equa- t i ons . These so lu t ions were compared w i t h f i r s t - o r d e r t u r - b u l e n t BL theo ry . The r e s u l t s o b t a i n e d w i t h t h i s t u r b u l e n t BL a n a l y s i s w e r e e s s e n t i a l l y i d e n t i c a l to f i r s t - o r d e r t u r b u - l e n t BL r e s u l t s i n t h e r e g i o n w h e r e v o r t i c i t y i n t e r a c t i o n i s no t s ign i f i can t . Fo r t he downs t r eam r eg ion , t he expec ted d i f f e rences were ob ta ined .

I n a l a t e r i n v e s t i g a t i o n , Anderson and Moss8 ex tended t he t u r b u l e n t VSL a n a l y s i s to r e a c t i n g g a s m i x t u r e s i n c h e m i c a l equi l ibr ium and cons idered b o t h r a d i a t i n g a n d n o n r a d i a t i n g shock l aye r s . These t u rbu len t VSL solut ions were compared w i t h f i r s t - o r d e r BL s o l u t i o n s a n d f i r s t - o r d e r BL theo ry w i t h

c o r r e c t i o n s f o r s t r e a m l i n e s w a l l o w i n g (BLSSW). A n o n r a d i a t i n g shock- l aye r so lu t ion co r re spond ing to a t y p i c a l t r a j e c t o r y p o i n t f o r a Venus ian en t ry was cons ide red . A co ldwa l l bound- a r y c o n d i t i o n was assumed, and the resu l t s o f the VSL ana ly- s i s were compared w i t h i n t e g r a l BL and BLSSW a n a l y s e s . The two BL s o l u t i o n s a n d t h e VSL s o l u t i o n showed e x c e l l e n t a g r e e - ment i n t h e l a m i n a r f l o w r e g i o n . F o r t h e t u r b u l e n t f l o w r e g i o n , b o t h t h e BLSSW and the VSL s o l u t i o n showed a l a r g e i n c r e a s e i n t h e h e a t - t r a n s f e r r a t e when compared wi th t h e BL s o l u t i o n . F o r t h e t u r b u l e n t f l o w r e g i o n , t h e VSL h e a t - t r a n s f e r

2

Page 13: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

rates were 15% t o 3 0 % lower than the s o l u t i o n o b t a i n e d wi th t he i n t e g r a l BLSSW a n a l y s i s , b u t t h e g e n e r a l t r e n d i n t h e h e a t - t r a n s f e r r a t e d i s t r i b u t i o n was the same fo r bo th me thods of a n a l y s i s .

For the more complex case o f a r a d i a t i n g s h o c k l a y e r wi th mass i n j e c t i o n a t t h e s u r f a c e , a t y p i c a l t r a j e c t o r y p o i n t for a Venus ian en t ry was ana lyzed . These VSL r e s u l t s w e r e compared wi th a n i n t e g r a l m a t r i x BLSSW a n a l y s i s . F o r t h i s c a s e , t he l a m i n a r f l o w r e g i o n s o l u t i o n s d i f f e r e d by 1 0 % t o 15% i n con- v e c t i v e h e a t i n g r a t e p r e d i c t i o n s , a n d f o r t h e t u r b u l e n t f l o w r e g i o n , t h e two methods of analysis showed o p p o s i t e t r e n d s i n t h e c o n v e c t i v e - h e a t i n g - r a t e d i s t r i b u t i o n . The BLSSW a n a l y s i s p r e d i c t e d a maximum c o n v e c t i v e h e a t i n g r a t e a t t h e t r a n s i t i o n p o i n t . The VSL a n a l y s i s p r e d i c t e d t h e maximum convect ive h e a t i n g r a t e a t a downstream locat ion. For the p redominant ly i n v i s c i d o u t e r f l o w r e g i o n o f t h e s h o c k l a y e r , t h e VSL so lu- t i o n was found to b e i n s a t i s f a c t o r y a g r e e m e n t w i t h t h e i n v i s - c i d f l o w f i e l d s o l u t i o n . The p r e d i c t i o n of r a d i a t i o n h e a t i n g a t t h e s u r f a c e was i n s a t i s f a c t o r y a g r e e m e n t w i t h t h e BLSSW

.. - a n a l y s i s .

The o p p o s i t e t r e n d s i n t h e c a l c u l a t e d c o n v e c t i v e h e a t i n g - r a t e d i s t r i b u t i o n s a p p e a r e d to b e t h e r e s u l t o f a n i n c r e a s e i n v o r - t i c i t y i n t e r a c t i o n c a u s e d b y mass i n j e c t i o n a n d t h e h i g h e r t empera tu re a t t h e s u r f a c e b o u n d a r y . T h i s behav io r was n o t o b t a i n e d f o r t h e n o n r a d i a t i n g c a s e w i t h no i n j e c t i o n and cold- wall boundary condi t ions . The co ldwal l boundary condi t ion r e s u l t s i n a t h i n n e r BL t h i c k n e s s a n d d i m i n i s h e s t h e i n f l u e n c e o f v o r t i c i t y i n t e r a c t i o n . B o t h h i g h e r s u r f a c e t e m p e r a t u r e a n d mass i n j e c t i o n i n c r e a s e v o r t i c i t y i n t e r a c t i o n .

The p r e s e n t i n v e s t i g a t i o n i s d i r e c t e d p r i m a r i l y t o w a r d d e t e r - mining the behav io r o f BLSSW and VSL s o l u t i o n s i n r e g i o n s o f s t r o n g v o r t i c i t y i n t e r a c t i o n . The s t u d y c o n s i s t s o f two par t s .

I

3

Page 14: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

I n t he f i r s t p a r t o f t he s t u d y , a p e r f e c t g a s i s cons ide red , and the eddy v i s c o s i t y m o d e l i n g t e c h n i q u e s are i d e n t i c a l i n b o t h t h e VSL and BLSSW a n a l y s e s . R e p r e s e n t a t i v e YSL p r o f i l e data are compared w i t h two d i f f e r e n t i n v i s c i d f l o w f i e l d s o l u - t i o n s a n d BL and BLSSW s o l u t i o n s . VSL s o l u t i o n s are a l s o p r e - s e n t e d for b o t h r a d i a t i n g a n d n o n r a d i a t i n g m i x t u r e s o f p e r f e c t gases i n chemica l equ i l ib r ium, bu t compara t ive BL and BLSSW data a r e n o t a v a i l a b l e f o r t h e r a d i a t i n g s h o c k - l a y e r c a l c u - l a t i o n s . The second p a r t o f t h e s tudy focuses upon develop- ment of an advanced turbulence model i n p r e p a r a t i o n f o r f u t u r e v i s c o u s s h o c k l a y e r a p p l i c a t i o n s .

4

Page 15: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

2 . M I X I N G LENGTH APPLICATIONS

I n this s e c t i o n , h y p e r s o n i c v i s c o u s s h o c k l a y e r s o l u t i o n s are p r e s e n t e d . The equa t ions o f mo t ion appropr i a t e for shock l a y e r s are s t a t ed , including boundary condi t ions and assumed thermodynamic propert ies . The mixing- length c losure approxi - mat ions are t h e n d i s c u s s e d . The s o l u t i o n method i s d e s c r i b e d next . Resul t s o f numer ica l computa t ions are t h e n p r e s e n t e d f o r b o t h p e r f e c t - g a s a n d e q u i l i b r i u m r a d i a t i n g g a s m i x t u r e a p p l i c a t i o n s .

2 . 1 GOVERNING EQUATIONS

The e q u a t i o n s o f m o t i o n f o r r e a c t i n g g a s m i x t u r e s i n c h e m i c a l e q u i l i b r i u m a r e p r e s e n t e d by B i r d , S t ewar t , and L igh t foo t . The f o r m u l a t i o n o f t h e s e e q u a t i o n s i n b o d y - o r i e n t e d c o o r d i n a t e s a p p r o p r i a t e f o r v i - s c o u s - s h o c k - l a y e r a n a l y s i s o f laminar f low o f r a d i a t i n g a n d n o n r a d i a t i n g g a s e s i s p r e s e n t e d by Moss. 495 For t u r b u l e n t flow, the v i scous-shock- layer equa t ions are der ived us ing methods ana logous to those p resented by Dorrance for t he t u rbu len t -boundary - l aye r equa t ions and are expressed in nondimens iona l form for t h e c o o r d i n a t e s y s t e m shown i n F igu re 1 as :

9 .. . ?

10

Cont inu i ty :

- [ ( r + n c o s as a f 3 ) j p u I + = [ ( l + n K ) ( r + n c o s a f3)jpv-J = 0 (1)

s- momentum:

2 K + ( m + r + n c o s e an l+nK

5

Page 16: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

.- ....

Figure 1. Coordinate system.

6

Page 17: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

I

n-momentum:

Energy:

where

and

H = h + - U2 2

Elemental continuity:

where

Page 18: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

S t a t e :

= ' ~ T R * / F ~ * c * P ¶=J

2 . 1 . 1 Boundary Conditions

The boundary condi t ions a t t h e shock a re c a l c u l a t e d -by u s i n g t h e

Rankine- Hugoniot re la t ions. A t t h e wall , t h e no-s l ip and no- temperature- jump boundary condi t ions are used; consequent ly , u w = 0 . The wall tempera ture and mass i n j e c t i o n r a t e are e i t h e r s p e c i f i e d o r c a l c u l a t e d . F o r t h e c a l c u l a t e d mass i n j e c t i o n con- d i t i o n s , t h e a b l a t i o n p r o c e s s i s a s s u m e d - t o be quasi-s teady and t h e wall t empera tu re i s t h e s u b l i m a t i o n t e m p e r a t u r e o f t h e abla- t o r s u r f a c e . With these assumpt ions , t h e e x p r e s s i o n f o r t h e

coupled mass i n j e c t i o n r a t e i s

For a b l a t i o n i n j e c t i o n , t h e e l e m e n t a l c o n c e n t r a t i o n s a t t h e wal l are governed b y convec t ion and d i f fus ion as g iven b y the equa- t i o n

- (F,)_] = O

P r e c u r s o r e f f e c t s are n e g l e c t e d w h i l e t h e ene rgy r e rad ia t ed f rom t h e s u r f a c e i s i n c l u d e d i n t h e r a d i a t i o n t r a n s p o r t c a l c u l a t i o n s . The n e t r a d i a t i v e f l u x , q,, can b e r e p r e s e n t e d as t h e d i f f e r -

ence of two components

8

Page 19: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

At the surface

where E is the surface emissivity.

The heat transferred to the wall due to conduction and diffusion is

?J N ac.

-qc ,w N ~ c i=l c hi+) W = + -

2.1.2 Radiative Transport

The radiative flux, qr, is calculated with the radiative trans- port code RAD. 11'12 The RAD computer code has been incorporated in the present viscous-shock-layer computer code (HYVIS) and streamlined for computational efficiency.

The RAD code accounts for the effects of nongray self-absorption. Molecular band, continuum, and atomic line transitions are included. A detailed frequency dependence of the absorption coefficients is used for integrating over the radiation fre- quency spectrum and the tangent slab approximation is used for integrating over physical space.

2 .1 .3 Thermodynamic and Transport Properties

The equilibrium composition is determined by a free energy mini- mization calculation as developed 'in Reference 13. Thermodynamic properties for specific heat, enthalpy, and free energy and transport properties for viscosity and thermal conduct'ivity are required for each species considered. Values for the thermo- dynamic 14'15 and transport properties16 are obtained by using polynomial curve fits. The mixture viscosity is obtained by using the semiempirical formula of Wilke. 1 7

Page 20: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

2.2 EDDY-VISCOSITY APPROXIMATIONS

A two-layer eddy-viscosity model consisting of an inner law based upon Prandtl's mixing-length concept and the Clauser- Klebanoff expression (based on References 18 and 19) for the outer law is used in the present investigation. This model, introduced by Cebeci,20 assumes that the inner law is appli- cable for the flow from the wall out to the location where the eddy viscosity given by the inner law is equal to that of the outer law. The outer law is then assumed applicable for the remainder of the viscous layer. It is noted that the eddy viscosity degenerates to approximately zero in the inviscid portion of the shock layer. The degeneracy is expressed in terms of the normal intermittency factor given by Klebanoff. The expressions used in the present investigation are given in the following sections,

1 9

2.2.1 Inner-Eddy-Viscosity Approximation

Prandtl's mixing-length concept is stated in nondimensional variables as

The mixing length, %, is evaluated by using van Driest ?s2l pro- posal stated as

where

Here, kl is the von Karman constant, which is assumed to have a value of 0.4, and At is a damping factor whose value is 26.

10

Page 21: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

Cebeci2O suggests that f o r ' f l o w s w i t h a p r e s s u r e g r a d i e n t , the damping f a c t o r b e e x p r e s s e d as

and f o r f l o w s w i t h bo th a p r e s s u r e g r a d i e n t a n d mass i n j e c t i o n ,

where

and

2 . 2 . 2 Outer-Eddy-Viscosity Approximation

For t h e o u t e r r e g i o n o f t h e v i s c o u s l a y e r t h e e d d y v i s c o s i t y i s approximated b y t h e Clauser -Klebanoff express ion

where k2=0.0168 and 6 k and yi a r e d e f i n e d as , n

'k = /'(l.- 0 $)an

11

Page 22: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

and

Equation (22) is Cebecits20 approximation of the error-function definition pres.ented by Klebanoff. 19

For equilibrium flow without radiation, the boundary-layer thick- ness 6 is assumed to be the value of n at the point where

and is defined by linear interpolation in an array of local total enthalpies. This definition is approximately equivalent to the usual boundary-layer definition

” U U - 0.995 e

where ue is the local value for the- undisturbed inviscid flow outside the boundary layer.

The values of the parameters kl and k2 in Equations (13) and (2O)’depend on the flow conditions being considered, as does the constant represented by the value 26 in Equations (15) and (16). The values given are used for convenience in developing the numerical method. A discussion of these parameters is presented by Harris. 22

For radiating gases, the loss of energy from the shock layer makes the total enthalpy definition unsatisfactory. For these cases, the boundary-layer thickness is assumed to be defined by an index of diffusion, conduction, and dissipation expressed as

12

Page 23: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

Boundary- layer th icknesses g iven by t h i s e x p r e s s i o n are essen- t i a l l y t h e same as t h o s e g i v e n b y t h e t o t a l e n t h a l p y d e f i n i t i o n when a p p l i e d t o p e r f e c t g a s f l o w s , b u t b o t h d e f i n i t i o n s o v e r - p r e d i c t t h e BL t h i c k n e s s i n t h e v i c i n i t y o f t h e s t a g n a t i o n s t r e a m l i n e when an equ i l ib r ium gas i s cons ide red .

For t h e p r e s e n t s t u d y , t h e t u r b u l e n t P r a n d t l a n d Lewis numbers a r e assumed t o be 0 . 9 and 1 . 0 , r e s p e c t i v e l y .

2 . 3 SOLUTION METHOD

Davis p resented a method for so lv ing t he v i scous - shock- l aye r equat ions for s tagnat ion and downst ream f low. Moss , a p p l i e d t h i s method o f s o l u t i o n t o r e a c t i n g m u l t i c o m p o n e n t m i x t u r e s . The p resen t me thod o f so lu t ion i s i d e n t i c a l t o t ha t of Refer- ences 2 and 4. Therefore , only an overview o f t h e s o l u t i o n procedure i s p r e s e n t e d h e r e .

L

The numerical computation i s s i m p l i f i e d by normal iz ing most of t h e v a r i a b l e s w i t h t h e i r l o c a l s h o c k v a l u e s . The t ransformed independen t and dependen t va r i ab le s a r e

TI = n/ns

c = s

- P = P I P s

P =- PIPs

u = u/us T = T/Ts

v = v/vs = H/Hs

lJ = U/lJs

-

- -

-

- - K = K/Ks

Page 24: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

I

Since the normal coordinate, n, is normalized with respect to the local shock standoff distance, a constant number of finite-differ- ence grid points between the body and shock are used. The trans- formations relating the -differential quantities are

where

and

The second-order partial differential equations are linearized and written in the standard form for a parabolic equation as

pJ aw + a2W + a + a4 aw an + alFl 3

= o

where W represents tangential velocity for the s-momentum equa- tion, enthalpy for the energy equation, and elemental concen- trations for the elemental continuity equations. For the energy equation, the divergence of the radiative flux is included in the a term. When the derivatives in Equation (28) are con- verted to finite-difference form by using Taylor's series expan- sions, the resulting equations are of the following form:

3

*nWm, n- 1 n m,n + 'nWm,n+1 + B W = Dn

14 a

Page 25: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

The s u b s c r i p t n deno tes t h e g r i d p o i n t s a l o n g a l i n e n o r m a l t o t h e body s u r f a c e , a n d t h e s u b s c r i p t m denotes t h e g r i d

s t a t i o n s a l o n g t h e body s u r f a c e . E q u a t i o n ( 2 9 ) , a long w i t h t h e b o u n d a r y c o n d i t i o n s , c o n s t i t u t e a s y s t e m o f t h e t r i d i a g o n a l fo rm and can be so lved e f f i c i en t ly .

A v a r i a b l e g r i d s p a c i n g i s u s e d i n b o t h t he t a n g e n t i a l a n d ' n o r m a l d i r e c t i o n s t o t h e s u r f a c e s o t h a t t h e g r i d s p a c i n g c a n

b e made small i n t h e r e g i o n o f l a r g e g r a d i e n t s . The o r d e r o f t h e t r u n c a t i o n terms n e g l e c t e d are A E ( f i rs t o r d e r a c c u r a t e ) and e i t h e r A n n A q n - o r h n - h n - l ) *

The e q u a t i o n s a r e s o l v e d a t any body s t a t i o n m i n t he o r d e r shown i n F i g u r e 2 . The govern ing equat ions a re uncoupled and t h e v a l u e s o f t h e d e p e n d e n t v a r i a b l e s a r e computed one a t a t ime. Each o f t h e s e c o n d - o r d e r d i f f e r e n t i a l e q u a t i o n s i s i n d i v i d u a l l y i n t e g r a t e d n u m e r i c a i l y b y u s i n g t h e t r i d i a g o n a l formalism [Equat ion ( 2 9 1 1 . The g l o b a l c o n t i n u i t y e q u a t i o n i s used t o ob ta in bo th shock s t andof f d i s t ance and t h e V compo- n e n t s o f v e l o c i t y . By i n t e g r a t i n g t h e g l o b a l c o n t i n u i t y e q u a - t i on be tween t he limits of 0 t o l , a q u a d r a t i c e q u a t i o n f o r ns i s o b t a i n e d . F o r t h e 7 component of v e l o c i t y a t q, t h e g l o b a l c o n t i n u i t y e q u a t i o n i s i n t e g r a t e d w i t h r e s p e c t to rl between the limits of 0 t o rl. The p r e s s u r e , p , i s d e t e r m i n e d a t s t a t i o n m by i n t e g r a t i n g t h e normal momentum e q u a t i o n w i t h r e s p e c t t o T-I

between the limits o f 1 t o rl. The e q u a t i o n o f s t a t e i s used t o d e t e r m i n e t h e d e n s i t y . The s o l u t i o n i s i t e r a t ed u n t i l con- vergence i s achieved . The s o l u t i o n a d v a n c e s t o t h e n e x t body s t a t i o n , m + l , a n d u s e s t h e p r e v i o u s c o n v e r g e d s o l u t i o n p r o f i l e s as i n i t i a l v a l u e s f o r s t a r t i n g t h e s o l u t i o n a t s t a t i o n m + l . Th i s procedure i s r e p e a t e d u n t i l a s o l u t i o n pass i s o b t a i n e d .

The f i r s t s o l u t i o n pass p rov ides a f i r s t approximation t o the f l o w f i e l d s o l u t i o n b e c a u s e t h e fo l lowing assumpt ions are used .

15

Page 26: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

I

FREE STREAM CONDITIONS. ~~ ~ " ., I I

I SHOCK, SOLUTION I

I ELEMENTAL EQUATIONS => . I I RADIATION TRANSPORT 5 v - q r I I ENERGY EQUATION

I S-MOMENTUM EQUATION -> u I

I N-MOMENTUM EQUATION ' ">- p I I EQUATION OF STATE

NO t 1 - < SOLUTION CONVERGED >-= YES s = S + A S

Figure 2. Flow design of local solution procedure.

16

Page 27: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

The thin shock-layer form of the n-momentum equation, an, is used; the stagnation streamline solution is independent of downstream influence; the term dns/d< is set to zero at each body station, and the shock angle 01 is assumed to be the same as the body angle 8. These approximations are then removed by global iteration. Two solution passes are generally suffi- cient. This solution procedure is programmed for the CDC 6600 computer.

KPU2 - &

2.4 RESULTS AND DISCUSSION

Numerical solutions of the VSL equations governing laminar, transitional, and turbulent flows of a perfect gas are compared with inviscid, BL, and' BLSSW solutions. Equivalent but less extensive comparisons are presented for nonradiating mixtures of perfect gases in chemical equilibrium. VSL solution data are also pre'sented for a radiating mixture of perfect gases in chemical equilibrium but comparative data are not available for this case.

2.4.1 Perfect Gas Solutions with Strong Vorticity Interaction

VSL solutions for laminar and turbulent flow of a Mach 10 free- stream over a 40" half-angle spherically blunted cone are pre- sented. Representative profile data obtained using the VSL analysis are compared with inviscid, BL, and BLSSW profile data. The inviscid flowfield solutions were obtained using the blunt-body method of characteristics (MOC) of Inouye, et a1 and the transient finite-difference (TFD) procedure of Sutton. '"he BL data were obtained using the analysis of Anderson and Lewis .25 BLSSW data were obtained using the analysis of Mayne and Dyer26 (this solution was provided by Dr. Arloe W. Mayne, Jr. of ARO, Inc.), and the analysis of Reference 25 was modified to account for variable entropy edge conditions during the present investigation.

2 3 2 4

17

Page 28: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

S u r f a c e p r e s s u r e d i s t r i b u t i o n s c o r r e s p o n d i n g t o the VSL and MOC s o l u t i o n s are shown i n F i g u r e 3. Excel lent agreement i s o b t a i n e d e x c e p t i n t h e v i c i n i t y o f t h e sphere-cone tangency po in t where d i f f e rences are ?lo%. These d i f fe rences have l i t t l e i n f l u e n c e upon t h e downstream flow and are n o t e x c e s s i v e i n t h e r e g i o n n e a r t h e t a n g e n c y p o i n t . The shock shapes corresponding to t h e VSL and MOC s o l u t i o n s are e s s e n t i a l l y i d e n t i c a l a n d are no t p re sen ted .

Figu.re 4 shows h e a t i n g - r a t e d i s t r i b u t i o n s c o r r e s p o n d i n g t o (1) t h e BL ana lys i s o f Re fe rence 2 5 , (2) t h e BLSSW a n a l y s i s of Reference 2 6 , ( 3 ) VSL s o l u t i o n s c o r r e s p o n d i n g t o t h e a s s u m p t i o n s t h a t t h e BL edge i s l o c a t e d as d e f i n e d by e i t h e r E q u a t i o n ( 2 3 ) o r ( 2 5 ) and a t t h e bow shock, and ( 4 ) l amina r VSL and BLSSW (Reference 25) s o l u t i o n s . F o r t u r b u l e n t f l o w , i n s t a n t a n e o u s t r a n s i t i o n a t s = O . 8 has been assumed, and the damping factor , A', i n t h e v a n D r i e s t eddy v i s c o s i t y law i s assumed t o be 26 i n a l l c a l c u l a t i o n s .

The t u r b u l e n t VSL s o l u t i o n w i t h t h e BL e d g e l o c a t i o n d e f i n e d b y

e i t h e r E q u a t i o n ( 2 3 ) or ( 2 5 ) and using Equat ion ( 2 2 ) for yi

i s i n e x c e l l e n t a g r e e m e n t w i t h t h e BL ana lys i s o f Re fe rence 25 f o r , 5 5 2 . 5 . I n t h e r e g i o n o f s t r o n g v o r t i c i t y i n t e r a c t i o n , t h e h e a t i n g r a t e s p r e d i c t e d b y t h e VSL s o l u t i o n a r e as much as 4 0 % less t h a n the h e a t i n g ra tes p r e d i c t e d by t he two BLSSW so lu - t ions . In the downst ream reg ion where t h e i n v i s c i d e n t r o p y layer has been swallowed b y t h e BL, t h e VSL and BLSSW s o l u t i o n s approach an equiva len t cone so lu t ion , as they should .

¶ r l

The t u r b u l e n t VSL s o l u t i o n i s s t r o n g l y i n f l u e n c e d by t h e d e f i -

n i t i o n o f t h e BL edge l oca t ion . To demons t r a t e t he maximum i n f l u e n c e o f t h e BL e d g e d e f i n i t i o n on t h e VSL s o l u t i o n , t he BL edge was assumed to b e l o c a t e d at t h e bow shock and a u n i t v a l u e f o r yi was assumed. These assumpt ions resu l t in maximum , n 18

Page 29: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

1 .o

.8

.6 PRESSURE,

.2

0 0.1

40' SPHERE CONE

M =10 00

y =1.4 N = 1.06 X 10 Re r* = 0.3048M n

6

VSL MOC (REF. 23) ""-

1 S

10 25

Figure 3. Surface pressure distributions.

Page 30: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

BL SOLUT I ON S

NORMAL REF.1 ENTROPY '

CORRECTION INTERMITTANCY TU.RB , IAM "" YES

EQN., 22 26 YE S 1 25

25 NO EQN. 22 25 YES

VSL SOLUTIONS

"- - ~~ - ." - ". -

"_"

r; LAM TURB

+ + +

NORMAL BL EDGE I NTERMITTANCY LOCAT I ON

1 1 AT SHOCK EQN. 22 H /H = 0.995

t t ,-

40° SPHERE-CONE

3.0 r " = 10 T /T = 0.1 w o

TRANSITION AT s = 0.8 I - '. l""

""" """"""

0 4 8 12 16 20 24 I I I I I I I 1 I I I .-J

S

Figure 4. H e a t i n g - r a t e d . i s t r i b u t i o n s .

20

Page 31: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

eddy viscosities using the present mixing length turbulence model. This solution shows the expected behavior, but the peak heating rates predicted by the VSL solution remains substan- tially less than that given by the BLSSW solutions. The lami- nar VSL and BLSSW25 solu.tions which are not directly influenced- by the BL and the displacement thicknesses show excellent agree- ment (*3%) for the heating-rate distribution. The data presented are the VSL solution.

The apparent contradiction for the agreement between laminar and turbulent VSL and BLSSW solutions is- the result of the BL and the displacement thickness distributions obtained using the BLSSW analyses. Both BLSSW solutions showed a linear increase in the BL and the displacement thickness distributions up to the point where the inviscid entropy layer is swallowed by the BL. Downstream of this point, these thickness distributions showed a gradual decrease in magnitude until the equivalent cone solution was approached. Since these definitions determine the scale for turbulence, the turbulent-heat-rate distributions predicted by the BLSSW solutions show the same behavior.

The rapid growth of the BL and displacement thickness in the region where longitudinal entropy gradients were significant was obtained for both laminar and turbulent flow when the vari- able entropy corrections presented by Blottner27 were used in the analysis of Reference 25. An approximate streamline swallow- ing analysis which corrected only the edge conditions was also used. This approach has been used by- Price and Harris28 and was found to give a more satisfactory distribution for the BL and the displacement thicknesses. The heat-transfer-rate distribu- tion obtained with this approximate analysis was essentially the same as when the full modifications presented by Blottner 27

were used. A more accurate BL solution would require higher- order theory (see van Dyke 29) .

21

Page 32: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

F i g u r e 5 shows v e l o c i t y p r o f i l e data a t f o u r l o c a t i o n s . The VSL s o l u t i o n s are compared w i t h t h e i n v i s c i d f l o w f i e l d s o l u t i o n s o f References 23 and 2 4 , t h e BLSSW so lu t ion o f Re fe rence 26, and t h e BL so lu t ion o f Re fe rence 25. A t s = 2 . 1 , t h e VSL p r o f i l e data i n t he i n n e r v i s c o u s r e g i o n show good agreement w i t h bo th BL and BLSSW s o l u t i o n s f o r t u r b u l e n t f l o w . However, as i s evident f rom t h e d i f f e r e n t h e a t i n g rates p r e d i c t e d a t th is s t a t i o n , t h e temper- a t u r e p r o f i l e s c o r r e s p o n d i n g t o t h e BLSSW s o l u t i o n showed pro- nounced differences f rom t h a t of t he VSL s o l u t i o n . The tempera- t u r e p r o f i l e s c o r r e s p o n d i n g t o t h e BL s o l u t i o n show good agreement w i t h t h e VSL s o l u t i o n as i n d i c a t e d by t h e h e a t i n g - r a t e p r e d i c t i o n . These data are no t p re sen ted .

I n t h e p r e d o m i n a n t l y i n v i s c i d o u t e r f l o w r e g i o n , t h e VSL pro- f i l e data show s a t i s f a c t o r y a g r e e m e n t ( F 5 % ) w i t h b o t h i n v i s c i d f l o w f i e l d s o l u t i o n s . The VSL and TFD s o l u t i o n s do not show t h e d i s t i n c t sharp peak i n t h e v e l o c i t y p r o f i l e t h a t i s a charac- t e r i s t i c o f s p h e r i c a l l y b l u n t e d c o n e f l o w f i e l d s as shown b y

the MOC r e s u l t s . S i n c e TFD i n v i s c i d f l o w f i e l d s o l u t i o n s g e n - e r a l l y u s e l e s s t h a n 15 i n t e r i o r g r i d p o i n t s a c r o s s t h e s h o c k l aye r , t h e d i f f e r e n c e s b e t w e e n t h e TFD and MOC s o l u t i o n s a r e p r o b a b l y t h e r e s u l t o f i n a d e q u a t e r e s o l u t i o n . The VSL s o l u - t i ons were ob ta ined u s ing 150 i n t e r i o r g r i d p o i n t s w i t h

approximately 80 p o i n t s w i t h i n t h e p r e d o m i n a n t l y v i s c o u s i n n e r reg ion and the remain ing 70 p o i n t s i n t h e p r e d o m i n a n t l y i n v i s - c i d o u t e r r e g i o n . S i n c e v e l o c i t y a n d t e m p e r a t u r e g r a d i e n t s a r e r e l a t i v e l y l a r g e i n t h e i n v i s c i d e n t r o p y l a y e r , t he d i f f e r -

ences be tween the MOC and VSL s o l u t i o n s a p p e a r t o b e t h e r e s u l t o f v i scous and d i sp lacement e f fec ts .

P r o f i l e data a t s = 3.2 and 6.7 show t h a t the agreement between t h e VSL and BLSSW s o l u t i o n becomes p rogres s ive ly worse as vor- t i c i t y i n c r e a s e s a t t h e BL e d g e , A f t e r t h e i n v i s c i d e n t r o p y l aye r i s swallowed by t h e v i scous l aye r , t he agreement between

22

Page 33: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

VELOCITY, U

TURBULENT INVISCID VSL 0 MOC (REF. 23) -.- BL (REF. 25) -"A TFD (REF. 24)

-8- "" BLSSW (REF. 26) x SHOCK LOCATION -

BL THICKNESS TURBULENT

V LAMINAR

40° SPHERE-CONE

6

F i g u r e 5. Comparisons of velocity p r o f i l e s .

Page 34: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

t h e two methods of solution i s s a t i s f a c t o r y as shown at s = 21. The p r o f i l e d a t a a t s = 6 . 7 show t h a t t h e i n v i s c i d e n t r o p y layer has been swallowed by t h e BL u s i n g t h e BLSSW a n a l y s i s . The VSL p r o f i l e d a t a show a d i s t i n c t " i n v i s c i d e n t r o p y l a y e r , " and t h e s e data are i n s a t i s f a c t o r y a g r e e m e n t w i t h b o t h i n v i s - c i d f l o w f i e l d s o l u t i o n s .

The s o l u t i o n s p r e s e n t e d f o r t h e 40° h a l f - a n g l e s p h e r i c a l l y b l u n t e d c o n e i n d i c a t e t h a t t h e VSL s o l u t i o n p r o c e d u r e i s sa t i s - f ac to ry fo r h igh Reyno lds number l amina r and t u rbu len t f l ows . The VSL s o l u t i o n s u s i n g a l g e b r a i c m i x i n g l e n g t h t u r b u l e n c e models i n c o n j u n c t i o n w i t h t h e d e f i n i t i o n e x p r e s s e d by e i t h e r Equat ion ( 2 3 ) or Equat ion ( 2 5 ) f o r t h e BL e d g e l o c a t i o n show acceptab le agreement w i t h BL s o l u t i o n s i n t h e n o s e r e g i o n o f b lunt bodies and wi th BLSSW s o l u t i o n s i n t h e f a r downstream f l o w . The s o l u t i o n s a p p e a r to be more s a t i s f a c t o r y t h a n BLSSW s o l u t i o n s f o r f l o w s w i t h s t r o n g v o r t i c i t y i n t e r a c t i o n . However, the accuracy of t he p r e s e n t s o l u t i o n p r o c e d u r e a n d t h e a p p l i - c a b i l i t y o f t h e a l g e b r a i c m i x i n g l e n g t h t u r b u l e n c e m o d e l i n g t e c h n i q u e i n t h e p r e s e n c e o f s t r o n g v o r t i c i t y i n t e r a c t i o n must b e determined by expe r imen ta l ve r i f i ca t ion . Turbu lence mode l s which are independent of conven t iona l boundary - l aye r t h i ckness d e f i n i t i o n s a r e n e e d e d f o r t h e p r e s e n t method of a n a l y s i s .

2 . 4 . 2 S o l u t i o n s for Radia t ing and Nonradia t ing Gas Mixtures in Chemica l Equi l ibr ium

A VSL s o l u t i o n f o r t h e f l o w f i e l d o v e r a 60° ha l f - ang le sphe r i c - a l l y b lun ted cone fo r a t y p i c a l V e n u s i a n e n t r y t r a j e c t o r y p o i n t i s p r e s e n t e d i n F i g u r e s 6 and 7 . The VSL s o l u t i o n i s compared wi th BL and BLSSW s o l u t i o n s o b t a i n e d u s i n g t h e i n t e g r a l a n a l y - s i s o f Edquist3' ( t h i s s o l u t i o n was provided b y C.T. Edqu i s t , Mart in-Mariet ta Corp. , Denver Divis ion) .

The i n v i s c i d f l o w f i e l d s o l u t i o n u s e d to spec i fy edge cond i t ions f o r t h e BL and BLSSW s o l u t i o n s was de termined us ing a s i n g l e

24

Page 35: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

1 .o

.9

PRESSURE, .8

.7 P /P w o

.6

.5

60' SPHERE CONE UX 00 = lO.Okm/s

3 E = 0.01 kg/m TX = 200K

00 VSL T X = 200K ----- I N V l SCI D (REF. 30)

Iri = 0*368M "" - ""- - "

" - \ \ \

NONRADIATING EQUILIBRIUM GAS \ \

(0.95 C02 - 0.05 N2) \ \ \

I

0 0.5 1 .o 1.5 2 .o BODY RADIUS, r

Figure 6. Surface pressure distributions.

Page 36: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

CONVECT I VE HEATING RATE, - q X

2 C MW/ m

4

2

lo2 , w ' 8

- NONRADIATING EQUILIBRIUM GAS (0.95 C02 - 0.05 N2) 60° SPHERE -CONE

- Ux = 10.0 km/s 00 CI

3 p& = 0.01 kg/ m

T X = 200 K

T* = 200 K . 0 0 - W -

r* = 0.368 m e-c " \ n #' \ "- -

r* = 0.368 m e-c " \ n #' \ "-

VSL BLSSW (REF. 30) BL (REF. 30)

"- ""

0.4 0.8 1.2 S 1.6 2.0

Figure 7 . H e a t i n g - r a t e d i s t r i b u t i o n s .

Page 37: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

strip integral method which accounts for the upstream influence of the sonic corner. The present formulation of the YSL equa- tions cannot account for thi's influence. The surface pressure distributions corresponding to the two methods of analysis are shown in Figure 6. The influence of the sonic corner is sig- nificant only in the region 1 . 6 ~ r < 2. For r L 1 . 6 , the maxi- mum difference between the two methods of analysis is less than 4%.

Convective heat-transfer rate distributions corresponding to the integral BL and BLSSW solutions and the present YSL solu- tion are presented in Figure 7 . The present solution corre- sponds to assuming instantaneous transition from laminar to turbulent flow with either Equation (23) or Equation (25) used for the BL edge definition and Equation (22) for the normal intermittency factor. The convective heat-transfer rate cor- relation formula used in the BL and.BLSSW solutions includes a transition correction. The BLSSW and VSL solutions show the expected influence of vorticity interaction, but the VSL solu- tion predicts heating rates that are approximately 30% lower than that given by the BLSSW solution. These differences are approximately the same as those obtained in the region of strong vorticity interaction for the previously discussed perfect gas solutions. For the present problem, these differences are not excessive and are generally to be expected when comparing dif- ferent numerical techniques using different turbulence models. For the laminar flow region, the different solution procedures are in excellent agreement.

VSL solution results are presented in Figures 8-11 for a 40'

half-angle hyperboloid for freestream conditions corresponding to a typical Jovian entry trajectory point. Wall shear-stress and convective heating-rate distributions are compared with the solution obtained using the BL analysis of Bartlett and

Page 38: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

NONRADIATING EQUILIBRIUM GAS (0.74 Hz - 0.26 H 1 e U* = 39.09 km/s

3 00

G = 3.89 x kg/m T* = 145K

61- 00 I T; = 4564K

SHEAR r* = 0.229 m STRESS, N = 7.4 X 10 t*

n

Re 5

w, kN/M2

TURBULENT VSL BL (REF. 31)

VSL BL (REF. 31)

"-

LAMINAR - - -" "-

""" -

0 0.5 1 .o 1.5 s

2.0 2.5 3 .O

Figure 8 . 'Wall s h e a r s t ress d i s t r i b u t i o n f o r a 40° hyperbolo id .

Page 39: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

200 r

CONVECT I VE HEAT1 NG 100

NONRADIATING EQUILIBRIUM GAS (0.74 H2 - 0.26

U* = 39.09 km/s T* = 4564K 3 = 3.89 x kg / m r* =0.229m

00 W

E n

H ) e

T* = 145K 00

TURBULENT VSL BL (REF. 31) -" -

LAM I NAR ""- VSL

BL (REF. 31) ""_

RATE, -qt, w, MWlm 2

L I I I I I 1 0 0.5 1 .o 1.5 2.0 2.5 3 .O

S

Figure 9 . Heating-rate distribution for a 40° hyperbo lo id .

Page 40: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

.7

.6

.5

.4 VELOCITY,

U .3

.2

.I

0

NONRADIATING EQUILIBRIUM GAS (0.74 H2 - 0.26 H 1 U* = 39.09 km/s e 00

= 3.89 x kg / m 3

% 00 LOCATION T* =145K

T* = 4564K W

r* = 0.229 m n c;

NRe = 7.4 x 10'

""" lNVl SCI D (REF. 24) - -" BL (REF. 31)

I I I I I I I I

lo-* lo-1 n*. CENT1 METERS

loo lo1

Figure 1 0 . T u r b u l e n t velocity p r o f i l e s a t s = 2 f o r a 40° hyperbolo id .

Page 41: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

16

14

12 TEMPERATURE,

TX, K

8

10

8

6

-x 10 NONRADIATING EQUIL IBRIUM GAS (0.74 H2 - 0.26H ) 3

e "" "- VSL BL (REF. 31) I N V I S C I D (RE

"""""_

/ Pz = 3.89 x 10 -4 kg/m 3 I

Tx = 145K

T* = 4564K 00

rx = 0.229 m n N = 7.4 x 10 .Re ,

5

4 I I I

lo-* 10-1 100 101

Page 42: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

Kendal l . 31 The i n v i s c i d c o n s t a n t e n t r o p y e d g e c o n d i t i o n s f o r th is BL s o l u t i o n w e r e d e t e r m i n e d u s i n g t h e TFD procedure o f Reference 2 4 .

Wall s h e a r - s t r e s s a n d c o n v e c t i v e h e a t i n g - r a t e d i s t r i b u t i o n s are shown i n F i g u r e s 8 and 9 , r e s p e c t i v e l y . With t h e e x c e p t i o n of t h e r e g i o n n e a r t h e p o i n t o f i n s t a n t a n e o u s t r a n s i t i o n f r o m l a m i n a r t o t u r b u l e n t f l o w , t h e wall s h e a r - s t r e s s d i s t r i b u t i o n s f o r b o t h l a m i n a r a n d t u r b u l e n t f l o w show d i f f e r e n c e s o f less t h a n 210%. Lamina r convec t ive hea t ing - ra t e d i s t r ibu t ions a r e e s s e n t i a l l y i d e n t i c a l a n d a r e shown as a s i n g l e c u r v e , a n d f o r t u r b u l e n t f l o w , t h e two methods o f ana lys i s d i f fe r b y +5% e x c e p t i n t h e i m m e d i a t e v i c i n i t y o f t h e t r a n s i t i o n p o i n t .

VSL v e l o c i t y p r o f i l e data are compared w i t h t h e TFD i n v i s c i d s o l u t i o n 2 4 a n d t h e t u r b u l e n t BL s o l u t i o n 3 1 i n F i g u r e 1 0 . I n the ou te r p redominan t ly i nv i sc id po r t ion o f t he shock l aye r , t h e VSL s o l u t i o n i s i n good agreement w i t h t h e i n v i s c i d s o l u - t i o n . The v e l o c i t y p r o f i l e data i n t h e i n n e r v i s c o u s r e g i o n shows s a t i s f a c t o r y a g r e e m e n t n e a r t h e s u r f a c e b u t l a r g e d i f -

f e r ences a r e ob ta ined nea r t he ou te r edge o f t he BL. The tem- p e r a t u r e p r o f i l e s ( s e e F i g u r e 11) a r e i n ’ s a t i s f a c t o r y a g r e e m e n t w i t h maximum d i f f e r e n c e s o f l e s s t h a n +-lo% i n t h e v i s c o u s i n n e r r e g i o n a n d l e s s t h a n 23% i n t h e o u t e r i n v i s c i d r e g i o n .

The VSL s o l u t i o n was f i rs t o b t a i n e d u s i n g t h e t r a n s p o r t p r o p e r t y da ta for hydrogen and he l ium presented by Lick and Emmons3* and Esch, e t a l . l6 U s i n g t h e s e t r a n s p o r t p r o p e r t i e s , l a r g e d i f f e r - ences between the VSL s o l u t i o n a n d tha t of Reference 31 were no ted , and t he t r anspor t p rope r ty data were changed to conform w i t h t h o s e u s e d i n t h e BL s o l u t i o n . The h e a t i n g - r a t e d i s t r i b u - t i o n s c o r r e s p o n d i n g to t h e t r a n s p o r t p r o p e r t y data of Refer- ences 1 6 and 3 2 a r e p r e s e n t e d i n F i g u r e 1 2 f o r b o t h r a d i a t i n g and nonrad ia t ing l amina r and t u rbu len t f l ows . The convec t ive

Page 43: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

EQUILIBRIUM GAS (0.74 H2 - 0.26 ti 1 e Ux = 39.09 km/s

pz = 3.89 x 10

TX = 145K

T* = 4564K

00 -4 kg lm

400 - 00 CONVECTIVE W RADIATING

"INAR NONRADIATING ----- RADIATING

HEAT I NG RATE, TURBULENT NONRADIATING ---- "-

q AND c , w x

q'", r MW/rn2 RADIATIVE (LAMINAR AND I'URBULENT)

--" """- TRANS IT1 ON .

0 1 .o 2.0 S

3.0

Figure 1 2 . H e a t i n g - r a t e d i s t r i b u t i o n s f o r a 40° hyperboloid.

Page 44: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

h e a t i n g rates o b t a i n e d w i t h these t r a n s p o r t p r o p e r t i e s are approximately 25% t o 40% g r e a t e r t h a n t h o s e p r e s e n t e d i n F i g u r e 9 f o r t he nonrad ia t ing ca se . These two s o l u t i o n s f o r i d e n t i c a l f r e e s t r e a m c o n d i t i o n s a n d body s h a p e e f f e c t i v e l y demonst ra te t h e d i f f i c u l t i e s to b e expec ted when a t t e m p t i n g t o make c o m p a r i s o n s o f d i f f e r e n t a n a l y s e s f o r e q u i l i b r i u m g a s mixtures . For t h i s p r o b l e m , r a d i a t i o n h e a t t r a n s f e r f r o m t h e shock layer r e s u l t s i n a r e d u c t i o n o f t e m p e r a t u r e g r a d i e n t s i n t h e v i s c o u s i n n e r r e g i o n w i t h a c o r r e s p o n d i n g r e d u c t i o n i n c o n v e c t i v e h e a t i n g r a t e s a t t h e s u r f a c e f o r b o t h laminar and t u r b u l e n t f l o w s . The r a d i a t i o n h e a t t r a n s f e r t o t h e s u r f a c e i s n o t s i g n i f i c a n t l y i n f l u e n c e d b y t u r b u l e n c e f o r t h i s case .

34

Page 45: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

3. DEVELOPMENT O F AN ADVANCED TURBULENCE MODEL

R e s u l t s o f t h e p r e c e d i n g s e c t i o n show t h a t , u s i n g t h e m i x i n g - l e n g t h m e t h o d , s a t i s f a c t o r y s o l u t i o n s f o r v i s c o u s s h o c k layers can b e obta ined provided t h e necessary boundary- l a y e r p a r a m e t e r s - boundary- layer th ickness , d i sp lacement th i ckness , and edge cond i t ions - a r e a c c u r a t e l y d e f i n e d . T h e s e boundary-layer parameters are needed for the mix ing- length model, and are o t h e r w i s e n o t e s s e n t i a l t o t h e s o l u t i o n o f t h e VS.L e q u a t i o n s . A s shown i n S u b s e c t i o n 2 . 2 , f o r n o n r a d i a t i n g p e r f e c t g a s e s a n d m i x t u r e s o f p e r f e c t g a s e s i n c h e m i c a l e q u i l - i b r i u m , t h e s e p a r a m e t e r s c a n b e s a t i s f a c t o r i l y d e f i n e d by assum- i n g t h a t t h e e d g e o f t he p redominan t ly v i scous l aye r i s l o c a t e d a t t h e p o i n t w h e r e t h e l o c a l t o t a l e n t h a l p y i s 9 9 . 5 % o f t he f r e e s t r e a m v a l u e . However, s ince ene rgy i s t r a n s f e r r e d o u t o f the shock layer by r a d i a t i o n , t h i s d e f i n i t i o n %s u n s u i t a b l e f o r r a d i a t i n g g a s f l o w s . The composi te diffusion-conduct ion- d i s s i p a b i o n i n d e x d e f i n e d by Equat ion ( 2 5 ) prov ides a more s u i t a b l e method f o r d e f i n i n g b o u n d a r y - l a y e r t h i c k n e s s , a l t h o u g h t h e d e f i n i t i o n i s a d v e r s e l y i n f l u e n c e d by the nonvanish ing nor - mal g r a d i e n t o f t h e t a n g e n t i a l v e l o c i t y component i n t h e n o s e r eg ion o f b lun t bod ie s . Hence , a tu rbulence model ing technique which i s independent o r the usua l boundary- layer parameters i s needed fo r VSL a p p l i c a t i o n s .

Recent progress in development of phenomenological turbulence- m o d e l e q u a t i o n s f o r b o u n d a r y l a y e r a p p l i c a t i o n s i n d i c a t e t h a t t hese t echn iques can b e a p p r o p r i a t e l y m o d i f i e d f o r VSL a p p l i - c a t i o n s . The mos t ex t ens ive ly deve loped and t e s t ed t u rbu lence m o d e l o f t h i s c l a s s i s t h a t proposed by Saffman 33,34 and Wilcox. 35,36 The equat ions have been formulated for compres- - s i b l e f lows , 34-36 and have been shown to b e

i n p r e d i c t i n g f r e e s t r e a m - t u r b u l e n c e - i n d u c e d a ~ g m e n t a t i o n . ~ ~ To ach ieve a s o l u t i o n , t h e

q u i t e a c c u r a t e s t a g n a t i o n h e a t i n g model r e q u i r e s n o

35

Page 46: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

advance knowledge of a g i v e n t u r b u l e n t f l o w aside from boundary and i n i t i a l c o n d i t i o n s . T h i s f a c t , combined w i t h the model 's i ndependence o f boundary - l aye r pa rame te r s , i l l u s t r a t e s the model 's s u i t a b i l i t y f o r VSL a p p l i c a t i o n s .

I n th is s t u d y , p r e l i m i n a r y s t e p s h a v e b e e n t a k e n t o i n c o r p o r a t e t h e mode l equa t ions pos tu l a t ed by Wilcox and T ~ a c i ~ ~ i n t o t h e VSL c o d e d e s c r i b e d i n S e c t i o n 2 . The mode l equa t ions a r e s ta ted i n Subsec t ion 3.1. Then, i n Subsec t ion 3 .2 , boundary cond i t ions s u i t a b l e f o r s u r f a c e s w i t h mass i n j e c t i o n a r e d e v e l o p e d . Model- p r e d i c t e d f l o w s t r u c t u r e n e a r t h e e d g e o f t h e p r e d o m i n a n t l y v i s - cous reg ion i s t h e n a n a l y z e d i n S u b s e c t i o n 3 . 3 . F i n a l l y , Sub- s e c t i o n 3.4 proposes an a lgor i thm for reducing computing times a t t e n d i n g s o l u t i o n o f t h e m o d e l e q u a t i o n s .

3 - 1 THE MODEL EQUATIONS

The mean equat ions of motion, Equat ions (1) through (61, remain u n a l t e r e d . The eddy v i s c o s i t y , pT, i s d e f i n e d i n t e r m s o f t h e t u r b u l e n t m i x i n g e n e r g y , e , a n d t h e t u r b u l e n t d i s s i p a t i o n r a t e , w , as fo l lows :

I n t h e W i l c o x - T r a c i m o d e l , t h e m i x i n g e n e r g y a n d d i s s i p a t i o n r a t e sa t i s fy t h e f o l l o w i n g n o n l i n e a r d i f f u s i o n e q u a t i o n s .

36

Page 47: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

The q u a n t i t i e s 3 and 2 are g iven by t h e f o l l o w i n g :

where Sij i s t h e mean r a t e o f s t r a i n t e n s o r . T h e r e are s i x c l o s u r e c o e f f i c i e n t s a p p e a r i n g i n E q u a t i o n s ( 3 1 ) and (321,

v i z , a,a*,B,B*,u, and o * . The fo l lowing va lues have been e s t a b l i s h e d by a r uments based on g e n e r a l p r o p e r t i e s o f t u r b u l e n t f l o w s . 3%

3 .2 SURFACE BOUNDARY CONDITIONS

A t s o l i d b o u n d a r i e s w i t h no mass addi t ion, Saffman and Wilcox have shown tha t i n a d d i t i o n t o t h e n o - s l i p v e l o c i t y a n d s u r f a c e - t empera tu re ( o r heat t r a n s f e r ) b o u n d a r y c o n d i t i o n s , t h e fol low- ing boundary condi t ions mus t be imposed on e and w :

34

where SR i s a u n i v e r s a l f u n c t i o n o f t h e r o u g h n e s s h e i g h t o f t h e s u r f a c e , k, and

The c o n s t a n t a: i s 3/10, t h e high-Reynolds-number ( ~ + > > 1 )

value o f a*. For boundary layers w i t h s u r f a c e mass i n j e c t i o n

37

Page 48: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

(b lowing) , t h e i n t r o d u c t i o n of a n a d d i t i o n a l v e l o c i t y s c a l e ( v w = n o r m a l f l o w v e l o c i t y a t t h e s u r f a c e ) s u g g e s t s tha t some modi f ica t ion of Equat ion (35 ) may b e r e q u i r e d f o r f l o w s wi th blowing. Andersen, e t a l ,38 p r o v i d e f u r t h e r e v i d e n c e t h a t t h e d i s s ipa t ion - ra t e boundary cond i t ion mus t b e r e v i s e d when blowing i s p r e s e n t by s h o w i n g , f r o m c o r r e l a t i o n o f t h e i r exper imenta l data , t ha t t h e law o f t h e wall assumes the fol lowing modif ied form:

The modi f ied "cons tan ts" El and e are r e l a t e d t o kl, C , and t h e b lowing ve loc i ty as f o l l o w s :

5 = C - 50 vw + 72(vw) + + 2 (37 )

Since Saffman and Wilcox's computations show tha t C i s s t r o n g l y a f f e c t e d by the va lue o f SR, Andersen's data i n d i c a t e that a m o d i f i c a t i o n t o t h e model equat ion boundary condi t ion i s r equ i r ed fo r comput ing blown boundary layers . Since mass i n j e c t i o n i s of key importance i n VSL a p p l i c a t i o n s , w e t h u s cons ide r e f f ec t s o f b lowing on mode l -p red ic t ed f l ow s t ruc tu re .

A s i n t h e c a s e o f r o u g h s u r f a c e s , w e c a n e s t a b l i s h s u i t a b l e boundary cond i t ions fo r f l ows w i t h mass i n j e c t i o n b y ana lyz ing the v i scous sublayer o f an incompress ib le p lane-wal l boundary l aye r . Deno t ing d i s t ance no rma l t o t he su r f ace b y y , t h e b lown sub laye r equa t ions a r e

v(l+&+)- = u 2 + vwu du dY T

Page 49: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

where v i s k i n e m a t i c v i s c o s i t y .

To es tabl ish boundary condi t ions for t h i s f i f t h - o r d e r s y s t e m , w e assume t h e e f f l u e n t g a s i s f r e e o f t u r b u l e n t f l u c t u a t i o n s s o t h a t e van i shes a t t he s u r f a c e . The h o r i z o n t a l v e l o c i t y , u , v a n i s h e s b y v i r t u e of t h e no - s l ip cond i t ion , and i n ana logy t o Equa t ions (35) we write

PU; u = e = O , w = - a2v sB <v:) a t uTy/v = 0. (41)

where SB i s a u n i v e r s a l f u n c t i o n o f v:. Examination of w a l l - l a y e r s t r u c t u r e ( i . e . , t h e a s y m p t o t i c s o l u t i o n for u T y / v + m ) p r e d i c t e d by Equat ions (38-40) y i e l d s two more boundary conditions valid as uTy/v+m. A s c a n b e e a s i l y shown, t h e t u r b u l e n t d i f f u s i o n term i n t he mixing-energy equat ion i s n e g l i g i b l e f o r u y / v + - , a n d t h e r e fo l lows

T

I n a d d i t i o n to e s t a b l i s h i n g b o u n d a r y c o n d i t i o n s , f u r t h e r e x a m i n a - t i o n o f t he w a l l - l a y e r s o l u t i o n d e m o n s t r a t e s d i r e c t c o r r e s p o n d e n c e between model-predicted and measured effects of blowing on a t u r - bulent boundary l aye r . S p e c i f i c a l l y , i n t h e l i m i t o f weak blowing ( v i < < l), expanding i n powers of v: shows that t h e ve loc i ty obeys a modi f ied law of t h e wall similar t o E q u a t i o n ( 3 6 ) . The e f f e c - t i v e Karman c o n s t a n t i s p r e d i c t e d t o b e

where

4k, C-1 1

(44 I

39

Page 50: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

The func t iona l dependence i n Equa t ion (43) is similar t o that quoted by Andersen IEquation (37)]. 'Table 1 shows t h e v a r i a t i o n of E w i th uTy/u f o r kl= 0 . 4 1 and C = 5.5. A s shown, t h e p r e d i c t e d va lue o f E i s r easonab ly c lose to Andersen ' s va lue of 7 .7 , p a r t i c u l a r l y a t the l a r g e r v a l u e s o f u T y / u .

Table 1. V a r i a t i o n o f fi w i t h uTy/V.

L I 1 0 3.84

1 0 0

500 6.65 1 0 0 0 6.23

Using an implici t , t ime-marching numerical method, sublayer calcu- l a t i o n s were pe r fo rmed fo r s eve ra l b lowing r a t e s r ang ing f rom v+ = 0 to v: = 0.7393. The va lue o f SB was v a r i e d f o r e a c h b l o w i n g ra te u n t i l c l o s e a g r e e m e n t w i t h t he v e l o c i t y p r o f i l e data of Andersen, e t a l , 38 was ob ta ined (F5gure 13 ) . A s expected f rom t h e

w a l l - l a y e r a n a l y s i s , s l o p e s of t h e v a r i o u s p r o f i l e s ( i . e . , El-') a r e a c c u r a t e l y p r e d i c t e d . Note t h a t t h i s means t h a t , similar to t h e case o f su r f ace roughness , t h e d i s s ipa t ion - ra t e boundary con- d i t i o n p r i m a r i l y d e t e r m i n e s t h e v a r i a t i o n o f ? w i t h v:. F igu re 1 4 p r e s e n t s a c o r r e l a t i o n o f SB w i t h v;; a n a c c u r a t e a n a l y t i c a l r e p r e s e n t a t i o n o f t h e c o r r e l a t i o n i s

W

- 6 'B - v+( l + v + ) ; v ; > o

W W

( 4 5 )

A l t h o u g h e f f e c t s o f s u c t i o n (v; < 0) have not been considered here, computations performed b y W i l c o ~ ~ ~ i m p l y t h a t w i s

u n a f f e c t e d by suc t ion . The re fo re , Equa t ion ( 4 5 ) should on ly b e u s e d f o r v i > 0 .

40

I

Page 51: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

U 1 10 10 10

UTY/V

Figure 13. Comparison of computed and measured s u b l a y e r v e l o c i t y p r o f i l e s f o r boundary layers w i t h s u r f a c e mass i n j e c t i o n .

Page 52: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

V + W

10

1

10-1

10-

0 I N F E R R E D F R O M C O M P A R I S O N WITH A N D E R S E N , ET AL, DATA

10’1 1 10 102 103

sB

Figure 1 4 . C o r r e l a t i o n of SB with blowing r a t e parameter , v;.

Page 53: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

3 . 3 TURBULENT-NONTURBULENT INTERFACE STRUCTURE

We now cons ide r mode l -p red ic t ed f l ow s t ruc tu re nea r t h e o u t e r edge of t h e p redominan t ly v i scous r eg ion . In so lv ing t he mode l equa t ions , numer i ca l d i f f i cu l t i e s have been encoun te red n e a r t h e ou te r edge bo th i n conven t iona l boundary - l aye r com- p u t a t i o n s a n d i n p r e l i m i n a r y VSL a p p l i c a t i o n s . The d i f f i c u l t i e s stem f rom ex is tence o f a sharp t u r b u l e n t - n o n t u r b u l e n t i n t e r f a c e a t the boundary- layer edge. The sha rpness , f i r s t analyzed by S a f f m a r ~ , ~ ~ m a n i f e s t s i t s e l f as d z s c o n t i n u i t i e s i n au*/ay and aw'/ay. A c c u r a t e n u m e r i c a l s o l u t i o n s r e q u i r e a c c o u n t i n g f o r t h e s e d i s c o n t i n u i t i e s ; t h e r e f o r e , we r e v i e w i n t e r f a c e s t r u c t u r e and propose a t e n t a t i v e remedy i n t h i s s e c t i o n .

3 . 3 . 1 I n t e r f a c e S t r u c t u r e f o r a Conventional Boundary Layer

A s c a n b e e a s i l y v e r i f i e d f o r t h e s p e c i a l c a s e e = w = 0 i n t h e f r e e s t r e a m , p r o d u c t i o n a n d d i s s i p a t i o n terms [ i - e . , t h e first t e r m s i n b r a c k e t s on t h e r i g h t - h a n d s i d e s o f Equat ions (31) and ( 3 2 ) ] a n d m o l e c u l a r d i f f u s i o n a r e n e g l i g i b l e n e a r t h e i n t e r f a c e ; a p p r o a c h i n g t h e i n t e r f a c e from below, the asymptot ic behav io r o f e , w , and u* i s

where 6 i s boundary l ayer th ickness . Note t h a t t h e b e h a v i o r p r e d i c t e d i n E q u a t i o n ( 4 6 ) i s c o n s i s t e n t w i t h exper imenta l o b s e r v a t i o n s . S p e c i f i c a l l y , Nee and Kovasznay40 have observed that t h e mean v e l o c i t y v a r i e s l i n e a r l y w i t h d i s t a n c e f r o m t h e i n t e r f a c e , i . e . , u* % ( 6 - y ) . Also, t h e l e n g t h s c a l e has been observed by many expe r imen te r s t o app roach a nonzero va lue nea r t he edge o f a turbulen t f low which i m p l i e s & % pe%/w% con- s t a n t as y + 6 .

43

I

Page 54: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

O f c o u r s e s u c h d i s c o n t i n u i t i e s c a n n o t e x i s t i n a t r u l y v i s c o u s f low. A s shown by S a f f m a r ~ ~ ~ and by Wilcox and Traci ,36 there 5s a t h i n r e g i o n c e n t e r e d a t t h e boundary l ayer edge in which v i scous e f f e c t s bec.orne impor t an t . This r e g i o n i s known as t h e v i scous s u p e r l a y e r ; i t s r o l e i s t o remove t h e d i s c o n t i n u i t i e s i n au*/ay and aw/ay. Supe r l aye r t h i ckness i s p r o p o r t i o n a l t o v*/v: where v: i s en t ra inment ve loc i ty . Al though v: i s g e n e r a l l y v e r y small f o r a conven t iona l boundary l aye r , r e so lv ing t h e s u p e r l a y e r i s i m p r a c t i c a l i n a numer ica l computa t ion . Consequent ly , so lu t ions t o t h e equa t ions appea r to b e d i s p o n t i n u i t i e s e v e n i n a v i s c o u s computation.

In p r i .o r boundary l ayer computa t ions , we have used t h e known a lge - b ra i c behav io r o f e , w , and u* t o l oca t e t he boundary - l aye r edge and t o o b v i a t e n u m e r i c a l d i f f i c u l t i e s a t t e n d i n g t h e s o l u t i o n " d i s c o n t i n u i t i e s " ; t h e p r o c e d u r e i s as f o l l o w s . F i r s t , t h e e q u a - t i o n s o f m o t i o n a r e i n t e g r a t e d t o a po in t t hough t t o be beyond y = 6 . The s o l u t i o n i s then examined t o de te rmine t h e va lue o f y a t which any one (or m o r e ) o f t h e t h r e e q u a n t i t i e s e , w , or u* i s less t h a n i t s boundary-layer-edge value. The i n t e r f a c e d i s c o n - t i n u i t i e s a l w a y s c a u s e s u c h u n d e r s h o o t i n g , a n d t h e d i s s i p a t i o n r a t e i s u s u a l l y t h e f i r s t q u a n t i t y t o undershoot i t s edge value. If n o s u c h u n d e r s h o o t o c c u r s , t h e e q u a t i o n s a r e i n t e g r a t e d t o a l a r g e r v a l u e o f y . U l t ima te ly , t h e boundary-layer edge i s l o c a t e d by l i nea r ex t r apo la t ion , f rom po in t s be low the unde r shoo t l oca - t i o n , o f t h e computed va lues o f e i t he r u* or w . For c l a s s i c a l boundary l ayers , t h i s p r o c e d u r e o b v i a t e s n u m e r i c a l d i f f i c u l t i e s a t t e n d i n g i n s u f f i c i e n t r e s o l u t i o n o f t h e supe r l aye r ; however , t he p r o c e d u r e ' s a p p l i c a b i l i t y for VSL's i s u n c e r t a i n . I n f a c t , a key advantage o f us ing the model equa t ions , i . e . , independence of boundary l aye r t h i cknesses , i s l o s t i f t h i s procedure i s used . In t he f o l l o w i n g s e c t i o n s we a n a l y z e i n t e r f a c e s t r u c t u r e f o r s t a g n a - t i o n p o i n t f l o w a n d p o s t u l a t e a n a l t e r n a t i v e p r o c e d u r e .

44

Page 55: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

3.3.2 Interface Structure for Stagnation Point Flow

To determine similarities between interface structure for VSL's and conventional boundary layers, we now analyze flow near a stagnation point (Figure 15). This flow is relevant because a VSL begins at a stagnation point and approaches a conventional boundary layer farther downstream. For perfect-gas flow near the stagnation point of a bluff body, the equations of motion admit a similarity solution;37 the similarity variables are

The quantity c * is the inviscid flow velocity gradient which depends on the shape of the body and the Mach number. Provided the shock standoff distance is large compared to the thickness of the viscous region, the mean flow outside the viscous region ( y > 6 ) satisfies the usual inviscid solution near a stagnation point given by

u* = c*x , v* = -(j+l)c*cy ( 4 8 )

where j = O for two-dimensional flow and j=1 for axisymmetric flow. The various dependent variables are scaled as follows:

The transformed equations of motion are

45

Page 56: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

Figure 15 . Schematic of stagnation point flowfield.

46

Page 57: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

Mass Conserva t ion

+ ( j + l ) U = 0 drl

Hor izon ' ta I Momentum Conservat ion

d

Energy Conservation

d T - '" dn - &[(e +

where L and E+ a r e d e f i n e d as

L = E'/W

E' = E/W ( 5 5 )

Equat ions ( 5 0 ) - ( 5 5 ) c o n s t i t u t e a 9 t h o r d e r s e t o f coupled o r d i n a r y d i f f e r e n t i a l e q u a t i o n s . F o r a p e r f e c t l y smooth wall w i t h no mass i n j e c t i o n , t h e boundary condi t ions a re

U(0) = E ( 0 ) = V(0) = 0

47

Page 58: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

Unlike t h e convent ional boundary l aye r , t h e p roduc t ion rates i n Equat ions (53 ) and (541 , i . e . , 2 a * m l U l and 2 a m I U 1 , a r e nonvanish ing above the v i scous reg ion . A s a consequence , t he re i s appa ren t ly no sha rpness a t t h e t u r b u l e n t - n o n t u r b u l e n t i n t e r f a c e . For example, Figures 16-18 show computed e , R , and E+ p r o f i l e s ( i . e . t h e c u r v e s l a b e l e d " w i t h o u t i n t e r m i t t e n c y " ) f o r a c a s e i n which both e and w are very small o u t s i d e t h e v i s c o u s r e g i o n ( y / m S 6 ) ; computations have been performed w i t h t h e same impl i c i t , t ime-march ing method used i n t h e s u b l a y e r c o m p u t a t i o n s of Subsec t ion 3 .2 . A l l th ree quan t i t i e s smoo th ly approach t h e i r

f r ees t r eam va lues . Thus , t h e n u m e r i c a l d i f f i c u l t i e s p r e s e n t i n o u r e a r l y VSL computat ions are n o t a s s o c i a t e d w i t h f l o w i n t h e

i m m e d i a t e v i c i n i t y o f t h e s t a g n a t i o n p o i n t . Rather, these d i f f i -

c u l t i e s must be caused by appearance o f the sharp i n t e r f a c e as t h e VSL approaches conven t iona l boundary - l aye r s t ruc tu re .

3 . 3 . 3 T e n t a t i v e M o d i f i c a t i o n t o t h e Model Equat ions

Having i d e n t i f i e d t h e s o u r c e o f d i f f i c u l t y as t h e s h a r p i n t e r f a c e , we now propose a t e n t a t i v e remedy. In spec t ion o f Equa t ions (31 ) and ( 3 2 ) shows tha t , u n l i k e t h e b a s i c c o n s e r v a t i o n e q u a t i o n s , we c a n n e v e r o b t a i n s o l u t i o n s f o r w h i c h e and w s imul t aneous ly approach cons tan t , nonvanish ing va lues . To unders tand th i s , n o t e t ha t van i sh ing o f t h e s o u r c e t e r m i n e i t h e r e q u a t i o n p r e c l u d e s van i sh ing o f t h e o t h e r e q u a t i o n ' s s o u r c e t e r m . A s shown b y Wilcox and T ~ a c i . , ~ ~ , t h e s o u r c e t e r m s p l a y a s e c o n d a r y r o l e r i g h t a t t h e i n t e r f a c e . N e v e r t h e l e s s , t h e s t a g n a t i o n - p o i n t a n a l y s i s a b o v e

48

Page 59: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

WITHOUT INTERMITTENCY WITH INTERMITTENCY "-

J

Figure 1 6 . Computed v a r i a t i o n of turbulent mixing energy near a s t agna t ion po in t .

Page 60: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

ul 0

5

2

10

5

2

1

5

2

10- 1

I I I I I I I I I I I I

WITHOUT INTERMITTENCY

WITH INTERMITTENCY "-

I 1 I I I I I I I I I I 2 5 2 5 2 5 2 5 2

10- 10- 10-3 10-2 10-

Figure 1 7 . Computed v a r i a t i o n of t u r b u l e n t l e n g t h s c a l e n e a r a s t a g n a t i o n p o i n t .

Page 61: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

5

WITHOUT INTERMITTENCY WITH INTERMITTENCY

I I " "- l o

5 1 I I I I I 1 I

t I I - I I "

J

WITHOUT INTERMITTENCY WITH INTERMITTENCY 10 - "-

5 - "" "C"

2 -

1 /

5 - -

2 - -

l o - 1 r I I I I I 1 I I I I I

2 5 2 5 2 5 2 5

10- 10- 10" 1 . 0 ~ ~ E t

10- 10" 1 . 0 ~ ~ E t

Figure 18. Computed variation of eddy v i s c o s i t y near a stagnation p o i n t .

Page 62: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

shows tha t a l t e r a t i o n s t o t h e source terms g i v e r ise t o s i g n i f i - c a n t m o d i f i c a t i o n t o i n t e r f a c e s t r u c t u r e .

A s a numerical experiment and a , p o t e n t i a l remedy f o r the numeri- c a l d i , f f i c u l t i e s e n c o u n t e r e d i n VSL computat ions wi th t h e model e q u a t i o n s , we p r o p o s e f o r c i n g t h e s o u r c e terms i n E q u a t i o n s (31) and ( 3 2 ) t o v a n i s h o u t s i d e t h e p redominan t ly v i scous r eg ion . To accomplish this end, we i n e f f e c t i n t r o d u c e i n t e r m i t t e n c y f a c t o r s , Ie and Iw, which mult iply t h e s o u r c e t e r m s , i . e .

A VSL computation was performed w i t h

Ie - - Iw = T / T w

where T i s Reynolds shear s t r e s s . No n u m e r i c a l d i f f i c u l t i e s were encoun te red , t hus ve r i fy ing t h a t the nonvan i sh ing o f t he source t e rms above the v i scous l ayer i s the p r imary sou rce o f d i f f i c u l t y .

I n o r d e r t o a c h i e v e a more u n i v e r s a l ( t e n s o r i n v a r i a n t ) f o r m u l a - t i o n , a n a l t e r n a t e d e f i n i t i o n f o r 1, and 1, must be proposed. One p o s s i b i l i t y f o l l o w s f r o m n o t i n g t h a t aR/an vanishes above both convent ional boundary layers and above t h e

v i s c o u s r e g i o n i n VSL ' s . Thus, w e p ropose t he fo l lowing

To a s s e s s t h e e f f e c t of t h e i n t e r m i t t e n c y m o d i f i c a t i o n s o n p r e d i c t e d s t a g n a t i o n - p o i n t f l o w p r o p e r t i e s , t h e computations

52

Page 63: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

discussed in Subs.ection 3.2.2 were repeated using the intermit- tency defined in Equation (61) with I?= 50. Figures 16-18 show that the solution is strongly affected by intermittency throughout the flow, including deep in the viscous region. Because the eddy viscosity is so small, the mean velocity profile is unaffected. However, the intermittency modification conceiv- ably has a nontrivial effect on velocity profiles in regions where the flow is fully turbulent. Additionally, the model's ability to predict transition3' may be affected by damping the source terms. Hence, the intermittency modification must be viewed as tentative until the impact of the modification upon these and other important aspects of model-predicted flow properties have been quantified.

3.4 COMPUTING-TIME REDUCTION

Even with the intermittency modification, computing times with the VSL program are excessive when the model equations are used. The maximum streamwise step size at which converged solutions can be obtained is less than a tenth of that which can be used in mixing-length computations. In order to reduce computing time, a special integration algorithm has been devised. In this section, we discuss the reason for the reduced step size and present the integration algorithm.

Step size must be reduced with the model equations because the source terms are very large and negative close to a solid bound- ary. Consequently, in a boundary-layer marching procedure, there is a tendency to overestimate the decay of numerical errors from one station to the next (Figure 19). Unless very small steps are taken as we march from x = x1 to x = x2, the magnitude of a numeri- cal error, Be, can grow very rapidly and ultimately can destroy the solution. By taking smaller steps, we more nearly approach the rapid exponential decay implied by the large and negative source terms, thus preserving solution accuracy.

53

Page 64: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

6e

A

S T E P S I Z E ADEQUATE FOR COMPUTING EXPONENTIAL DECAY

I I I I I I I I I I , 1 1 1 w

X

x1 \ X

\ 2

\ \

STEP SIZE / \ TOO LARGE \

\

Figure 19. Schematic illustrating error growth in a numerical computation.

54

Page 65: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

Above the viscous sublayer the source terms are generally much smaller. Hence, it may be necessary t o take small steps in the streamwise direction only in the sublayer while much larger steps may be permissible elsewhere. To test this pos- sibility, two incompressible flat-plate boundary layer compu- tations were made with a second-order-accurate, implicit boundary-layer code. In the computations, we solved the con- servation equations only at every nth streamwise station. At each nth station, the conservation equations were solved ail the way across the boundary layer. Below a specified distance normal t o the surface, the model equations were so1ve.d at every streamwise station. In addition, the model equations were solved all the way across the boundary layer at each nth station.

'jrnax

The first round of computations was for a fully turbulent boundary layer; the computation used 100 mesh points between y = 0 and y = 6 while the value of n was 8. Figure 20 shows the ratio of computing times, t/to, for three values of jma: t is the computing time required when n = 8 and to is the computing time required for a normal boundary layer computation, i.e., n = 1 and j =loo. As shown, there is a 17% reduction in computing time when the model equations are solved up to y = 6, i.e., for jmax = 100. However, when jmax is 30, computing time is nearly halved. Further reduction of jmax results in a slight increase in computing time; this increase is caused by an attendant increase in the number of iterations required to obtain a converged solution. In all computations we observed no deterioration in solution accuracy.

max

The second round of computations was for a laminar/transitional boundary layer; starting from the plate leading edge, the equa- tions of motion were integrated up to the model-predTcted transition point at a plate-length Reynolds number, Rex, of

55

Page 66: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

FULLY TURBULENT FLAT PLATE BOUNDARY LAYER

I ,o

1.0 - . 8 -

. 6 -

.4 -

.2 -

0 ' I I I I

0 20 40 60 80 100

Jmax

U 0 20 40 60 80 100

Jmax

1.0

. 8

.6

.4

.2

0

% / I-

" /

0""""- "

n = 8

t/to

- O\ TRANSITIONAL \ \ FLAT PLATE BOUNDARY LAYER - \ '.

1 o" -0""" 0 -

- Jmax = 100

-

I I I I ~ _ I

0 5 10 1 5 20 25 n

Figure 20. Computing time reduction attending the special integration algorithm.

Page 67: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

2.1010~. Using jmax =IOO, we varied n from 1 to 25. As shown in Figure 20, t/to drops by 30% as n increases to 10; a slower decrease in t/to follows as n increases further with a large n asymptote of t/to' 0.60. Varying n causes no variation in transition Reynolds number.

This new integration algorithm, in effect, permits an order of magnitude increase in streamwise step size. The reduction in computing time is somewhat disappointing h%wever. A signifi- cant increase in the number of iterations required to achieve converged solutions prevents computing time from decreasing proportionally with jmax and/or n. Nevertheless, the compu- tations verify the proposed cause of step size reduction, viz, the large and negative source terms in the model equations, particularly near a solid boundary. Having attained such understanding, we are now in a position to develop even more efficient integration algorithms.

57

Page 68: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

4. CONCLUDING REMARKS

A s shown i n S e c t i o n 2, n u m e r i c a l s o l u t i o n s f o r t h e viscous-shock- layer equa t ions compare f a v o r a b l y w i t h i n v i s c i d f l o w f i e l d s o l u - t i o n s i n t h e i n v i s c i d o u t e r p o r t i o n o f t h e s h o c k layer . Favorable comparisons w i t h b o u n d a r y - l a y e r s o l u t i o n s a r e o b t a i n e d f o r the p r e d o m i n a n t l y v i s c o u s i n n e r p o r t i o n o f t h e s h o c k l a y e r b o t h n e a r t he nose and f a r downstream where v o r t i c i t y i n t e r a c t i o n i s n e g l i - g i b l e . I n f l o w r e g i o n s " w h e r e v o r t i c i t y i n t e r a c t i o n i s s t r o n g , t h e v i scous - shock- l aye r so lu t ions appea r t o b e more s a t i s f a c t o r y .

F i r s t -order boundary- layer theory wi th c o r r e c t i o n s f o r s t r e a m l i n e swal lowing appear to overpredict boundary-layer and displacement t h i c k n e s s e s . For t u r b u l e n t f l o w , t h i s r e s u l t s i n a n a p p a r e n t o v e r p r e d i c t i o n of s k i n f r i c t i o n a n d h e a t t r a n s f e r i f v o r t i c i t y i n t e r a c t i o n i s s t r o n g . Th i s behav io r i s t h e r e s u l t o f t h e i m p l i e d nonvanish ing normal g rad ien ts a t the edge o f the boundary layer when l o n g i t u d i n a l e n t r o p y g r a d i e n t s are cons idered .

Experimental data a r e n e e d e d f o r h y p e r s o n i c t u r b u l e n t f l o w s o v e r b l u n t b o d i e s to assess the accu racy o f t h e p re sen t numer i ca l so lu - t i on p rocedure and t o d e t e r m i n e t h e v a l i d i t y o f m i x i n g - l e n g t h tu rbu lence mode l s i n t h e p r e s e n c e o f s t r o n g v o r t i c i t y i n t e r a c t i o n .

Turbulence models that are independent of convent ional boundary- l aye r t h i ckness pa rame te r s a r e needed fo r bo th t he p re sen t me thod of a n a l y s i s a n d f o r numer i ca l so lu t ion o f t h e Navier-Stokes equa- t i o n s . The a n a l y s e s o f S e c t i o n 3 d e m o n s t r a t e t h e p o t e n t i a l of two- equa t ion t u rbu lence mode l s i n t he VSL con tex t . Whi l e fu r the r development of t h e model and methods f o r e f f i c i e n t l y i n t e g r a t i n g t h e model equations w i l l be needed t o ach ieve a p r a c t i c a l e n g i n e e r - i n g d e s i g n tool, t h e r e s u l t s a r e v e r y e n c o u r a g i n g .

58

Page 69: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

I

REFERENCES

1.

2.

3 .

4.

5.

6.

7.

a .

9.

10.

11.

12.

Moss, J . N . , Anderson, E . C . , and B o l z , C . W . , Jr . , ''Viscous- Shock-Laye r So lu t ions w i th Rad ia t ion and Ab la t ion In j ec - t i o n f o r J o v i a n E n t r y , " A I A A Paper No. 75-671, A I A A 1 0 t h Thermophysics Conference, Denver, Colorado (May 1 9 7 5 ) .

Davis , R . T . , "Numerical S o l u t i o n o f t h e Hypersonic Viscous Shock-Layer Equations," A I A A J 8, No 5, pp 843-851 (1970) .

Davis , R . T . , "Hypersonic Flow of a Chemical ly React ing Binary Mixture Past a Blunt Body," A I A A Paper NO 70-805, (June-July 1970).

Moss, J . N . , "React ing Viscous-Shock-Layer Solut ions with Multicomponent Diffusion and Mass I n j e c t i o n , " NASA TR-411 (1974).

Moss, J . N . , "Stagnation and Downstream Viscous-Shock-Layer So lu t ions w i th Rad ia t ion and Coup led Ab la t ion In j ec t ion , " A I A A Paper No 74-73, A I A A 1 2 t h Aerospace Science Meet ing, Washington, D . C . ( J a n 1974).

Eaton, R . R . , and Larson, D.E-. , "Laminar and Turbulent Viscous Shock L a y e r Flow i n t h e Symmetry P lanes o f Bodies a t Angle of Attack," A I A A Paper No 74-599 ( June 1974).

Anderson, E.C., and M O S S , J . N . , "Numer ica l Solu t ion of the Viscous-Shock-Layer Equations for Hypersonic Turbulent Flow o f a P e r f e c t Gas About Blunt A x i a l l y Symmetric Bodies," NASA TN D-7865, 1975. Anderson, E.C., and M O S S , J . N . , "Viscous-Shock-Layer S o l u t i o n s for Turbulent Flow o f R a d i a t i n g Gas Mixtures i n Chemical Equi l ibr ium," NASA TM X-72764 (1975).

B i r d , R . B . , S t e w a r t , W.E., and L igh t foo t , E . N . , T ranspor t Phenomena, John Wiley & Sons , Inc (1960).

Dorrance, W . H . , Viscous Hypersonic Flow, McGraw-Hill (1962).

N i c o l e t , W . E . , "Advanced Methods f o r C a l c u l a t i n g R a d i a t i o n Transport in Ablat ion-Product Contaminated Boundary L a y e r s , " NASA CR-1656 (1970).

N i c o l e t , W.E. , "User's Manual f o r t h e G e n e r a l i z e d R a d i a t i o n T r a n s f e r Code ( R A D / E Q U I L ) , " NASA CR-116353 (19.69).

59

Page 70: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

1 5 .

1 6 .

1 7 .

1 8 .

1 9

20.

2 1 .

22.

2 3 .

2 4 .

25.

S t r o u d , C . W . , and Br inkley , K.L. , "Chemical Equi l ibr ium o f Ab la t ion Materials Inc luding Condensed Spec ies , " NASA TN D-5391 ( 1 9 6 9 ) .

Esch, D . D . , S i r i p o n g , A . , and Pike, R.W., "Thermodynamic P r o p e r t i e s i n Polynomial Form f o r Carbon, Hydrogen, Ni t rogen , and Oxygen Systems from 300 to 15000° K," NASA CR-111989 (1970) . ,

McBride, B . J . , Heimel, S . , E h l e r s , J . G . , and Gordon, S . , "Thermodynamic P r o p e r t i e s to 6000 K f o r 210 Subs tances I n v o l v i n g t h e F i r s t 1 8 Elements ," NASA SP-3001 ( 1 9 6 3 ) .

Esch, D . D . , P i k e , R.W., Engel , C . D . , Farmer, R . C . , and B a l h o f f , J . F . , " S t a g n a t i o n R e g i o n H e a t i n g o f a Phenol ic- Nylon Abla tor Dur ing Return f rom P lane tary Miss ions ," NASA CR-112026 ( 1 9 7 1 ) .

Wilke, C . R . , " A V i s c o s i t y E q u a t i o n f o r Gas Mixtures ," Chem Phys J - 1 8 , No 4 , pp 517-5519 (1950) .

C lause r , F.H. , "The Turbulent Boundary L a y e r , " Advances i n Applied Mathematics, V o l I V Y pp 1-51, Academic P r e s s ( 1 9 5 6 ) .

Klebanoff, P.S. , " C h a r a c t e r i s t i c s o f T u r b u l e n c e i n a Boundary Layer with Zero Pressure Gradient , N A C A 1 2 4 7 ( 1 9 5 5 ) .

Cebeci , T . , "Behavior o f Turbulent Flow n e a r a Porous Wall w i t h P r e s s u r e G r a d i e n t , " A I A A J 8 , No 1 2 , pp 2152-2156 ( 1 9 7 0 ) .

-

Van Dr ies t , E . R . , "On Turbulent Flow Near a Wall," Aero S e i J - 23 , NO 11, pp 1007-1011, 1 0 3 6 ( 1 9 5 6 ) .

Harris, J . E . , "Numerical Solut ions o f t h e Equat ions f o r Compress ib le Laminar , Trans i t iona l , and Turbulent Bound- ary Layers and Comparisons with Experimental Data," NASA TR R-368 ( 1 9 7 1 ) .

Inouye, M . , Rakich, J . , and Lomax, H . , "A D e s c r i p t i o n o f Numerical Methods and Computer Programs f o r Two-Dimensional and Axisymmetric Supersonic Flow over Blunt Nosed and Flared Bodies ," NASA TN D-2970 ( 1 9 6 5 ) .

S u t t o n , K . , "Coupled Nongray R a d i a t i n g Flow About P l a n e t a r y Entry Bodies ," A I A A J 1 2 , No - 8 , pp 1099-1105 ( 1 9 7 4 ) .

Anderson, E . C . , and L e w i s , C . H . , "Laminar o r T u r b u l e n t Boundary-Layer Flows of Perfect Gases o r Reac t ing Gas Mixtures in Chemica l Equi l ibr ium," NASA CR-1893 ( 1 9 7 1 ) .

60

Page 71: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Mayne, A.W., Jr., and Dyer, D.F., "Comparison of Theory and Experiment for Turbulent Boundary Layers on Simple Shapes at Hypersonic Conditions," Proc sf 1970 Heat Transfer alld Fluid Mech Inst, Stanford Univ Press, pp 168- 188 (1970).

Blottner, F.G., "Finite Difference Methods of Solution of the Boundary-Layer Equations," AIAA J 8, No 2, pp 193- 205 (1970).

-

Price, S.M., and Harris, J.E., "Computer Program for Solving Compressible Nonsimilar Boundary-Layer Equations for Laminar, Transitional, or Turbulent Flows of a Perfect Gas," NASA TM X-2458 (1972).

Van Dyke, M., "A Review and Extension of Second-Order Hypersonic Boundary-Layer Theory," Rarefied Gas Dynamics, Fluid Symposium Supp 2, Vol 11, Academic Press (1963).

Edquist, C.T., ''A Technique for Predicting Shock Induced Vorticity Effects During Venus Entry," Martin-Marietta (Denver) R-70-48671-006 (1970).

Bartlett, E.P., and Kendall, R.M., "Nonsimilar Solution of the Multi-component Laminar Boundary Layer by an Integral Matrix Method," Aerotherm Corp (Palo Alto, CA) Rept No 66-7, Pt 111 (1967).

Lick, W.J., and Emmons, H . W . , "Transport Properties for Helium from 200 to 50,000" K," Harvard Univ Press (1965).

Saffman, P.G., "A Model for Inhomogeneous Turbulent Flow," Proceedings of the Royal Society of London, A317, pp 417- 433 (1970)-

Wilcox, D.C. and Alber, I.E., "A Turbulence Model for High Speed Flows," Proceedings of the 1972 Heat Transfer and Fluid Mechanics Instituter Stanford Univ Press,

" _ . .

pp 231-2-52 (1972).

Wilcox, D.C. and Traci, R.M., "A Complete Model of Turbulence," AIAA Paper No 76-351, AIAA 9 t h Fluid and Plasma Dynamics Conference, San Diego, Calif, (July 1976).

Traci, R.M. and Wilcox, D.C., "Freestream Turbulence Effects on Stagnation Point Heat Transfer,'' AIAA J, 13, No 7, PP 890-896 (1975).

61

Page 72: VORTICITY INTERACTION EFFECTS BLUNT BODIESVORTICITY INTERACTION EFFECTS ON BLUNT BODIES E. Cldy Andegpson uf2d Duvid C, Wilcox Prepared by DCW INDUSTRIES4 Sherman Oaks, Calif. 91423

38. Andersen, P . S . , Kays, W . M . and Moffat , R . J . , "The Turbulent Boundary Layer on a Porous P la t e : An Experi- menta l S tudy of the F lu id Mechanics for Adverse Free- S t ream Pressure Gradien ts , " Rept No HMT-15, Dept Mech Engr , S tanford Univ , Calif ( 1 9 7 2 ) .

39. Wilcox, D . C . , "Turbulence-Model Transi t ion Predict ions for Blunt-Body Flows , I 1 AFOSR-TR-74-1714 ( 1 9 7 4 ) .

4 0 . Nee, V.W. and Kovasznay, L . S . G . , "Simple Phenomenological Theory of Turbulent Shear Flows," Phys ic s of Fluids 1 2 , P 473 (1969).

6 2 NASA-Langley, 1977 CR-2778